
1

Edited by: 
Lei Deng, 

Central South University, China

Reviewed by: 
Junwei Luo, 

Henan Polytechnic University, China  
Junwei Han, 

Harbin Medical University, China  
Dong Chen, 

Heilongjiang Institute of Technology, 
China

*Correspondence: 
Juan Wang 

wangjuan@imu.edu.cn

Specialty section: 
This article was submitted to 

 Statistical Genetics  
and Methodology, 

 a section of the journal 
 Frontiers in Genetics

Received: 18 October 2019
Accepted: 14 November 2019
Published: 06 December 2019

Citation: 
Hong Y and Wang J (2019) Frin: An 

Efficient Method for Representing 
Genome Evolutionary History. 

 Front. Genet. 10:1261. 
 doi: 10.3389/fgene.2019.01261

Frin: An Efficient Method for 
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Phylogenetic analysis is important in understanding the process of biological evolution, 
and phylogenetic trees are used to represent the evolutionary history. Each taxon in a 
phylogenetic tree has not more than one parent, so phylogenetic trees cannot express 
the complex evolutionary information implicit in phylogeny. Phylogenetic networks can 
be used to express genome evolutionary histories. Therefore, it is great significance to 
research the construction of phylogenetic networks. Cass algorithm is an efficient method 
for constructing phylogenetic networks because it can construct a much simpler network. 
However, Cass relies heavily on the order of input data, i.e. different networks can be 
constructed for the same dataset with different input orders. Based on the frequency 
and incompatibility degree of taxa, we propose an efficiently improved algorithm of Cass, 
called as Frin. The experimental results show that the networks constructed by Frin are 
not only simpler than those constructed by other methods, but Frin can also construct 
more consistent phylogenetic networks when the treated data have different input orders. 
Furthermore, the phylogenetic network constructed by Frin is closer to the original 
information described by phylogenetic trees. Frin has been built as a Java software 
package and is freely available at https://github.com/wangjuanimu/Frin.
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INTRODUCTION
Studying the evolution of species is helpful for humans to reveal biological secrets, prevent, and 
treat diseases. The purpose of phylogenetic analysis is to reveal the evolutionary relationships 
between different species or taxa and study the evolution of life on Earth (Huson and Scornavacca, 
2011). The evolutionary history is like the growth of trees, and all species can be traced back to a 
common ancestor. It makes sense to use trees to represent the evolutionary history, in which each 
node except the root has only one parent. There are a number of reticulate evolutionary events, 
such as reversal, translocation, and fusion, which have resulted in more than one parent of some 
taxa in the evolution (Gusfield et al., 2007a; Gusfield et al., 2007b; Kelk and Scornavacca, 2014; 
Wu, 2010; Van Iersel et al., 2017). Such a complex evolutionary history can be represented by the 
phylogenetic networks (Doolittle, 1999; Nakhle, 2010; Yu and Nakhleh, 2015; Huber et al., 2018). A 
network is a generalization of a tree in that it contains nodes with in-degree greater than one (Iersel 
et al., 2009). Phylogenetic networks are functionally classified into implicit networks and explicit 
networks (Huson et al., 2007; Huson and Rupp, 2008; Van Iersel et al., 2010). Implicit networks 
can be used to represent conflicting patterns due to the model misspecification. However, explicit 
networks can capture reticulate evolutionary events.
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In recent years, a lot of work has been developed on the 
methods for constructing phylogenetic networks (Albrecht 
2015; Albrecht et al., 2012; Bordewich et al., 2007; Francis et al., 
2018; Gambette et al., 2017; Linz and Semple, 2009; Makarenkov 
et al., 2006; Mirzaei and Wu, 2016; Jansson and Sung, 2006). 
Cluster network method uses the network-popping algorithm to 
construct an implicit network, which can be drawn as a cladogram 
(Huson and Rupp, 2008). Galled network method uses the seed-
growing algorithm to find the solution of RMCS (Restricted 
Maximum Compatible Subset) problem for input dataset, and 
then construct phylogenetic network (Huson et  al., 2007). The 
relationships between phylogenetic trees and networks are the 
basis for the reconstruction and verification of phylogenetic 
networks. TCP algorithm solved the problem whether or not 
certain existing phylogenetic trees are displayed in a phylogenetic 
network (Gunawan et  al., 2016; Gunawan et al., 2018). Cass is 
an efficient method to construct a phylogenetic network for any 
input trees, and is able to construct much simpler networks than 
other available methods (Van Iersel et al., 2010). But Cass usually 
constructs some different networks for the same dataset when it 
is input as different orders. The phylogenetic network constructed 
by Cass represents lots of redundant information except for the 
original information. Both factors considered it is obvious that 
Cass has poor practical application. Lnetwork improves the 
Cass by fixing the order of removed taxa in the construction 
process of phylogenetic networks. It saves the running time for 
us and reduces the dependence on the input data order (Wang 
et al., 2013a). BIMLR is also an improved algorithm of Cass by 
considering incompatibility of taxa in the construction process 
of phylogenetic network (Wang et al., 2013b). Such methods, 
including Cass, Lnetwork, and BIMLR, have the significant 
flexibility that they are not restricted to binary input trees and 
are not restricted to trees on the same taxa set. In addition, they 
can construct simpler networks for the same input than other 
methods, although they are relatively slow. Therefore, The above 
three methods are efficient and widely used in the construction of 
phylogenetic networks.

