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Abstract

Horseshoe crab is an ancient marine arthropod that, in the absence of a vertebrate-

like immune system, relies solely on innate immune responses by defense

molecules found in hemolymph plasma and granular hemocytes for host defense. A

plasma lectin isolated from the hemolymph of Taiwanese Tachypleus tridentatus

recognizes bacteria and lipopolysaccharides (LPSs), yet its structure and

mechanism of action remain unclear, largely because of limited availability of

horseshoe crabs and the lack of a heterogeneous expression system. In this study,

we have successfully expressed and purified a soluble and functional recombinant

horseshoe crab plasma lectin (rHPL) in an Escherichia coli system. Interestingly,

rHPL bound not only to bacteria and LPSs like the native HPL but also to selective

medically important pathogens isolated from clinical specimens, such as Gram-

negative Pseudomonas aeruginosa and Klebsiella pneumoniae and Gram-positive

Streptococcus pneumoniae serotypes. The binding was demonstrated to occur

through a specific molecular interaction with rhamnose in pathogen-associated

molecular patterns (PAMPs) on the bacterial surface. Additionally, rHPL inhibited

the growth of P. aeruginosa PAO1 in a concentration-dependent manner. The

results suggest that a specific protein-glycan interaction between rHPL and

rhamnosyl residue may further facilitate development of novel diagnostic and

therapeutic strategies for microbial pathogens.
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Introduction

Lectins are a group of carbohydrate-binding proteins that recognize specific

carbohydrate structures and are widely distributed in living organisms. Based on

the structural and sequence similarities of the carbohydrate-recognition domains

(CRDs) and the ligand-binding specificities [1], animal lectins are classified into

various families such as M-type lectins, P-type lectins, C-type lectins, I-type

lectins, and S-type lectins (galectins), as well as calnexin, pentraxins, and

tachylectins [2]. They play diverse roles in physiological processes, functioning as

cell surface receptors [3], mediating interactions between cells during develop-

ment and differentiation [4, 5], and recognizing foreign molecules during immune

responses [6].

The horseshoe crab, an ancient marine arthropod, has survived for more than

500 million years [7]. Its defense system is solely dependent on an innate immune

system that requires hemocytes and hemolymph plasma to protect it from

pathogens [8]. Horseshoe crab hemolymph plasma contains many soluble defense

molecules, such as lectins, C-reactive proteins, and a2-macroglobulin [9]. In the

Japanese horseshoe crab, there are six types of lectins, Tachylectin-1 (TL-1) to -4

from hemocytes and TL-5A and -5B from plasma. The characteristics of bacterial

cell walls required for their recognition have been studied for the past two decades

[10]. In the Taiwanese horseshoe crab, two types of lectins, Tachypleus plasma

lectin 1 (TPL1) and Tachypleus plasma lectin 2 (TPL2), have been isolated and

characterized as novel hemolymph proteins secreted into the plasma of T.

tridentatus species [11]. Among the horseshoe lectins, TPL2 shows an 80%

sequence identity with TL-3 [12], and both TPL2 and TL-3 show ligand specificity

toward lipopolysaccharides (LPSs), particularly O-antigen [10, 12].

Native TPL2 (nTPL2) binds three species of bacteria, Streptococcus pneumoniae

R36A (Gram-positive), Vibrio parahaemolyticus (Gram-negative), and Escherichia

coli Bos-12 (Gram-negative) in a dose-dependent and saturable manner [13].

nTPL2 has seven cysteins in its 128 amino acids, including a free Cys4 that can

form intermolecular disulfide bonds, which are essential for LPS-binding activity

[10, 13]. nTPL2 consists of differentially glycosylated and partially protease-

cleaved forms, which has caused difficulties in determining the exact moiety

responsible for bacterial-binding activity [10]. Results from a recombinant TPL2

with a glycosylation site mutation indicate that glycosylation of TPL2 is

apparently not important for LPS binding [10].

In this study, we have engineered a recombinant TPL2 with a C-terminal His-

tag, recombinant horseshoe crab plasma lectin (rHPL), and successfully expressed

it in E. coli. We found that rHPL possessed novel pathogen and glycan recognition

abilities. A specific ligand, L-rhamnose (L-Rha), a 6-deoxy sugar found widely in

bacteria and plants, was identified. Rhamnose is a common component of the cell

wall and capsule of many pathogenic bacteria, including Salmonella enterica

serovar Typhimurium [14], Pseudomonas aeruginosa [15], and Mycobacterium

tuberculosis [16]. L-Rha specificity has not been previously reported in the

Japanese horseshoe crab lectins.
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Materials and Methods

Bacterial strains, growth media, and chemical reagents

Escherichia coli Top10F9 (Invitrogen) was used for vector construction and DNA

manipulation. E. coli expression strain Rosetta (DE3) (Novagen) and vector

pET23a (Novagen) were used for protein expression. The plasmid pPICZaA-tpl2

was provided by Dr. Po-Huang Liang (Institute of Biological Chemistry,

Academia Sinica, Taipei, Taiwan). Enterobacteria aerogenes ATCC 13048, Listeria

monocytogenes ATCC 7644, Shigella flexneri group B ATCC 12022, Proteus

mirabilis ATCC 7002, Serratia marcescens ATCC 8100, and Staphylococcus aureus

ATCC 33591 were purchased from Creative Microbiologicals, Ltd., Taiwan.

