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Abstract: Micro-molecular drugs have special advantages to cope with challenging diseases, however
their structure, physical and chemical properties, stability, and pharmacodynamics have more
requirements for the way they are delivered into the body. Carrier-based drug delivery systems
can circumvent many limited factors of drug delivery and increase their bioavailability. In this
context, stable drug nanocarriers of alkaline amino acids (arginine, Arg) modified conjugated
linoleic acid-carboxymethyl chitosan (CLA-CMCS) conjugate were developed, which could generate
supramolecular micelles to effectively encapsulate the tyrosinase inhibitor phenylethyl resorcinol
(PR). The resulting CCA-NPs were spherical nanoparticles with a mean size around 175 nm.
The 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) assay and cellular
uptake investigation demonstrated that the CCA-NPs were non-cytotoxic and had excellent cell
transport ability. In addition, these CCA-NPs were able to effectively deliver PR and inhibited melanin
formation to reduce pigmentation by enhancing cellular uptake. In conclusion, our research indicated
that nanocarriers based on self-assembly amphiphilic polymers constituted a promising and effective
drug delivery system in hyperpigmentation targeting.

Keywords: carboxymethyl chitosan; self-assembly; nanocarrier; phenylethyl resorcinol; cellular
uptake; hyperpigmentation

1. Introduction

Skin is one of the most common cancer sites in the human body and the degree of pigmentation is
the most commonly used predictor of skin cancer risk in the general population [1]. Skin pigmentation
is caused by the massive synthesis of melanin in pigment-producing cells, the melanocytes, followed
by transport of melanin particles to adjacent keratinocytes [2]. Especially, hyperpigmentation is an
important disease in the skin care industry, mainly due to prolonged exposure to ultraviolet light
and excessive use of certain chemical drugs [3,4]. The common and effective treatments for all types
of hyperpigmentary disorders are topical tyrosinase inhibitors and antimelanogenesis compounds,
such as hydroquinone (HQ), kojic acid (KA), azelaic acid (AA), and phenylethyl resorcinol (PR) [5–8].
Specially, PR is an effective skin lightening agent compared with other commonly used skin lightening
drugs and proved to be a highly safe ingredient [9]. However, the medical application of PR is greatly
limited due to its low water solubility and light instability [10]. Nowadays, the use of nanomaterials
in micro-molecule drug delivery systems is expected to break through these limitations and bring
new hopes for treatment [11]. At the same time, some of these nano drug-loading systems have
entered clinical trials [12]. Then, the ensuing problem is the growing demand to establish efficient and
functional nanocarriers to deliver PR in cells [13].
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Among the various nanomaterials for preparing drug delivery systems, amphiphilic
polysaccharide derivatives have been widely used in biomedical applications such as efficient
encapsulation and targeted delivery of drugs, because of their good cytocompatibility and
biodegradability [14–17]. It has been found that amphiphilic block or graft copolymers can form
various types of self-assembled, stable, nano-sized micellar aggregates in aqueous solution [18,19].
Due to their biosafety and biodegradable character, self-assembled nanoparticles such as lipid,
polylactic-co-glycolic acid (PLGA), polyamidoamine (PAMAM) dendrimers and polysaccharide based
nanoparticles consisting of an internal hydrophobic core and an externally surrounded hydrophilic
group, have been widely reported to increase the delivery efficiency and bioavailability of drugs [20–23].
Among these nanoparticles prepared from polymers, there has been rising interest in nanoscale
self-aggregates of natural polysaccharides such as pullulan [24], curdlan [25], dextran [26], alginic
acid [27], and chitosan [28]. Carboxymethyl chitosan (CMCS) is one of the water-soluble derivatives of
chitosan, which has attracted the most attention and exploration in the field of biomedicine [29]. Many
researchers have focused on CMCS as a source of potential bioactive material and the nanocarriers-based
on CMCS have been rapidly developed in recent years [30–32]. The entrapment of micro-molecular
drugs in CMCS has been reported, including gefitinib [33], resveratrol (RES) [34], levofloxacin [35],
doxorubicin [36], nepafenac [37], glycyrrhizic acid (GA) [38], etc. Specifically, spherical RES:CMCS-NPs
were prepared under optimal conditions, in which average particle size, potential, drug loading and
encapsulation efficiency were (155.3 ± 15.2) nm, (−10.28 ± 6.4) mV, (5.1 ± 0.8)% and (44.5 ± 2.2)%,
respectively. In addition, the crosslinked GA-loaded CMCS-NPs dissociated to release drug in the
presence of glutathione at a concentration comparable to the intracellular environment, featuring the
potential ability of this system for intracellular delivery.

