
1

Edited by:
Lei Deng,

Central South University, China

Reviewed by:
Junwei Luo,

Henan Polytechnic University, China
Junwei Han,

Harbin Medical University, China
Dong Chen,

Heilongjiang Institute of Technology,
China

*Correspondence:
Juan Wang

wangjuan@imu.edu.cn

Specialty section:
This article was submitted to

 Statistical Genetics
and Methodology,

 a section of the journal
 Frontiers in Genetics

Received: 18 October 2019
Accepted: 14 November 2019
Published: 06 December 2019

Citation:
Hong Y and Wang J (2019) Frin: An

Efficient Method for Representing
Genome Evolutionary History.

 Front. Genet. 10:1261.
 doi: 10.3389/fgene.2019.01261

Frin: An Efficient Method for
Representing Genome Evolutionary
History
Yan Hong and Juan Wang *

School of Computer Science, Inner Mongolia University, Hohhot, China

Phylogenetic analysis is important in understanding the process of biological evolution,
and phylogenetic trees are used to represent the evolutionary history. Each taxon in a
phylogenetic tree has not more than one parent, so phylogenetic trees cannot express
the complex evolutionary information implicit in phylogeny. Phylogenetic networks can
be used to express genome evolutionary histories. Therefore, it is great significance to
research the construction of phylogenetic networks. Cass algorithm is an efficient method
for constructing phylogenetic networks because it can construct a much simpler network.
However, Cass relies heavily on the order of input data, i.e. different networks can be
constructed for the same dataset with different input orders. Based on the frequency
and incompatibility degree of taxa, we propose an efficiently improved algorithm of Cass,
called as Frin. The experimental results show that the networks constructed by Frin are
not only simpler than those constructed by other methods, but Frin can also construct
more consistent phylogenetic networks when the treated data have different input orders.
Furthermore, the phylogenetic network constructed by Frin is closer to the original
information described by phylogenetic trees. Frin has been built as a Java software
package and is freely available at https://github.com/wangjuanimu/Frin.

Keywords: evolution, phylogenetic network, incompatibility degree, frequency, genome

INTRODUCTION
Studying the evolution of species is helpful for humans to reveal biological secrets, prevent, and
treat diseases. The purpose of phylogenetic analysis is to reveal the evolutionary relationships
between different species or taxa and study the evolution of life on Earth (Huson and Scornavacca,
2011). The evolutionary history is like the growth of trees, and all species can be traced back to a
common ancestor. It makes sense to use trees to represent the evolutionary history, in which each
node except the root has only one parent. There are a number of reticulate evolutionary events,
such as reversal, translocation, and fusion, which have resulted in more than one parent of some
taxa in the evolution (Gusfield et al., 2007a; Gusfield et al., 2007b; Kelk and Scornavacca, 2014;
Wu, 2010; Van Iersel et al., 2017). Such a complex evolutionary history can be represented by the
phylogenetic networks (Doolittle, 1999; Nakhle, 2010; Yu and Nakhleh, 2015; Huber et al., 2018). A
network is a generalization of a tree in that it contains nodes with in-degree greater than one (Iersel
et al., 2009). Phylogenetic networks are functionally classified into implicit networks and explicit
networks (Huson et al., 2007; Huson and Rupp, 2008; Van Iersel et al., 2010). Implicit networks
can be used to represent conflicting patterns due to the model misspecification. However, explicit
networks can capture reticulate evolutionary events.

Frontiers in Genetics | www.frontiersin.org December 2019 | Volume 10 | Article 1261

METHODs

doi: 10.3389/fgene.2019.01261
published: 06 December 2019

https://creativecommons.org/licenses/by/4.0/
mailto:wangjuan@imu.edu.cn
https://doi.org/10.3389/fgene.2019.01261
https://www.frontiersin.org/article/10.3389/fgene.2019.01261/full
https://www.frontiersin.org/article/10.3389/fgene.2019.01261/full
https://www.frontiersin.org/article/10.3389/fgene.2019.01261/full
https://loop.frontiersin.org/people/837540
https://loop.frontiersin.org/people/560593
https://github.com/wangjuanimu/Frin
https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2019.01261
https://www.frontiersin.org/journals/genetics#editorial-board
http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2019.01261&domain=pdf&date_stamp=2019-12-06