Pseudomonas aeruginosa PAO1 and Klebsiella pneumoniae CG43 were kindly

provided by Dr. Hwan-You Chang (Institute of Molecular Medicine, National

Tsing Hua University, Hsinchu, Taiwan). Lipopolysaccharides (LPSs) of E. coli

O26:B6, E. coli O55:B5, P. aeruginosa sero 10, Salmonella enterica serovar

typhimurium and L-Rhamnose (L-Rha) monosaccharide were purchased from

Sigma. L-Rhamnose-BSA (Rha-BSA) and blood group A-pentasaccharide were

purchased from Dextra Laboratories. Ni-Sepharose 6 Fast Flow was purchased

from GE Healthcare. All other buffers and reagents were of the highest

commercial purity.

Cloning of rHPLs

A DNA fragment encoding nTPL2 was amplified by PCR using pPICZaA-tpl2

[10] as the template with primers 59 EcoRI-rHPL (59 GAATTCGAAGATGA-

CTGCACGTGACAGAC 39) and 39 NotI-rHPL-6His (59 GCGGCCGCTTA-

ATGATGATGATGATGATGCTTAATTATTATAATAGGTCC 39). PCR reactions

were carried out with the following PCR program: Stage 1: 95 C̊ for 5 min, 1 cycle;

Stage 2: 95 C̊ for 30 sec, 55 C̊ for 30 sec, 72 C̊ for 1 min, 30 cycles; and Stage 3:

72 C̊ for 5 min, 1 cycle. Purified PCR products were digested with EcoRI and NotI

and were ligated into the pET23a vector that had been digested with the same

restriction enzymes. The recombinant plasmid was transformed into E. coli

TOP10F9 and confirmed by sequencing.

Protein expression and purification

The recombinant plasmids were transformed into E. coli expression strain Rosetta

(DE3) for overexpression. After induction with a final concentration of 0.1 mM

isopropyl b-D-1-thiogalactopyranoside (IPTG) at 16 C̊ for 16 h, cells were

harvested by centrifugation, and residues were suspended in equilibrium buffer

(20 mM Tris-HCl, 200 mM NaCl, and 5 mM imidazole, pH 7.4) supplemented

with protease inhibitor (1 mM phenylmethylsulfonyl fluoride) and disrupted by

three passages through EmulsFlex-C3 high pressure homogenizer (Avestin) at

15,000 psi. The recombinant proteins were purified using a Ni-Sepharose column

according to the manufacturer’s instructions. Purified proteins were then
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concentrated and buffer-exchanged to Tris buffer (20 mM Tris-HCl and 200 mM

NaCl, pH 7.4) using an Amicon Ultra-15 centrifugal filter unit (Millipore).

Far-UV Circular Dichroism

Far-UV CD spectrum of rHPL (25 mM in 5 mM Tris-HCl, pH 7.4) was recorded

using an Aviv CD spectrometer (Model 62A, Aviv Biomedical) with a quartz

cuvette of 0.1 cm path length. CD spectrum was collected in Far-UV range from

260 nm to 190 nm at 25 C̊. Each spectrum was the average of 3 scans. The results

were expressed as mean residual ellipticity (MRE, [h]) in deg.cm2. dmol-1 which

was defined as: millidegrees/(path length in mm times the concentration of

protein times the number of residues).

LPS- and bacteria-binding enzyme-linked immunosorbent assays

(ELISAs)

A suspension of 50 ml LPS (0.5 mg/well) or bacteria (56107 cells/well) in coating

buffer (0.1 M sodium carbonate-bicarbonate buffer, pH 9.6, for LPS and a 1:9 [v/

v] mixture of chloroform and ethanol for bacteria) was added to the wells of 96-

well microplates and incubated at 4 C̊ overnight. The concentrations of bacteria in

the cultures were determined by measuring the OD600. The number of cells per

milliliter was estimated by assuming that 0.1 absorbance was roughly equivalent to

108 cells/ml [13]. After blocking with 3% bovine serum albumin (BSA) in PBS

containing 0.05% Tween-20 (PBST) at 37 C̊ for 2 h, the plates were washed with

PBST three times. To the washed wells, 50 ml of 1 mM purified rHPL was added

and incubated at 37 C̊ for 1.5 h. Tris buffer (20 mM Tris-HCl and 200 mM NaCl,

pH 7.4) was added in parallel as a negative control. After washing three times with

PBST, the microplates were incubated with monoclonal anti-His (1:5000;

Clontech) in PBST at 37 C̊ for 1 h. Subsequently, horseradish peroxidase–

conjugated anti–mouse IgG (1:5000; Jackson Lab) in PBST was added to the

microplates, and, after washing three times with PBST, the plates were incubated

at 37 C̊ for 1 h, at which point, 100 ml of 3,39,5,59-tetramethylbenzidine substrate

was added to each well, washed three times with PBST, and incubated at 37 C̊ for

exactly 15 min. Finally, the reaction was terminated by the addition of 100 ml of 2