In this work, we present a nanocarrier formed with the amphiphile hydrophobic-modified CMCS
conjugate, which contained a hydrophilic polysaccharide skeleton (CMCS), a hydrophilic functional
amino acid chain (Arg) bridged via a newly-formed amide bond, and a hydrophobic fatty acid chain
(CLA) bridged via a newly-formed ester bond. CLA had various functions such as inhibiting the
formation of cancer and tumors, losing weight, anti-atherosclerosis, improving immune function,
reducing cholesterol, and promoting growth. Arginine, which has been widely used as a cell penetrating
peptide mediating transepithelial transport, would be grafted to CLA-CC block copolymer by amide
bond. The successful preparation of CCA nanoparticles was demonstrated and their physicochemical
properties were characterized, such as mean size, PDI, and zeta potential. Cytotoxicity and cellular
uptake profile of these nanoparticles were also investigated to determine the optimum conditions. In
addition, the resulting PR:CCA-NPs can effectively enhance the encapsulation capability of PR and
increase its cellular uptake in vitro.

2. Materials and Methods

2.1. Materials

Carboxymethyl chitosan (CMCS, substitution degree of carboxymethyl >80%, viscosity = 600 mpa
s) was obtained from Heppe Biotechnology Co.Ltd. (Qingdao, China), Phenylethyl resorcinol (PR)
was acquired from Tokyo Chemical Industry Co.Ltd. (Tokyo, Japan). Conjugated linoleic acid
(CLA), 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC), N-hydroxysuccinimide (NHS), DMEM
medium were from Solarbio Co.Ltd.. MTT, L-Arg, DiD labeling solution and Dialysis tube (Molecular
weight cut off for targeted drug delivery: MWCO = 8000 ~ 14,000 D) were obtained from Sigma
Chemical Co. Ltd. (St. Louis, MO, USA). Cell culture flasks (25 cm) and plates were from Costar
Co.Ltd. (New York, NY, USA) The mouse fibroblast cell line L929 and mouse B16 melanoma cells were
provided by the Shanghai cell bank.
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2.2. Synthesis of CLA-CMCS-Arg Conjugates

Herein, the CMCS conjugates are prepared by the methods previously described with
modifications [18]. Firstly, the CMCS was completely dissolved in 100 mL of distilled water (2%,
w/v) and the CLA was dissolved in 85 mL of methanol, and then these two solutions were mixed.
Subsequently, 15 mL of EDC methanol solution was added dropwise to the mixture while stirring at
room temperature. Secondly, the activated Arg solution (the EDC/NHS coupling reaction solution) was
added to the CLA-CMCS mixture in a certain ratio. The resultant solution was stirred for 24 h at room
temperature and then dialysised for 2 days. Finally, the mixture was freeze-dried to obtain the CCA
products named CCA1-5. The prepared CCA conjugates was characterized by fourier transformed
infrared spectroscopy (FTIR) spectrum and 1H nuclear magnetic resonance (NMR) spectroscopy.

2.3. Preparation and Characterization of CCA-NPs and PR-Loaded CCA-NPs

CCA-NPs were prepared using ultrasonic induced self-assembly technology. In details, the CCA
conjugate was sufficiently dissolved in distilled water at 25 ◦C for 24 h. The solution was then sonicated
3 times for 5 min using a probe-type sonicator (Sonics Ultrasonic Processor, VC750, Hartford, CT, USA)
at a frequency of 200 W, with the pulse being turned off at 2.0 s for 2.0 s to prevent temperature rise [39].