In this paper, we will introduce another improved Cass 
algorithm, Frin. It constructs phylogenetic networks with 
phylogenetic trees as input, just like Cass algorithm. Experiments 
show that Frin is less dependent on the input data order and runs 
faster than Cass. Moreover, Frin constructs a simpler network 
than other available methods.

PRELIMINARIEs

Related Knowledge
Given a set of taxa X, a subset of X, excluding the empty set and 
the complete set, is called a cluster. A cluster C is non-trivial if 
it contains more than one element. If two clusters ′C1  and ′C2  
are compatible if either ′ ′ =C C1 2 φ  or ′ ⊂ ′C C1 2  or ′ ⊂ ′C C2 1

. 
Otherwise, they are incompatible. For a set of cluster Y on X, Y 
is said to be compatible if any one pair of clusters are compatible. 
An incompatible cluster set is represented by an incompatible 
graph IG(Y) = (E, V), which consists of a node set and an edge 
set. The node set consists of all the non-trivial clusters in the Y 

and the edge set consists of edges connecting the incompatible 
clusters. The set of clusters represented by a rooted phylogenetic 
tree is compatible; on the contrary, any one compatible cluster set 
can be constructed into a rooted phylogenetic tree.

Supposed that N = (V, E) is a network on taxa set X. δ-(v) 
represents the in-degree of the node v. We introduce a concept 
used to describe the complexity of a network, which is called 
reticulation number. Reticulation number of a network is not 
necessarily equal to the number of reticulate nodes. It is defined as:
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If each connected component of a network contains 
reticulation number at most k, then we call that it is a level-k 
network. A level-k network is called a simple level- < k network, 
which does not contain cut nodes. A node is a cut node if its 
removal disconnects the graph.

Each phylogenetic tree T is uniquely defined by the set of 
clusters. For a phylogenetic tree, an edge e=(u, v) represents the 
cluster containing those taxa that are descendants of v. Similarly, 
a phylogenetic network represents clusters in the soft-wired 
sense or in the hard-wired sense. For each reticulate node of the 
network N, we switch on its one incoming edge and switch off 
the others, and we called the network N represents the cluster C 
in the soft-wired sense if cluster C equals the set of all taxa that 
can be reached from v. On the other hand, if cluster C equals 
the set of taxa that are descendants of v, we said the edge (u, v) 
of a network represents the cluster C in the hard-wired sense. In 
this article, we research the representing in the soft-wired sense, 
whose pseudocode is shown by Algorithm 1.

ALGORITHM 1 | The clusters represented by a network in the soft-wired sense.