N H2SO4. The OD450 was read using a spectrophotometer (Bio-Rad iMark

Microplate Absorbance Reader). In the inhibition ELISA, 1 mM of rHPL was first

incubated with indicated concentration of each inhibitor in a total volume of

50 ml at 37 C̊ for 30 min, and then added into the wells coated with LPS or

bacteria and incubated at 37 C̊ for additional 1 h. Subsequently, the unbound

protein was washed off with PBST before detection as described above. All ELISA

experiments were individually performed at least three times. The values are

indicated as the mean ¡ SD.
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Magnetic Reduction (MR) assay

Because the binding affinity between glycan-binding proteins and ligands is

typically low, we used an ultrasensitive MR assay [17, 18] to measure the

association between bio-activated (rHPL-conjugated) magnetic nanoparticles

(MNPs) and the target bio-molecule (glycan or LPS). Under multiple external AC

magnetic fields, MNPs oscillate physically through magnetic interactions with the

applied fields and, thus, exhibit an AC magnetic moment that is known as the AC

magnetic susceptibility (xac). When target bio-molecules are added to the bio-

activated MNPs, interactions between the target bio-molecule and MNPs causes

portions of the MNPs to aggregate and become less able to rotate compared with

non-associated MNPs. Consequently, the measured xac is reduced. rHPL was

conjugated to dextran-coated Fe3O4 MNP using a bio-functionalization kit

(MagQu) [19, 20]. Analytes including L-Rhamnose, D-Galactose (negative

control), or LPS of P. aureginosa (positive control) were dissolved in 20 mM Tris-

HCl, 200 mM NaCl, and 1 mM EDTA (pH 7.4) to a final concentration of 0.01,

0.05, 0.1, 1, 10, and 1000 ng/ml. Then, 80 ml of rHPL-coated MNPs was mixed

with 40 ml of diluted analyte solution and vortexed for 15 s. Finally, the mixture

was placed in a superconducting quantum interference device (SQUID)-based

magnetosusceptometer, XacPro-S104 (MagQu), to measure the real-time xac of

the mixture at 25 C̊. The association between rHPL-conjugated MNPs and

analytes were determined by quantifying the reduction in xac, which was defined

as MR (%) 5 (xac,o – xac,w)/xac,w 6100%, where xac,o is the signal of MNPs in the

absence of analytes and xac,w is the signal after MNPs associated with analytes.

Antibacterial activity assay

Pseudomonas aeruginosa PAO1 and Staphylococcus aureus were incubated in

Luria-Bertani (LB) broth at 37 C̊ overnight and then subcultured into fresh broth

and grown for 4–6 h until log phase. The cultures were collected by centrifugation

and then washed three times with 10 mM sodium phosphate buffer (pH 7.4).

After washing, the cell counts were determined at OD600. A 25-ml sample of

16106 cells/ml bacteria was mixed with 25 ml buffer or rHPL to generate a final

rHPL concentration of 0 mM, 0.47 mM, 0.94 mM, 1.88 mM, 3.75 mM, 7.5 mM, and

15 mM and incubated at 37 C̊ for 4 h. Afterward, one-quarter of the mixtture was

applied to LB agar plates and incubated at 37 C̊ for ,16 h. By counting the

number of CFUs and comparing the results with the control plate (100%), cell

mortality was calculated.

Statistical analyses

All statistical analyses were carried out using GraphPad Prism version 5.01 for

Windows (GraphPad Software). All results were considered significant at a P-

value of ,0.05.

A Rhamnose-Binding Lectin

PLOS ONE | DOI:10.1371/journal.pone.0115296 December 26, 2014 5 / 20



Results

Expression and purification of rHPL

rHPL was successfully expressed upon induction with 0.1 mM IPTG in E. coli, and

.50% of the overexpressed rHPL was soluble (Fig. 1A, lanes I and S). rHPL,

purified by a nickel-affinity column (Fig. 1A, lane E), was obtained at ,8 mg/l of

culture medium, resulting in a recovery rate of 80.6% with a purity of 93%. In

comparison, recombinant TPL2 was reported to be expressed in P. pastoris KM71

and purified via LPS-Sepharose CL-4B column chromatography with a yield of

1.2 mg/l culture medium [10], which is approximately seven-fold lower than that

of rHPL. The molecular weight of rHPL was determined to be 19,301 Da by

matrix-assisted laser desorption ionization time-of-flight mass spectrometry

(MALDI-TOF MS) (Fig. 1B), which was consistent with the molecular weight

estimated from the sequence (19.4 kDa). The purified rHPL was desalted and

concentrated using an Amicon protein concentrator (10-kDa cut-off) and

subjected to further studies. We successfully produced a recombinant horseshoe

crab plasma lectin with improved protein solubility and yield using an E. coli

expression system.

The secondary structure of rHPL was investigated by Circular Dichroism (CD)

as shown in Fig. 1C. A board negative peak was observed from 222 nm to

208 nm, which reflected a mixed secondary structure with higher b–strand

content. Since no secondary or tertiary structure of native or recombinant TPL2 is

solved yet, rHPL sequence was further input to PredictProtein server (https://

www.predictprotein.org/) [21] to predict putative secondary structure features as

14.73% a-helix and 23.26% b–strand in consistent with CD result.