Morphological examination of CCA-NP was performed by TEM (H-600A, Hitachi, Japan). The
sample was diluted with water and placed on a copper mesh, which were air dried and negatively
stained with 1% (w/v) phosphotungstic acid before observation. CCA-NPs were dispersed in 0.2 M PBS
(pH 7.4) for determining their particle size, polydispersity (PDI) and zeta potential by the Malvern
Zetasizer 3000HSA (Malvern, UK) at room temperature.

The CCA-NPs were used to encapsulate PR via ultrasonic dispersion method [11]. After
centrifugation of the aqueous dispersion, the percentage of PR (encapsulation efficiency) was determined
by spectrophotometry at 280 nm using a Biorad 680 microplate reader. The amount of free drug was
detected in the supernatant, and the amount of drug incorporated was determined by subtracting
the free drug from the initial drug. The PR encapsulation efficiency (EE%) was calculated by the
following equation:

EE (%) = Wt/Wo × 100%

where “Wt” represents the amount of PR that loaded into nanoparticles, “Wo” represents the initial
amount of PR fed.

In order to label CCA-NP and PR:CCA-NP with fluorescein, these NPs were suspended in PBS
buffer, followed by addition of a solution of FITC in absolute ethanol and the mixture was magnetically
stirred at room temperature for 24 h [40]. The FITC-NPs suspension was then dialyzed against ethanol
for three days and a new ethanol solution was replaced daily to remove unlabeled FITC. The progress
of this experiment and the preservation of the labeled product should be in the dark.

2.4. Cell Experiment

The L929 and B16 cells were cultured in Dulbecco’s modified Eagles’s medium supplemented
with 10% heated-inactivated fetal bovine serum, 100 U/mL penicillin, 2 mM glutamine and 100 µg/mL
streptomycin. In order to ensure the accuracy and scientificity of cell results, all cell experiments such
as culture, seeding, and cytotoxicity were performed under the same conditions. L929 and B16 cells
were seeded at a concentration of 1 × 104 cells/mL into a 96-well plate for further attachment and
growth [41]. Following the cultivation, the DMEM medium were changed with new complete medium
containing CCA-NPs with different DS at the concentrations of 250–2000 µg/mL. The treated cells were
incubated for 1, 2, 4, 12, and 24 h at 37 ◦C and 5% CO2, maximizing the uptake of the particles by
cells. The cytotoxicity of NP was measured using the MTT method, and the absorbance of each well
at a wavelength of 492 nm was measured using a microplate reader. Cell viability is expressed as
a percentage compared to the control group. The cellular uptake of FITC-CCA-NPs was visualized
by fluorescence microscopy (80i, Nikon, Japan) and quantified by fluorescence intensity given by a
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fluorescence microplate reader (FLx800B, Bio-Tek, Burlington, VT, USA). Specially, a part of the cultures
was stained with DiD to visualize membrane morphology. Cultures were stained for 10 min with DiD,
washed with DMSO and PBS and were viewed under a microscope.

2.5. Detecting the Content of Melanin

The method for determining the content of melanin was slightly modified as reported
previously [42]. B16 cells were seeded at a concentration of 1 × 104 cells/mL into 96-well plates
and incubated overnight to allow cell adhesion. Cells were treated with PR-loaded CCA-NP at various
concentrations (20, 50, and 100 µg/mL) for 48 h. After washing the cells with PBS, we inverted the cell
plates and tapped on a paper towel to pour out the entire wash solution. Then, cells were lysed with 1
mL of 10% DMSO in NaOH solution for 1 h at 80 ◦C. Subsequently, each crude cell extract (200 mL)
was transferred to a new 96-well plate and the relative density of melanin was calculated by measuring
the optical density at a wavelength of 400 nm using a microplate reader. The final content of melanin
was calculated from a standard curve drawn from a melanin standard purchased from Sigma.