Input: a phylogenetic network (level-k)
Output: a cluster set Y
Begin
1. Y = null
2. i = k-1; j[k] = false
3. soft (N, i, j)
4.  for: v∈Vof N
5.   if i < 0 then
6.     if j = true then
7.        switch on the left incoming edge of each reticulate node and 

switch off the right one
8.     else
9.        switch off the left incoming edge of each reticulate node and 

switch on the right one
10.     end if
11.     for: v∈Vof N
12.        if out-degree(v) = 0 then
13.          add a cluster represented by v to Y
14.        else
15.          add clusters represented by the child of v to Y
16.        end if
17.     end for
18.   else
19.      j[i] ← true
20.      continue: soft (N, i-1, j)
21.      j[i] ← false
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22.      continue: soft (N, i-1, j)
23.   end if
24.  end for
25. return the cluster set Y
End

Cass, Lnetwork, BIMLR, and Frin all take the set of trees as 
the input when to construct a phylogenetic network. They first 
compute all clusters represented by input trees, and then construct 
a phylogenetic network representing those clusters. Assume that 
Y is the cluster set represented by the input file, N is a constructed 
network. Y′ is the cluster set represented by the network, which are 
greater than or equal to the clusters in the Y. The clusters in Y-Y′are 
called the redundant clusters. Both the reticulation number and 
the number of redundant clusters describe the complexity of a 
network. The best phylogenetic network should contain fewer 
reticulation numbers and have fewer redundant clusters.

Suppose that N is a network on taxa set X, e = (u, v) is an edge 
of N with parent node u and child node v. If each way from the 
root node to v passes through u, we called that u is the stable 
ancestor on v; otherwise, it is the unstable ancestor. For an edge 
e = (u, v), let P(e) = {x∈X| x is the stable ancestor on v}, Q(e) = 
{x∈X | x is the unstable ancestor on v}, S(e) = {x∈X | x is not 
a descendant of v}. We call {P(e), Q(e), S(e)} the tripartition of 
e. Θ( )N  represents all tripartition sets of network N. Given 
two networks N1 and N2, tripartition distance between them 
is computed by | ( ) ( )| /Θ ΘN N1 2 2 , of which Δ is symmetry 
variation. The tripartition distance measures the topology 
different between two phylogenetic networks. In this paper, we 
use the tripartition distance to measure the dissimilarity of the 
phylogenetic networks.

Cass Algorithm
We will have a brief description for Cass algorithm in the 
following. Given a set of clusters Y on taxa X, Cass algorithm is 
divided into four steps:

Step 1: Cass works out non-trivial connected component 
Y1,…,Yp of incompatibility graph IG(Y). Then, Cass collapses 
the maximal ST-sets for each non-trivial connected component 
Yi and gets Yi′ . Given a taxa set X and a subset S⊂X, each cluster 
C⊂Y removes the elements of subset S, and the remaining cluster 
set Y′ is called the restriction of Y to S, denoted by Y|s. The 
largest set of ST-set is called the maximal ST-set. Given |S|>1, if 
S is compatible with each cluster of Y, and Y|s are compatible, we 
called S is a strict tree set (ST-set) of Y. 

Step 2: Cass (k) constructs simple level- < k networks for 
each Yi′ , which is crucial step of Cass algorithm. For each non-
trivial connected component, Cass(k) loops all taxa and removes 
them from each cluster, and collapses all of the maximal ST-sets 
for the remaining cluster set. Cass(k) repeats above operations 
k times, until the remaining cluster set is compatible to 
construct phylogenetic trees. The removed taxon is added to the 
phylogenetic tree as children of reticulate nodes, which becomes 
a simple level- < k network.

Step 3: For each i∈{1,…,p}, Cass removes all clusters that are 
in Ci, adds a cluster Xi and each maximal subset X⊂Xi that is not 
separated by Ci. All above set become cluster set ′′C . Then Cass 

constructs a rooted phylogenetic tree T for ′′C , which is the 
whole frame of the resulting network.

Step 4: Cass adds all the simple level- < k networks constructed 
in step 2 to the rooted phylogenetic tree T by the method of 
ancestor nodes displacement.