Binding of rHPL to LPSs

To examine LPS-binding activity of rHPL, four different LPSs from E. coli

O55:B5, E. coli O26:B6, S. typhimurium, and P. aeruginosa sero 10 were

immobilized on 96-well microplates. rHPL was added, and binding was measured

by ELISA. rHPL significantly bound to all four LPSs (Fig. 2A), quantitative results

were shown in S1 Table. In terms of critical role of disulfide bond in rHPL

function, LPS/bacteria-binding activities of rHPL in the presence and absence of

5 mM DTT were measured. Fig. 2B showed that binding activities of DTT-treated

rHPL to LPSs of E. coli O55:B5, E. coli O26:B6, S. typhimurium, and P. aeruginosa

sero 10 significantly decreased to respectively 19%, 9.6%, 11.1%, and 16.3% as

compared to untreated rHPL. This result strongly indicated that disulfide bond

formation facilitated LPS recognition activity of E. coli expressed rHPL, similar to

the case of yeast-expressed TPL2 [10].

Binding of rHPL to bacteria

To screen for the pathogen recognition patterns of rHPL, seven different

laboratory-derived Gram-negative bacteria, P. aeruginosa PAO1, Shigella flexneri,

Proteus mirabilis, Enterobacter aerogenes, Klebsiella pneumoniae, Serratia marces-
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Fig. 1. Purification and characterization of rHPL expressed in E. coli. (A) After induction with 0.1 mM isopropyl b-D-1-thiogalactopyranoside at 16˚C for
16 h, the supernatant containing rHPL was collected by centrifugation and subjected to purification by nickel-column chromatography. Aliquots of each
fraction were analyzed by 15% (w/v) SDS-PAGE. The expected molecular weight of rHPL was 19.4 kDa. Lane M: molecular weight marker; Lane N: non-
induction; Lane I: induction; Lane P: insoluble pellet; Lane S: supernatant; Lane F: binding flow-through; Lane W1: washing fraction 1; Lane W2: washing
fraction 2; Lane E: eluent; Lane C: concentrated fraction. (B) Mass determination of rHPL was performed by MALDI-TOF MS in the electrospray ionization
mode. rHPL (100 pmol) was acidified with 0.1% (v/v) formic acid in 50% acetonitrile, and the data were acquired over the mass-to-charge ratio (m/z) range of
0–26,000 under normal scan resolution (x axis), the relative intensity (a.u., arbitrary units) are shown on the y axis. The data from each spectra were
summed and deconvoluted. (C) Secondary structure of rHPL was measured by Far-UV CD spectrum (260 nm–190 nm) with protein concentration of 25 mM
at 16˚C.

doi:10.1371/journal.pone.0115296.g001

Fig. 2. LPS binding activity of rHPL expressed in E. coli. A total of 0.5 mg of each LPS was coated on microplate wells and detected with 1 mM rHPL (A)
or 1 mM DTT-treated rHPL (B). Monoclonal anti-His (1:5000) was used to detect the rHPL bound to LPSs. Blank refers to wells containing buffer instead of
rHPL. The values are the mean ¡ SD from triplicate experiments. ***P,0.001 versus the corresponding blank data.

doi:10.1371/journal.pone.0115296.g002
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cens, and E. coli TOP10F9, as well as two Gram-positive bacteria, Staphylococcus

aureus and Listeria monocytogenes, were initially tested using a bacterial-binding

ELISA. rHPL significantly bound to P. aeruginosa, but not to the other six Gram-

negative bacteria (Fig. 3A). Interestingly, rHPL also bound to the Gram-positive

bacteria L. monocytogenes (Fig. 3B). Quantitative results were shown in S2 Table.

In addition, 62 clinically isolated microbial pathogen samples belonging to eight

strains, the Gram-negative Salmonella enterica serovars typhimurium, choler-

aesuis, and enteritidis; Klebsiella oxytoca; Acinetobacter baumannii; and P.

aeruginosa and the Gram-positive S. aureus and S. pneumoniae, were screened

against rHPL for pathogen-binding activity, with P. aeruginosa sero 10 LPS as a

100%-binding positive control. A relative binding percentage of $50% was

defined as strong binding, and ,50% was defined as weak or no binding. Two

samples of K. oxytoca (#3 and #4) and nine samples of P. aeruginosa (#S1, #S2,

#S3, #S4, #S5, #R2, #R3, #R4, and #R5), both of which are Gram-negative

bacteria, were clearly recognized by rHPL with strong binding activity, whereas no

binding of rHPL was detected with the samples from S. typhimurium, S.

choleraesuis, S. enteritidis, A. baumannii, and P. aeruginosa #R1, as well as two

samples from K. oxytoca (#1 and #2) (Fig. 4A, S3 Table). For Gram-positive

bacteria, rHPL strongly bound to all five samples from S. pneumoniae serotypes

19B and 19F, and showed weak binding to #1 of both S. pneumoniae serotypes

19A and 23F, but no significant binding activity was observed with all samples

from S. aureus and S. pneumoniae serotypes 3 and 14, and two samples from 19A

(#2 and #3), and # 2 of 23F (Fig. 4B, S4 Table). It should be noted that rHPL

recognition profiles to K. oxytoca were significantly different between samples #1,

#2 and samples #3, #4. For Gram-negative bacteria, O-antigen on LPS is

characterized by very high variability in its structure, even within the same species

[22]. O-antigen of pathogen may contribute to bacterial evasion of host immune

responses, which is related to its chain length, and relative amounts of sugar

component [23]. Interestingly, antibiogram analysis of K. oxytoca showed that

samples #1 and #2 were sensitive to antibiotics Ceftriaxone, Ceftazidime, and

Cefuroxime, whereas samples #3 and #4 were resistant to these three antibiotics

(data not shown), which might be attributed to diffenent O-antigen component of

these clinically isolated K. oxytoca strains. However, exact Rha content in these

clinically isolated pathogens still need to be further investigated.