2.6. Statistical Analysis

In this study, all data were analyzed statistically by the SPSS 24.0 software (IBM, Armonk, NY,
USA) package and reported as mean ± standard deviation. Chemical structures were drawn using
ChemBioDraw Ultra 14.0 software (Cambridge, MA, USA).

3. Results and Discussion

3.1. Characterization of CCA Sample

The amphiphilic CCA conjugates prepared in this work (Figure 1) contain a hydrophilic
polysaccharide skeleton, a hydrophilic functional amino acid chain bridged via a newly-formed
amide bond, and a hydrophobic fatty acid chain bridged via a newly-formed ester bond [43]. Different
CCA conjugates were prepared by varying the feed ratio of CLA and L-Arg to CMCS (Table 1). In this
part, EDC is a cross-linking agent called “zero length” that provides an amide bond without leaving a
spacer molecule. EDC could react with the carboxyl group of the CMCS to produce an active ester
intermediate, which could chemically couple with Arg-NH2. However, EDC is not very stable in water
because the oxygen atoms act as a nucleophile and inactivate the cross-linker agent. Using NHS is a
preferable way to improve stability of EDC. It is known the most efficient coupling reactions occur in
acidic conditions [44]. A schematic representation of the CCA interactions, mainly the covalent bond
interaction and hydrogen bond interaction, is shown in Figure 1.
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Figure 1. The schema of CLA-CMCS-Arg (CCA) synthesis.

The characteristic absorption peaks of CMCS, CLA-CMCS and CLA-CMCS-Arg were analysed
using FTIR spectroscopy, which are shown in Figure 2A, indicative of their interaction. The peaks
at 1591 cm−1, 1414 cm−1, 1070 cm−1 and 2928 cm−1 are all characteristic peaks of CMCS, assigned
to the stretching vibrations of C=O, CH2COO–, –C–O– group and the tensile vibration of C–H
separately [45,46]. Most importantly, the augmented peak at 1736 cm−1 corresponding to the stretching
vibration of C=O group indicated the existence of the C=O group of a newly-formed ester bond in CC
polymer [47] and escalated peaks at 1640 cm−1 stands for CO stretching vibration and indicated the
formation of an amide bond linkage between Arg and CMCS [48]. Similarly, 1H NMR spectroscopy
(Figure 2B) further demonstrated the formation of new ester and amide bonds in CCA conjugate.
The chitosan backbone peaks present at 3.0, 3.5–3.8, and 4.2 ppm are assigned to the carbon d, carbon
a–c,f, and carbon e of chitosan, respectively [49]. The new peak indicates that the CLA and Arg groups
are directly linked to the CMCS backbone. The new peaks at 0.7–1.0, 1.0–1.3,2.1, 2.5, 4.6, 5.0 and
5.5 ppm were attributed to the pendant groups of CLA, and the new peaks at 1.7, 1.9, 3.2–3.3, 4.6 ppm
were attributed to the groups of Arg [18]. In conclusion, the FT-IR and 1H NMR results demonstrate
the successful synthesis of CCA.
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Figure 2. FTIR (A) and 1H NMR (B) spectra of CLA-CMCS-Arg.

3.2. Formation and Characteristics of Self-Aggregated Nanoparticles

CCA nanoparticles can be easily formed by ultrasound-assisted self-assembly, which can be
characterized by dynamic light scattering detection (DLS, Table 1) and transmission electron microscopy
(TEM, Figure 3). The so-formed CCA1 assemblies were spherical in shape (203.4 ± 3.42 nm in diameter)
and dispersed polydispersity index (PDI:0.252) which demonstrated a narrow particle size distribution.
In addition, the zeta potential is −39.7 ± 0.26 mV, which may be due to the entanglement of some
CMCS molecules on the surface of the particles to produce a negative charge. Absolute value of zeta
potential was greater than 30mV indicated that the seprepared colloidal system was stable [50]. We
speculated that CCA-NPs exhibited a spherical core/shell architecture, with functional groups on the
surface and inner hydrophobic cores, respectively.