When Cass starts constructing a simple level- < k network, 
it does not know the number of network level. Thus, it first sets 
k = 0 and runs Cass(0),which constructs a simple level- < 0 
network. If such a network exists, it outputs the result and halts. 
Otherwise, Cass continues to sets k = k + 1, and runs Cass(1), 
Cass(2),…, Cass(k), until the constructed network represents 
the given clusters sets the soft-wired sense. The process is 
very time-consuming, because Cass(k) loops over all taxa and 
repeatedly attempts to remove each taxon. The selection of 
removed taxa is highly uncertain, which makes the algorithm 
depend heavily on the order of input data, and it also reduces 
the speed of the construction.

METHOD
Given a set of clusters Y on taxa set X, the frequency of a taxon 
x∈X is the number of clusters containing taxon x, denoted by f(x). 
The number of edges of the graph IG(Y) is called incompatibility 
degree of Y, denoted by d(Y). The incompatibility degree of 
a taxon x∈X, denoted by d(x), is the result of subtracting the 
incompatibility degree of Y|X|{x} from that of Y, i.e. d(x) = d(Y) –d 
(Y|X|{x}). For example, given incompatible cluster set Y = {1, 2}, {2, 
3}, we can get taxa frequency f(1) = 1, f(2) = 2, f(3) = 1 and taxa 
incompatibility degree d(1) = 0, d(2) = 1, d(3) = 0. Moreover, 
we know that only by removing taxa 2, the remaining clusters 
are compatible. Frequency and incompatibility degree of taxa 
contribute a lot to the compatibility of a cluster set, which will 
affect the construction of phylogenetic networks. The premise of 
constructing a network is to construct a phylogenetic tree for the 
compatible cluster set, which is the result by removing some taxa 
from the originally incompatible set of clusters. The key of Frin 
method lies in the addition of taxa removal rules, which makes 
the algorithm select removed taxa more efficiently. Frin chooses 
the removed taxa based on its frequency and incompatibility 
degree. Such choices make the remaining cluster set compatible 
as quickly as possible.

Frin constructs phylogenetic networks in four steps; steps 1, 
3, and 4 are the same as Cass algorithm. Frin improves the step 
2 of the Cass for the construction of simple level- < k networks. 
Frin first find the non-trivial connected components of the 
incompatibility graph IG(Y); next it constructs simple level- < 
k network based on taxa frequency and incompatibility degree; 
then it constructs a unique phylogenetic trees for compatible 
clusters; finally it integrates simple level- < k networks into the 
resulting phylogenetic networks. Frin (k) constructs a simple 
level- < k network as follows.

For each taxon x∈X′, Frin(k) obtains the frequency and 
incompatibility degree, and then calculates the weighted value 
|equ_0013.eps| on the frequency and incompatibility degree, 
i.e. s(x) = p × f(x) + q × d(x), where p and are q weight values 
of its frequency and incompatibility degree. All taxon x∈X′ are 
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ordered according to the value of s. Frin(k) selects the taxon 
with the maximum s as the removed taxa each time, until the 
remaining cluster set is compatible to construct a phylogenetic 
tree. Then Frin(k) adds all the removed taxa to the tree as the child 
of reticulate nodes, and gets a resulting network representing all 
clusters. Here, we set the value of p and q, 0 < p ≤ 1, 0 ≤ q <1, p + 
q = 1, and step size is 0.1. Then we can get ten groups of p and 
q values, for each group of values, Frin(k) constructs only one 
network. To avoid the same network that can be constructed over 
and over again when it runs, we ignore constructing the same 
network as before by comparing the taxa removal process. Finally, 
Frin constructs one or more different networks, and records the 
network with less reticulation number and redundant clusters as 
the final phylogenetic network.

In addition, Frin sometimes adds dummy taxa to construct 
a network. The dummy taxa are removed before outputting the 
resulting network.

Example 3.1, given taxa set X = {1, 2, 3, 4, 5} and the cluster 
set Y = {{1, 2}, {1, 4}, {3, 4}, {1, 3, 4}, {4, 5}, {1, 2, 3, 4}, {2, 3}, {2, 
3, 4}, {2, 3, 4, 5}}, Frin constructs two different networks N1and 
N2 for Y, as shown in Figure 1. N1 is a level-3 network with r = 3, 
c = 3 and N2 is a level-3 network with r = 3, c = 6, where r is the 
reticulation number and c is the number of redundant clusters. 
The two networks have the same reticulation number, and N1 has 
fewer redundant clusters than N2. Therefore, Frin outputs N1 as the 
final network. The example shows that Frin can construct several 
different networks for each input trees due to the coefficients’ 
uncertainty of the taxa frequency and incompatibility degree. 
By comparing the number of reticulation nodes and redundant 
clusters, we select the optimal network from different networks 
as the output.