The O-antigen in the LPS of certain Gram-negative bacteria has been

demonstrated to serve as a specific ligand for TPL2 [10]. However, rHPL was also

found to bind to Gram-positive bacteria in this study, indicating that a specific

component, possibly a glycan which is present on both lipoteichoic acid (LTA)

and LPS of bacterial surfaces, might serve as the rHPL binding ligand.

Binding of rHPL to Rha

PAMPs are the major component of the outer membrane of Gram-negative and

Gram-positive bacteria. To determine if rHPL bound to PAMPs by recognizing a

specific glycan, glycan array screening was carried out by the Consortium for

A Rhamnose-Binding Lectin
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Functional Glycomics using a mammalian printed array (version 5.1; Jul, 2012)

[24]. There are 610 synthetic glycans which generally represent the terminal

sequences found on N-glycans, O-glycans, and glycosphingolipids of mammalian

tissues. Surprisingly, rHPL bound very specifically and significantly to glycan

no. 8, L-Rha monohydrate, on the printed array with an average RFU of 16393

(Fig. 5A). Thus, rHPL might recognize selective bacteria through a specific

molecular interaction with the Rha moiety on the bacterial cell surface. Except L-

Rha, 8 glycans with average RFU signals higher than 2000 were observed and listed

in Table 1. However, glycans no. 360, no. 394, no. 395 and no. 446 had binding

variability %CV (1006 StDev/average RFU) higher than 20%, hence these

binding data might not be reliable [25]. For glycans no. 436, no. 420, no. 136, and

no. 559 generally located in N-linked glycan terminal structure of mammalian

tissues, the average RFU was respectively 4268, 2803, 2141, and 2044, suggesting

that they might be further studied for rHPL recognition.

Because the binding affinity between glycan-binding proteins and ligands is

typically low, with equilibrium dissociation constant values ranging from

micromolar to millimolar [26], we used a magnetic reduction (MR) assay [17, 18]

to verify direct binding between L-Rha monohydrate and rHPL conjugated on

magnetic nanoparticles (MNPs). The MR signal of rHPL-conjugated MNPs

showed a sigmoidal increase from 3.8% to 11.3% with the titration of L-Rha

concentrations ranging from 0.01 to 1000 ng/ml (Fig. 5B). LPS of P. aeruginosa

was used as positive control and showed a sigmoidal increase from 3.1% to 10.2%.

D-Galactose used a negative control showed no magnetic reduction with the

titrating concentrations ranging from 0.01 to 1000 ng/ml. Quantitative results

were shown in S5 Table. Thus, this sensitive detection system provided additional

evidence for an rHPL-Rha interaction at the molecular level, strongly implicating

Fig. 3. Binding activity of rHPL to laboratory-derived bacteria. (A) Gram-negative and (B) Gram-positive bacterial cells were seeded at 56107 cells/well,
and 1 mM of rHPL was applied to the microplate wells. Subsequently, monoclonal anti-His (1:5000) was used to detect rHPL bound to bacterial cells. Blank
refers to wells containing buffer instead of rHPL. The values are the mean ¡ SD from triplicate experiments. ***P,0.001 versus the corresponding blank
data.

doi:10.1371/journal.pone.0115296.g003
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Fig. 4. Binding activity of rHPL to clinically-isolated bacteria. (A) Gram-negative and (B) Gram-positive bacterial cells were seeded and rHPL binding
was analyzed as in Fig. 3. The values are the mean ¡ SD from triplicate experiments. Individual sample numbers are indicated. P. aeruginosa sero 10 LPS
was used as a 100%-binding positive control and E. coli Top10F9 was used as negative control. Relative binding percentages are relative to the positive
control. *P,0.05 and ***P,0.001 versus the corresponding blank data.

doi:10.1371/journal.pone.0115296.g004
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Rha-containing PAMPs on the bacteria as rHPL recognition sites. Further analyses

of reported chemical structures of PAMPs on rHPL-binding bacteria revealed that

K. oxytoca strain TMN3 [27] and P. aeruginosa [15] had three Rha moieties on

their LPSs (Fig. 6A and 6B), and S. pneumoniae serotype 19A, 19B, 19F and 23F

[28, 29] had one or two Rha moiety on their capsules (Fig. 6C to 6F).