Table 1. General properties of CCA (1–5) conjugates in distilled water.

Components Weight (g)
Mean Size (nm) PDI Zeta Potential (mV) EE (%)

Samples CLA CMCS Arg

1 0.25 1.00 0.25 203.4 ± 3.42 0.252 −39.7 ± 0.26 69.21 ± 1.96
2 0.50 1.00 0.25 192.4 ± 6.18 0.192 −42.8 ± 1.37 71.48 ± 2.69
3 1.00 1.00 0.25 193.1 ± 2.69 0.218 −47.4 ± 2.34 81.93 ± 5.01 *
4 0.25 1.00 0.50 210.2 ± 3.08 0.286 −36.2 ± 1.52 76.71 ± 2.69 *
5 0.25 1.00 1.00 229.4 ± 1.83 0.230 −33.9 ± 0.43 75.15 ± 3.17 *

Note: * p < 0.05 vs Sample 1.

To more intuitively understand the shape and size of the CCA-NP, the morphology of the
nanoparticles was evaluated using TEM. The transmission electron micrograph of CCA1 and CCA5
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nanoparticles was shown in Figure 3. The NPs were spherical in shape with smooth surface, and
have narrow size distribution. Specifically, CCA5-NPs exhibited non-circularity and irregular shape
and the particle size also increased. This result was attributed to the fact that L-Arg hydrophilic
chain on the polysaccharide backbone is entangled outside the core in a relatively loose state and
stretched outward of the hydrophilic group causes the entire particle to loosen and swell. Also of
note is that the particle size observed by the TEM image (Figure 3) was in the range of 160–200 nm,
which seems to be smaller than the result obtained by DLS (Table 1). The difference in size could be
reasonably ascribed to the hydrodynamic radius in DLS [49]. In addition, Morphological examination
of CCA5-NP and PR:CCA5-NPs were performed by TEM. The mean sizes of blank CCA-NPs and
PR:CCA-NPs were found to be 206.5 ± 3.28 nm and 237.4 ± 1.94 nm, repectively. The increase of
particle size of PR:CCA-NPs as compared to that of blank CCA-NPs could be due to the loading of PR
in the hydrophobic core of the nanoparticles [11].
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Figure 3. TEM of CCA1 and CCA5 nanoparticles.

Table 1 and Figure 3 show the particle size distribution and particle shape of CCA conjugate in PBS
solution. As we can see, the sizes of a majority of nanoparticles are 190–230 nm which are significantly
affected by increasing CLA and L-Arg to CCA conjugates. Similarly, cholesteryl-bearing pullulan
(CHP) with the higher DS of cholesterol formed more densely packed particles due to the increase of the
cholesterol number in one hydrogel nanoparticle [51]. We further investigated encapsulation efficiency
of the CCA-NPs to find that addition of CMCS significantly increased the EE of PR. The highest EE
(81.93 ± 5.01) was obtained at ratio 4:4:1 of CLA: CMCS: Arg. As shown above, the distribution of PR
and hydrophobic chains is completely identical, which confirms that PR is mainly encapsulated in the
hydrophobic core of the nanoparticles. Therefore, these results confirm that the increase in its inner
core can achieve the high PR payload [18].