FrinHong and Wang

2

In recent years, a lot of work has been developed on the
methods for constructing phylogenetic networks (Albrecht
2015; Albrecht et al., 2012; Bordewich et al., 2007; Francis et al.,
2018; Gambette et al., 2017; Linz and Semple, 2009; Makarenkov
et al., 2006; Mirzaei and Wu, 2016; Jansson and Sung, 2006).
Cluster network method uses the network-popping algorithm to
construct an implicit network, which can be drawn as a cladogram
(Huson and Rupp, 2008). Galled network method uses the seed-
growing algorithm to find the solution of RMCS (Restricted
Maximum Compatible Subset) problem for input dataset, and
then construct phylogenetic network (Huson et al., 2007). The
relationships between phylogenetic trees and networks are the
basis for the reconstruction and verification of phylogenetic
networks. TCP algorithm solved the problem whether or not
certain existing phylogenetic trees are displayed in a phylogenetic
network (Gunawan et al., 2016; Gunawan et al., 2018). Cass is
an efficient method to construct a phylogenetic network for any
input trees, and is able to construct much simpler networks than
other available methods (Van Iersel et al., 2010). But Cass usually
constructs some different networks for the same dataset when it
is input as different orders. The phylogenetic network constructed
by Cass represents lots of redundant information except for the
original information. Both factors considered it is obvious that
Cass has poor practical application. Lnetwork improves the
Cass by fixing the order of removed taxa in the construction
process of phylogenetic networks. It saves the running time for
us and reduces the dependence on the input data order (Wang
et al., 2013a). BIMLR is also an improved algorithm of Cass by
considering incompatibility of taxa in the construction process
of phylogenetic network (Wang et al., 2013b). Such methods,
including Cass, Lnetwork, and BIMLR, have the significant
flexibility that they are not restricted to binary input trees and
are not restricted to trees on the same taxa set. In addition, they
can construct simpler networks for the same input than other
methods, although they are relatively slow. Therefore, The above
three methods are efficient and widely used in the construction of
phylogenetic networks.

In this paper, we will introduce another improved Cass
algorithm, Frin. It constructs phylogenetic networks with
phylogenetic trees as input, just like Cass algorithm. Experiments
show that Frin is less dependent on the input data order and runs
faster than Cass. Moreover, Frin constructs a simpler network
than other available methods.

PRELIMINARIEs

Related Knowledge
Given a set of taxa X, a subset of X, excluding the empty set and
the complete set, is called a cluster. A cluster C is non-trivial if
it contains more than one element. If two clusters ′C1 and ′C2
are compatible if either ′ ′ =C C1 2 φ or ′ ⊂ ′C C1 2 or ′ ⊂ ′C C2 1

.
Otherwise, they are incompatible. For a set of cluster Y on X, Y
is said to be compatible if any one pair of clusters are compatible.
An incompatible cluster set is represented by an incompatible
graph IG(Y) = (E, V), which consists of a node set and an edge
set. The node set consists of all the non-trivial clusters in the Y

and the edge set consists of edges connecting the incompatible
clusters. The set of clusters represented by a rooted phylogenetic
tree is compatible; on the contrary, any one compatible cluster set
can be constructed into a rooted phylogenetic tree.

Supposed that N = (V, E) is a network on taxa set X. δ-(v)
represents the in-degree of the node v. We introduce a concept
used to describe the complexity of a network, which is called
reticulation number. Reticulation number of a network is not
necessarily equal to the number of reticulate nodes. It is defined as:

(()) | | | |
, -

δ ν
ν δ

−

∈ >

− = − +∑ 1 1
0V

E V

If each connected component of a network contains
reticulation number at most k, then we call that it is a level-k
network. A level-k network is called a simple level- < k network,
which does not contain cut nodes. A node is a cut node if its
removal disconnects the graph.