Fig. 5. Glycan binding activity of rHPL expressed in E. coli. (A) Glycan microarray analyses were conducted by the Consortium for Functional
Glycomics. rHPL at a concentration of 200 mg/ml was used in the analysis, and anti-His (1:1000) was used as the primary antibody. The values are the mean
¡ SD from triplicate experiments. (B) Direct binding between L-Rha monohydrate and rHPL was verified by magnetic reduction (MR) assay. rHPL was
conjugated on magnetic nanoparticles (MNPs) and the increase of MR signal with the titration of L-Rha concentrations ranging from 0.01 to 1000 ng/ml was
measured. LPS of P. aeruginosa and D-Galactose were used as positive and negative control respectively.

doi:10.1371/journal.pone.0115296.g005

Table 1. rHPL binding signals to glycans on CFG array v5.1.

# Glycan structure Average RFU StDev % CV

8 Rhaa-Sp8 16393 1301 8

436 Galb1-4GlcNAcb1-2Mana1-6(GlcNAcb1-4)(Galb1-4GlcNAcb1-4(Galb1-4GlcNAcb1-2)Mana1-
3)Manb1-4GlcNAcb1-4GlcNAc-Sp21

4268 196 5

360 Fuca1-2Galb1-3GlcNAcb1-2Mana1-6(Fuca1-2Galb1-3GlcNAcb1-2Mana1-3)Manb1-4GlcNAcb1-
4GlcNAcb-Sp20

3542 957 27

394 Gala1-3Galb1-3GlcNAcb1-2Mana1-6(Gala1-3Galb1-3GlcNAcb1-2Mana1-3)Manb1-4GlcNAcb1-
4GlcNAc-Sp19

2818 756 27

420 Fuca1-2Galb1-4GlcNAcb1-2Mana1-6(Fuca1-2Galb1-4GlcNAcb1-2Mana1-3)Manb1-4GlcNAcb1-
4(Fuca1-6)GlcNAcb-Sp22

2803 444 16

136 Neu5Aca2-6(Galb1-3)GalNAca-Sp14 2141 319 15

395 Gala1-3Galb1-3(Fuca1-4)GlcNAcb1-2Mana1-6(Gala1-3Galb1-3(Fuca1-4)GlcNAcb1-2Mana1-
3)Manb1-4GlcNAcb1-4GlcNAc-Sp19

2140 427 20

446 Fuca1-2Galb1-4(Fuca1-3)GlcNAcb1-2Mana1-6(Fuca1-2Galb1-4(Fuca1-3)GlcNAcb1-4(Fuca1-
2Galb1-4(Fuca1-3)GlcNAcb1-2)Mana1-3)Manb1-4GlcNAcb1-4GlcNAcb-Sp12

2047 433 21

559 Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-6(Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-2)Mana1-
6(Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-2Mana1-3)Mana1-4GlcNAcb1-4GlcNAc-Sp24

2044 325 16

Selective rHPL (200 mg/ml) binding entities including serial number of each glycan (#), glycan structure, binding signals in relative fluorescence units
(Average RFU) in decrease order, standard deviation (StDev), and percent coefficient of variance (%CV).
Sp8 52CH2CH2CH2NH2; Sp12 5Asn; Sp 145 Thr; Sp195 Glu-Asn or Asn-Lys; Sp205 Gly-Glu-Asn-Arg; Sp215-N(CH3)-O-(CH2)2-NH2; Sp225 Asn-Ser-
Thr; Sp245 Lys-Val-Ala-Asn-Lys-Thr.

doi:10.1371/journal.pone.0115296.t001
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Interestingly, the LTA of L. monocytogenes (ATCC7644) [30] also contained a Rha

(Fig. 6G).

Inhibitory effect of L-Rhamnose and L-Rhamnose-BSA conjugate

on rHPL-LPS/bacteria interaction

Here L-Rha was used in an inhibitory assay to assess the rHPL-bacteria

interaction. To conduct a inhibitory ELISA, 1 mM rHPL was first incubated with

25 mM, 50 mM, 100 mM, 200 mM or 500 mM of L-Rha for 30 min, the mixtures

were then added to microplate wells coated with rHPL-recognizing LPSs

including E. coli O55:B5, E. coli O26:B6, S. typhimurium, and P. aeruginosa sero

10 (Fig. 2), and bacteria P. aeruginosa PAO1 (Fig. 3B). As expected, addition of

Fig. 6. Chemical structures of PAMPs of bacterial pathogens. (A) LPS of K. oxytoca strain TMN3. (B) LPS
A band of P. aeruginosa. (C) Capsule of S. pneumoniae serotype 19A. (D) Capsule of S. pneumoniae
serotype 19B. (E) Capsule of S. pneumoniae serotype 19F. (F) Capsule of S. pneumoniae serotype 23F. (G)
LTA of L. monocytogenes ATCC 7644.

doi:10.1371/journal.pone.0115296.g006
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50 mM, 100 mM, 200 mM or 500 mM of L-Rha could inhibit rHPL to bind to

LPSs of E. coli O55:B5 (Fig. 7A), E. coli O26:B6 (Figure 7B), S. typhimurium

(Fig. 7C), P. aeruginosa sero 10 (Fig. 7D) and bacteria P. aeruginosa PAO1

(Fig. 7E) in a concentration-dependent manner. Moreover, addition of 500 mM

D-Galactose, D-Mannose or D-Glucose showed no inhibitory effect on rHPL-LPS/

bacteria interaction. Quantitative results were shown in Table 1. Since interaction

between protein and monosaccharide is typically weak, a L-Rha conjugated BSA

(Rha-BSA), was also measured. Rha-BSA was conjugated with ca.32 L-Rha per

BSA molecule. It showed significantly stronger inhibitory effect on rHPL-LPS/

bacteria interaction, such that 1 mM Rha-BSA could inhibit 73% to 80% of LPS/

bacteria binding activities (Fig. 7 and Table 2). As for the negative control, BSA

only, no inhibitory effect on rHPL-LPS/bacteria binding was observed (data not

shown). These results indicated that rHPL reacted with Rha moiety and

consequently reduced rHPL binding to LPSs or bacteria.