Example 3.2, we consider the taxa set X = {1, 2, 3, 4, 5, 6, 7, 
8, 9, 10} and the cluster set Y = {{7, 8, 9}, {2, 3, 4, 7, 8, 10}, {5, 
6, 7, 8, 9}, {2, 3, 4, 5, 6, 7, 8, 9}, {2, 3, 4, 5, 6}, {2, 3, 4, 10}, {2, 
3, 4, 5, 6, 7, 8, 10}}. We take the cluster set Y for example to 
illustrate that the input data order has different influence degree 
on Frin, Cass, BIMLR and Lnetwork. Then we need to give all 

permutations of input data, and construct networks for each 
permutation. We represent the difference between the resulting 
networks by tripartition distance. For all permutations of the 
input data, Frin can construct the same network N3, as shown 
in Figure 2. Cass constructs three different networks N4, N5, 
and N6, and the minimum, maximum, and mean tripartition 
distance between them are 1.5, 2, and 1.67 respectively, as 
shown in Figure 3 | N4, N5 and N6are the networks constructed 
by Cass for all permutations of input data in Example 3.2. 
BIMLR constructs three different networks N7, N8, and N9, 
and the minimum, maximum and mean tripartition distance 
between them is 1, 3, and 2, as shown in Figure 4. Lnetwork also 
constructs three different networks N10, N11, and N12, and the 
minimum, maximum, and mean tripartition distance between 
them is 1, 1.5, and 1.33, as shown in Figure  5. The example 
shows that Frin can construct more consistent networks than 
other methods for the same data with different input order, i.e. 
Frin reduces the influence of input data order. The conclusion 
will be demonstrated by the following section.

REsULTs
The experiments are performed on a personal computer with an 
Intel Core i5-4200U, 1.6GHz CPU, and 4GB RAM. All programs 
are written in Java.

We test the efficiencies of Frin, Cass, Lnetwork, and BIMLR 
on artificial and the practical dataset, which can be accessed 
from the website (https://sites.google.com/site/cassalgorithm/
data-sets). The results are shown in Tables 1–3. On the one hand, 
we use practical data to test the influence of input data order 
on constructing network (see Table 1). On the other hand, we 
compared the network complexity, i.e. the level; the reticulation 

FIGURE 1 | Two networks N1 and N2 are constructed by Frin for the cluster 
set of Example 3.1.

FIGURE 2 | N3 is the network constructed by Frin for all permutations of 
input data in Example 3.2.
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FIGURE 3 | N4, N5 and N6 are the networks constructed by Cass for all permutations of input data in Example 3.2.

FIGURE 4 | N7, N8 and N9 are the networks constructed by BIMLR for all permutations of input data in Example 3.2.

FIGURE 5 | N10, N11 and N12 are the networks constructed by Lnetwork for all permutations of input data in Example 3.2.
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TABLE 1 | The results of Frin, Cass, Lnetwork and BIMLR on practical datasets with clusters |C| and taxa |X| when input order is different.