3.3. Cytotoxicity and Cellular Uptake of CCA-NPs

Cytotoxicity is an unavoidable problem for most polymeric drug carriers such as poly (L-lysine).
It was reported that the cytotoxicity of polymers may have serious adverse effects on cell membranes
and extracellular matrix proteins, thereby reducing drug penetration [52]. The toxicity of CCA5-NP
to L929 cells was assessed using the MTT method. The cell viability of all groups was above 80%
when the concentrations increased from 250 to 1500 µg/mL (Figure 4A), which demonstrated that
the CCA-NPs were nontoxic in a suitable concentration range. In addition, there was no significant
difference in cell viability between the five groups of CCA-NPs, indicating that the modification did
not affect the excellent biosafety of chitosan and the excellent biocompatibility of the CCA-NPs was
favorable for PR delivery.
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Figure 4. (A) Effects of CCA5-NPs on the proliferation ability of L929 cells (24 h), ** p < 0.01:2 mg/mL
vs other concentrations; (B) Light microscopy (LM) and fluorescence microscope (FM) images of L929
cells treated with CCA5-NPsand FITC-CCA5-NPs: 1 h, 2 h,4 h and 12 h, the scale bar represents 25 µm;
(C) FM images of L929 cells treated with FITC labeled CCA(1–5)-NPs, the scale bar represents 25 µm;
(D) Cellar uptake efficiency of CCA(1–5) nanoparticles by L929 cells at various time(1,2,4 and 12 h),
** p < 0.01: 12 h vs 1 h and 4 h (CCA5-NPs).

Nowadays, the successful application of NPs in drug delivery requires efficient cellular uptake,
which depends on special carriers that can recognize and transport L-Arg on cell membrane [53].
As shown in Figure 4, cellular uptake efficiency increased with extended incubation time changed from
1 h to 4 h (Figure 4B) and the larger material ratio of L-Arg (CCA5, Figure 4C). Obviously, CCA-NPs
were good nanocarriers for penetrating cell membranes and drug delivery, depending on the time of
cell penetration and arginine content on the surface of NPs (Figure 4D). We inferred that cellular uptake
of CCA-NPs was an energy-dependent and saturable process with the possible cellular transport route
of clathrin. In the future, clathrin, caveolae, and macropinocytosis inhibitors could be used in further
studies to elucidate the specific transport mechanism of CCA-NPs. Also, the data about the effects of
internal factors and external environment on the cellular uptake efficiency provided more information
on how to achieve the best delivery efficacy [54].

3.4. B16 Cells Death Induced by PR:CCA-NPs

Impelled by the favorable higher PR EE and cellular uptake efficiency of CCA-NPs (Table 1
and Figure 4D), we continued to evaluate their inhibition rate in B16 cells. Cytotoxicity in B16 was
monitored using the MTT assay, and microscopic observations were carried out as indicators for cell
viability. As shown in Table 2, the proliferation inhibition of B16 cells was enhanced with the increase
of Free PR concentration and the prolongation of treatment time. After treatment with 200 µg/mL
free PR for 48 h, the inhibition rate of B16 cell proliferation reached 79.42 ± 1.27%. It suggested that
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the inhibit proliferation of free PR was time and concentration dependent in a certain range, and we
selected the appropriate four concentrations of free PR (10–100 µg/mL) for the encapsulation and
cytotoxicity of PR:CCA-NPs.

Table 2. Inhibition rate of Free PR on B16 cell proliferation (n = 6, x ± s).

Concentration (µg/mL)
Inhibition Rate/%

24 h 48 h

0 0 0
5 −0.42 ± 0.52 −1.07 ± 0.26

10 8.41 ± 1.08 12.16 ± 1.37
20 24.19 ± 2.69 32.54 ± 2.34
50 42.93 ± 3.08 52.24 ± 1.52

100 60.94 ± 1.83 69.51 ± 0.43
200 65.43 ± 0.98 72.92 ± 1.27
500 73.14 ± 2.18 79.42 ± 0.49