Fig. 7. Inhibitory effect of L-Rhamnose monosaccharide and Rha-BSA on rHPL-LPS/bacteria interaction. A total of 0.5 mg of E. coli O55:B5 LPS (A),
E. coli O26:B6 (B), S. typhimurium (C), P. aeruginosa (D), or 56107 cells P. aeruginosa PAO1 (E) was coated on 96-well microplates and incubated at 37˚C
for 3 h or at 4˚C overnight. The microplates with the immobilized bacteria were washed, and unbound regions were blocked with BSA. Various
concentrations of glycans or glycan-protein conjugates were incubated with 1 mM rHPL and then added to microplates. Anti-His (1:5000) was used to detect
rHPL binding to bacterial cells. Blank refers to microplate wells containing only buffer. The values are the mean ¡ SD from triplicate experiments. *P,0.05,
**P,0.01, and ***P,0.001 versus the rHPL only group (positive control).

doi:10.1371/journal.pone.0115296.g007
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Previous study indicated that TL-3 shows an 80% sequence identity with nTPL2

[12], and its hemagglutinating activity could be inhibited by blood group A-

pentasaccharide through its GalNAca1-3Gal structure [12]. However, this

pentasaccharide showed no inhibitory effect on our rHPL-LPS/bacteria interac-

tion (Fig. 7 and Table 1). Moreover, several glycans with similar structures to

blood group A-pentasaccharide on CFG glycan array, such as glycan no. 83 and

no. 418, also showed no interaction with our rHPL (data not shown). One of the

reasons might arise from lacking of GalNAca1-3Gal binding activity, a key feature

of Japanese horseshoe crab TL-3, in our rHPL as indicated in CFG glycan array

data.

Antibacterial activity of rHPL

Yeast expressed TPL2 showed antibacterial activity against E. coli Bos-12 [10]. To

investigate the antibacterial activity of rHPL, P. aeruginosa PAO1 was examined.

S. aureus, which was not recognized by rHPL (Fig. 3B), was also tested. A 25-ml

sample of 16106 cells/ml bacteria was mixed with 25 ml of buffer without rHPL

or with rHPL at a final concentration of 0 mM, 0.47 mM, 0.94 mM, 1.88 mM,

3.75 mM, 7.5 mM, and 15 mM, and incubated at 37 C̊ for 4 h. The antibacterial

activity of rHPL was analyzed by plating serial dilutions of the incubation mixture

and counting the resulting CFUs the next day. rHPL inhibited P. aeruginosa PAO1

growth in a concentration-dependent manner, and the half-maximal inhibitory

concentration was 4.3 mM (Fig. 8). No inhibitory effect was shown when S. aureus

was treated with rHPL.

Discussion

In this study, we generated rHPL, a recombinant form of TPL2 that is both soluble

and functional. Purified rHPL not only retained the LPS- and bacterial-binding

activities of TPL2 but also demonstrated binding activities to clinically isolated

pathogens. Comparisons of the chemical structures of reported PAMPs on rHPL-

interacting pathogens indicated that Rha was present on all the recognized

Table 2. Parameter of inhibitory effect on L-Rhamnose and L-Rhamnose-BSA conjugate to rHPL- LPS/bacteria interaction.

Inhibitor LPS of E. coli O55:B5 LPS of E. coli O26:B6 LPS of S. typhimurium LPS of P. aeruginosa P. aeruginosa PAO1

25 mM L-Rha 74.5¡7.2 * 87.2¡11.9 80.6¡0.74 * 83.6¡2.4 72.8 ¡6.3 **

50 mM L-Rha 73.5¡4.1 ** 70.8¡8.7 ** 66.3¡6.6 *** 74.3¡2.4 *** 48.4¡8.5 ***

100 mM L-Rha 63.1¡4.4 *** 54.1¡5.7 *** 59.1¡1.7 *** 69.0¡7.3 *** 37.0¡8.5 ***

200 mM L-Rha 53.2¡7.4 *** 41.6¡8.8 *** 44.5¡3.4 *** 57.2¡5.4 *** 30.4¡4.5 ***

500 mM L-Rha 40.2¡7.2 *** 21.2¡4.8 *** 26.5¡12.9 *** 44.7¡7.8 *** 20.4¡0.62 ***

1 mM Rha-BSA 28.6¡0.5 *** 16.3¡2.2 *** 33.3¡4.5 *** 36.9¡6.9 *** 18.3¡0.47 ***

The values are the mean ¡ SD (%) from triplicate experiments.
*P,0.05, **P,0.01, and ***P,0.001 versus the rHPL only group (positive control).

doi:10.1371/journal.pone.0115296.t002
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samples. Additionally, rHPL could directly interact with Rha at the molecular level

as demonstrated by a glycan array and MR assay, suggesting that the Rha moiety is

a preferred ligand of rHPL.