Data Firm Cass Lnetwork BIMLR

|C| |X| n mean min max n mean min max n mean min max n mean min max

35 22 1 0 0 0 2 6.5 6.5 6.5 1 0 0 0 1 0 0 0
25 15 1 0 0 0 2 3 3 3 1 0 0 0 1 0 0 0
22 13 2 1.5 1.5 1.5 2 0.5 0.5 0.5 2 1 1 1 2 1.5 1.5 1.5
27 15 3 3.3 1 5 3 3 3 3 2 1 1 1 2 1 1 1
25 13 1 0 0 0 4 6.3 2 7.5 3 1.2 0.5 1.5 1 0 0 0
22 11 2 5.5 5.5 5.5 3 3 2.5 3.5 1 0 0 0 1 0 0 0
17 10 1 0 0 0 3 2 1.5 2.5 3 1.3 1 1.5 3 2 1 3
13 8 1 0 0 0 4 3.6 1.5 4 2 1 1 1 1 0 0 0
23 11 1 0 0 0 4 5.6 3 7.5 2 1 1 1 2 1 1 1
18 10 1 0 0 0 4 1.5 0.5 3 3 2.5 1.5 3.5 3 1.5 0.5 2.5
22 11 2 0.5 0.5 0.5 3 3.2 1.5 5 1 0 0 0 2 0.5 0.5 0.5
12 11 1 0 0 0 2 3 3 3 1 0 0 0 1 0 0 0
21 10 2 5.5 5.5 5.5 4 3.9 1.5 5.5 2 1.5 1.5 1.5 2 0.5 0.5 0.5
13 7 1 0 0 0 4 3.8 1.5 4 2 1 1 1 1 0 0 0
22 10 3 2.7 2 3.5 2 1.5 1.5 1.5 1 0 0 0 2 0.5 0.5 0.5
21.1 11.8 1.5 1.3 1.1 1.4 3.1 3.4 2.2 4.0 1.8 1.2 1.1 1.4 1.6 0.6 0.4 0.7

TABLE 2 | The results of Frin, Cass, Lnetwork and BIMLR on artificial datasets with clusters |C| and taxa |X|.

Data Frin Cass Lnetwork BIMLR

|C| |X| t k r c t k r c t k r c t k r c

86 37 14s 4 9 12 3s 3 8 27 4s 3 8 11 8s 3 8 23
38 20 33s 5 7 11 2s 4 6 25 25s 4 6 15 2s 4 6 25
43 22 1s 3 5 3 1s 2 4 12 1s 3 5 3 1s 3 5 11
72 27 32s 5 7 19 15s 5 7 43 3s 5 7 19 4s 5 7 29
52 22 27s 4 8 12 17s 4 7 33 3s 4 8 15 6s 4 8 15
79 27 3m54s 8 10 80 7m21s 6 8 89 47s 6 8 44 2m40s 8 10 52
38 16 1m44s 6 8 28 15s 5 7 50 4m22s 7 9 36 13s 6 8 25
41 16 2s 4 5 6 1s 4 5 29 1s 4 5 4 1s 4 5 7
12 8 1s 2 2 0 1s 2 2 2 1s 2 2 0 1s 2 2 0
45 20 1m51s 6 7 34 4h4m 6 7 66 35s 6 7 28 17s 6 7 47
22 11 44s 2 3 1 1s 2 3 5 1s 2 3 1 1s 2 3 4
17 10 1s 3 3 4 1s 3 3 8 1s 3 3 4 1s 3 3 7
46 16 6m8s 6 8 10 23s 5 7 34 7s 6 8 15 12s 6 8 22
22 11 41s 4 4 14 2s 4 4 23 3s 4 4 13 2s 5 5 21
22 10 54s 4 4 10 2s 4 4 21 6s 4 4 12 2s 5 5 19
42.3 18.2 1m2s 4.4 6 16 16m51s 3.9 5.5 31 24.9s 4.2 5.8 14.7 15.4s 4.4 6 20.5

TABLE 3 | The results of Frin, Cass, Lnetwork and BIMLR on practical datasets with clusters |C| and taxa |X|.

Data Frin Cass Lnetwork BIMLR

|C| |X| t k r c t k r c t k r c t k r c

14 4 1s 3 3 0 1s 3 3 0 1s 3 3 0 1s 3 3 0
30 5 1s 4 4 0 2s 4 4 0 2s 4 4 0 1s 4 4 0
62 6 6s 5 5 0 11s 5 5 0 6s 5 5 0 7s 5 5 0
42 10 1s 4 4 8 5s 4 4 34 1s 4 4 8 1s 4 4 8
39 11 23s 6 6 10 21s 5 5 7 13s 5 5 8 3s 5 5 8
61 11 23s 5 5 11 1m26s 5 5 48 5s 5 5 11 1s 5 5 11
75 30 1s 2 2 19 5s 2 2 122 1s 2 2 19 1s 2 2 19
180 51 8s 2 2 0 40s 2 2 0 4s 2 2 0 1s 2 2 0
70 56 1s 1 4 0 1s 1 4 0 1s 1 4 0 2s 1 4 0
270 76 1m7s 2 2 0 6m22s 2 2 0 12s 2 2 0 24s 2 2 0
404 122 4m1s 2 2 0 1h44m 2 2 0 27s 2 2 0 27s 2 2 0
113.4 34.7 43.7s 3.3 3.5 4.4 10m18s 3.2 3.5 10 6.6s 3.4 3.6 8.5 7.1s 3.2 3.5 4.2
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number and the redundant cluster number, of four methods on 
artificial and practical data (see Table 2 and 3).