The effect of four different concentrations of PR: CCA1-NPs and three different drug-loaded
nanoparticles on cytotoxicity is shown in Figure 5. The cell viability is significantly lower than
75% when the drug concentration is 50 µg/mL which indicates that it has an inhibitory effect on
the proliferation of B16 cells (Figure 5A). Specifically, the cell proliferation rate of PR:CCA1-NPs
(78 ± 3.06%) is much higher than these of free PR (62 ± 5.41%) at the same concentrations (50 µg/mL)
(Figure 5B). These data directly indicated that PR:CCA-NPs were more efficient than free PR in reducing
drug sensitivity. Analyzed by observation after treatment, the B16 cells of control group were full and
radial with complete cell membrane, good refractive index and rapid proliferation (Figure 5C–E). After
24 h of treatment with PR: CCA-NPs, a large number of cells degraded, the cell membrane ruptured,
and the cell adhesion ability was poor, showing a massive death (Figure 5F–H). Evaluating the nature
of cell death induced by NPs, the results suggested that the PR:CCA-NPs induced a necrotic cell
reaction [52]. In the future, apoptosis and autophagy which did not detect any indication in this part
could be researched in further studies to elucidate the specific death mechanism.

To assess the efficacy of CCA-NPs for in vitro applications, we performed the uptake assay of
FITC-labeled PR:CCA5-NPs by B16 cells. A more detailed performance analysis of FITC-labeled
nanoparticles had been reported in our previous work [40]. After the PR:CCA5-NPs sample was
added to B16 cells and continued to incubate for four hours, the cell uptake images were taken with a
fluorescence microscope. B16 cells had good uptake profile of PR-loaded nanoparticles (Figure 6A–C),
however, the uptake reached a steady state after treatment for 12h. Notably, the modified drug-loaded
nanoparticles remained intact and stable after storage for one month at 4 ◦C (Figure 6E), further
confirming their robust nature and practicality of CCA polymer.
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The direct cause of skin pigmentation is an increase in melanin production, and it is based on the
degree of inhibition of cellular melanin synthesis to evaluate whether PR is effective [55]. It can be
seen from the inhibition results that the three nanoparticles can inhibit the synthesis of melanin after
PR loading, and the effect is most obvious in the concentration of 50 µg/mL (Figure 6D). In all cases,
the inhibition effect of PR:CCA-NPs on melanin production was much higher than that produced by
the free PR. These conclusions are related to the cell proliferation described previously, reducing the
production of melanin by PR:CCA-NPs while causing cell death. In addition, it could be found that
CCA5 nanoparticles with the highest Arg content promoted cell uptake efficiency and delivered more
PR drugs, finally resulting in a stronger inhibition of melanin production (Figure 7).
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4. Conclusions

In this study, we developed a simple synthesis of well-distributed spherical CCA-NPs synthesized
from the amphiphilic CMCS polymer, which provides efficient encapsulation and delivery of the
tyrosinase inhibitor PR and inhibits melanin formation while obviating systemic toxicity. The CCA-NP
prepared in this work had a uniform solution without any aggregation in the one-month period
at room temperature. The hydrophobic cores enhanced the loading of the inhibitor PR in CCA
particles which showed low cytotoxicity. The PR: CCA-NPs had multiple therapeutic advantages
for inhibiting melanogenesis, including: (i) efficient encapsulation; it was mainly attributed to its
unique amphiphilic structure which caused the nanoparticles to have more low-density hydrophobic
cores capable of containing large amounts of drugs after self-assembly; (ii) small particle size; this
small size of nanoparticles could quickly deliver more drugs to tumor cells and prolong the beneficial
accumulation time in cells through sustained release; (iii) efficient cellular uptake of NPs mainly via
its transmembrane groups and boosted receptor-mediated endocytosis; (v) effectively improved the
efficacy of drugs.

With so many advantages as described above, CCA-NPs could effectively enhance the delivery
of PR and inhibitory effect of melanin formation in vitro. In addition, CCA-NPs could reduce the
cytotoxicity of PR by adding more functions and targeting groups to the polysaccharide backbone
and control the release effect of PR. Based on these interesting and scientific results, this amphiphilic
CMCS polymer-based drug delivery system is expected to be a feasible solution for hyperpigmentation
targeting. Further studies are warranted to elucidate the underlying molecular mechanisms of action
involved in melanogenesis inhibition and the design of animal experiments to verify the suitability of
drug-loading systems for skin lightening in vivo.
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