Rha is a deoxy hexose found widely in bacteria and plants. It is a common

component of the cell wall and capsule of many pathogenic bacteria, including

Gram-negative P. aeruginosa [31], S. typhimurium [32], and Vibrio cholerae

[33, 34], as well as M. tuberculosis, which is not classified as either Gram-positive

or Gram-negative because it lacks the chemical characteristics of either [35].

Spores of Bacillus anthracis are also composed of Rha, which is required for

pathogen interactions with macrophages [36]. In marine creatures there is a

Rhamnose-binding lectin (RBL) family that specifically binds Rha and sugars

possessing hydroxyls in the same configuration, i.e., axial-OH, equatorial-OH,

and equatorial-OH for the carbons (C) C-2, C-3, and C-4, respectively, or for C-4,

C-3, and C-2, respectively. RBLs are mainly distributed in the eggs and ovary cells

of fish and invertebrates [37–39]. RBLs have been discovered in over 25 species of

fish [37, 39–45], sea urchin [46], penguin wing oyster (Pteria penguin) [38], and

ascidian (Botryllus schlosseri) [47]. Most RBLs possess two or three characteristic

tandem-repeat CRDs (RBL-CRDs) consisting of ,95 amino acid residues

[48, 49]. Two characteristic peptide motifs, -(AN)YGR(TD)- (YGR-motif) and

-DPCXGT(Y)KY(L)- (DPC-motif), which are located at the N- and C-terminal

region of each domain, respectively, are conserved in almost all RBL-CRDs [49].

Sequence alignments between rHPL and the RBLs showed only limited

similarities, and rHPL possessed neither the YGR- nor the DPC-motif (data not

shown). Furthermore, the glycan array screening and the MR assay showed that

rHPL could not interact with D-galactose, implying that rHPL might perform

biological functions through its recognition of Rha-containing microbes that are

similar to those of RBLs in marine organisms, albeit through different

mechanisms.

Fig. 8. Antibacterial activity of rHPL. Samples of P. aeruginosa and S. aureus were mixed with rHPL at a
final concentration of 0 mM (buffer only), 0.47 mM, 0.94 mM, 1.88 mM, 3.75 mM, 7.5 mM, and 15 mM and
incubated at 37˚C for 4 h. The antibacterial activity of rHPL was analyzed by plating serial dilutions of
incubation mixture, and the CFUs were counted the following day. Control plate (0 mM) was defined as 100%-
viable cells. Cell mortality was calculated as the decrease in the colony number compared with the control
plate. The values are the mean ¡ SD from triplicate experiments.

doi:10.1371/journal.pone.0115296.g008
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In addition to bacterial recognition, rHPL specifically inhibited the growth of P.

aeruginosa, an opportunistic nosocomial pathogen involved in a wide range of

infections, which has high rates of antimicrobial resistance in immune-

compromised individuals [50]. Rha is a common constituent found in the outer

core of LPS of P. aeruginosa [51–53]. Rhamnolipids, virulence determinants

secreted by P. aeruginosa, also contain Rha [54]. The Rha-binding activity of rHPL

may contribute to the growth inhibitory effect on P. aeruginosa. Recently, drugs

targeting cell wall synthesis, and thus Rha synthesis, in M. tuberculosis have been

studied as possible clinical agents to treat tuberculosis [35]. Our engineered rHPL

could be further developed as an antibacterial agent for pathogenic bacteria that

have the Rha moiety on the cell surface, such as M. tuberculosis.

Most antibiotics, except polypeptide antibiotics, act by binding to enzymes

involved in the biosynthesis of the cell wall and nucleic acids, or in protein synthesis.

Antibiotics that bind to enzymes are highly specific, resulting in almost no serious

side effects, but pathogens typically gain resistance to antibiotics by accumulating

mutations [55]. In fact, abundant studies highlight the link between multidrug

resistance and increased morbidity and mortality, increased lengths of hospitali-

zation and higher hospital costs [56]. The mechanism of polypeptide antibiotics

relies on binding to, and interfering with, cell wall synthesis (glycopeptides) or in

altering bacterial outer membrane permeability by binding to the lipid A layer of

LPS. The advantage of polypeptide antibiotics is that the major binding targets are

metabolites of the pathogens [57], which means that pathogens cannot alter their

membrane structures to avoid attacks by these polypeptide antibiotics.

LPS from Gram-negative bacteria also may cause sepsis or endotoxemia,

allowing endotoxin to move into the patient’s bloodstream. Measurement and

treatment of endotoxemia are important for sepsis diagnosis and therapy. Each

year, sepsis results in almost 250,000 deaths in the U.S. and costs the healthcare

system more than $17 billion [58]. Because Rha is a common component of the

cell wall and capsule of many pathogenic bacteria, Rha recognition may provide

an alternative way for pathogen detection and inhibition in the future.
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