We get all permutations of input order for each data, and then 
construct networks for each permutation. Since the running time of 
the experiment is factorial, we choose small-scale data as the input. 
In order to measure the influence of input data order, we record the 
number of different resulting networks and compute the tripartition 
distance between them. We use the tripartition distances to measure 
the dissimilarity between the networks. The experimental result is 
shown in Table 1. Each dataset consists of cluster number |C| and 
taxa number |X|. The table records the number of different networks 
(n) and mean (mean), minimum (min), maximum (max) values 
of the tripartition distance, and the last row is the average of the 
corresponding columns. Table 1 shows that the number of different 
networks constructed by Frin is less than other three methods for 
most data, and the tripartition distance between them is also smaller, 
especially compared with Cass algorithm. Hence, Frin constructs 
more consistent networks when the input data orders are different.

We test the complexity of the networks constructed by Frin, 
Cass, Lnetwork, and BIMLR, including the network level (k), the 
reticulation number (r) and the redundant cluster number (c), 
and as well as the running time (t) of those methods in h/m/s. The 
following tables show the results of experiment on artificial and 
practical data with the cluster number |C| and the taxa number 
|X|. The last row of the tables is the average of the corresponding 
columns. Table 2 compares Frin with other three methods in several 
artificial datasets. It shows that Frin consumes less time for the same 
input data compared with Cass, and Frin has significantly fewer 
redundant clusters than Cass and BIMLR. Table 3 compares the 
four methods in several practical datasets. It shows that the average 
reticulation number of Frin is slightly larger than the other methods, 
but it has fewer redundant clusters than Cass and Lnetwork in most 
cases. Thus, the network constructed by Frin is simpler than that 
constructed by other methods in the aspect of redundant clusters, 

and the execution time of Frin has also been greatly reduced compare 
with Cass, although it takes longer than the other two methods.

We describe the application of Frin to the Poaceae dataset 
and also compare it with other programs. The dataset consists of 
three phylogenetic trees of the Poaceae family, which are based on 
sequences data for three difference gene loci, petD, ndhB, and rpl2. 
The gene sequences are downloaded from NCBI database. We 
do sequence alignment on the obtained sequence using Clustalx, 
and construct a phylogenetic tree using Phylip. Frin constructs 
a level-5 network with 10 taxa, 5 reticulations and 31 redundant 
clusters for the three gene trees of poaceae datasets. The resulting 
network is shown in Figure 6 using Dendroscope3 (Huson et al., 
2007; Vaughan, 2017). For the same input, BIMLR constructs a 
level-5 network with r = 5, c  = 33 and Lnetwork constructs a 
level-5 network with r = 5, c = 37; while Cass algorithm cannot 
construct the network in a day. The result shows that the network 
constructed by Frin is the simplest. It illustrates that the network 
constructed by Frin which can describe real evolutionary history 
better than the other methods.

CONCLUsION
In this paper, we propose an efficient method called Frin 
to construct phylogenetic networks. In the process of 
construction, Frin considers the two factors that affect the 
compatibility of a cluster set, which are the frequency and 
incompatibility degree of taxa, respectively. Frin can construct 
several different networks, and select the simplest network 
from them as the resulting network. The experimental 
results show that Frin is an improved method. First, Frin can 
construct less different networks when the input data order 
is different than the other methods. Second, the networks 
constructed by Frin have less the number of redundant 
clusters than the other methods in the case of the level and 
the reticulation number of the networks not are increasing. 
Both facts indicate that Frin can better describe the biological 
evolutionary history.
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