Each phylogenetic tree T is uniquely defined by the set of
clusters. For a phylogenetic tree, an edge e=(u, v) represents the
cluster containing those taxa that are descendants of v. Similarly,
a phylogenetic network represents clusters in the soft-wired
sense or in the hard-wired sense. For each reticulate node of the
network N, we switch on its one incoming edge and switch off
the others, and we called the network N represents the cluster C
in the soft-wired sense if cluster C equals the set of all taxa that
can be reached from v. On the other hand, if cluster C equals
the set of taxa that are descendants of v, we said the edge (u, v)
of a network represents the cluster C in the hard-wired sense. In
this article, we research the representing in the soft-wired sense,
whose pseudocode is shown by Algorithm 1.

ALGORITHM 1 | The clusters represented by a network in the soft-wired sense.

Input: a phylogenetic network (level-k)
Output: a cluster set Y
Begin
1. Y = null
2. i = k-1; j[k] = false
3. soft (N, i, j)
4. for: v∈Vof N
5. if i < 0 then
6. if j = true then
7. switch on the left incoming edge of each reticulate node and

switch off the right one
8. else
9. switch off the left incoming edge of each reticulate node and

switch on the right one
10. end if
11. for: v∈Vof N
12. if out-degree(v) = 0 then
13. add a cluster represented by v to Y
14. else
15. add clusters represented by the child of v to Y
16. end if
17. end for
18. else
19. j[i] ← true
20. continue: soft (N, i-1, j)
21. j[i] ← false

Frontiers in Genetics | www.frontiersin.org December 2019 | Volume 10 | Article 1261

https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles

FrinHong and Wang

3

22. continue: soft (N, i-1, j)
23. end if
24. end for
25. return the cluster set Y
End

Cass, Lnetwork, BIMLR, and Frin all take the set of trees as
the input when to construct a phylogenetic network. They first
compute all clusters represented by input trees, and then construct
a phylogenetic network representing those clusters. Assume that
Y is the cluster set represented by the input file, N is a constructed
network. Y′ is the cluster set represented by the network, which are
greater than or equal to the clusters in the Y. The clusters in Y-Y′are
called the redundant clusters. Both the reticulation number and
the number of redundant clusters describe the complexity of a
network. The best phylogenetic network should contain fewer
reticulation numbers and have fewer redundant clusters.

Suppose that N is a network on taxa set X, e = (u, v) is an edge
of N with parent node u and child node v. If each way from the
root node to v passes through u, we called that u is the stable
ancestor on v; otherwise, it is the unstable ancestor. For an edge
e = (u, v), let P(e) = {x∈X| x is the stable ancestor on v}, Q(e) =
{x∈X | x is the unstable ancestor on v}, S(e) = {x∈X | x is not
a descendant of v}. We call {P(e), Q(e), S(e)} the tripartition of
e. Θ()N represents all tripartition sets of network N. Given
two networks N1 and N2, tripartition distance between them
is computed by | () ()| /Θ ΘN N1 2 2 , of which Δ is symmetry
variation. The tripartition distance measures the topology
different between two phylogenetic networks. In this paper, we
use the tripartition distance to measure the dissimilarity of the
phylogenetic networks.

Cass Algorithm
We will have a brief description for Cass algorithm in the
following. Given a set of clusters Y on taxa X, Cass algorithm is
divided into four steps:

Step 1: Cass works out non-trivial connected component
Y1,…,Yp of incompatibility graph IG(Y). Then, Cass collapses
the maximal ST-sets for each non-trivial connected component
Yi and gets Yi′ . Given a taxa set X and a subset S⊂X, each cluster
C⊂Y removes the elements of subset S, and the remaining cluster
set Y′ is called the restriction of Y to S, denoted by Y|s. The
largest set of ST-set is called the maximal ST-set. Given |S|>1, if
S is compatible with each cluster of Y, and Y|s are compatible, we
called S is a strict tree set (ST-set) of Y.

Step 2: Cass (k) constructs simple level- < k networks for
each Yi′ , which is crucial step of Cass algorithm. For each non-
trivial connected component, Cass(k) loops all taxa and removes
them from each cluster, and collapses all of the maximal ST-sets
for the remaining cluster set. Cass(k) repeats above operations
k times, until the remaining cluster set is compatible to
construct phylogenetic trees. The removed taxon is added to the
phylogenetic tree as children of reticulate nodes, which becomes
a simple level- < k network.

Step 3: For each i∈{1,…,p}, Cass removes all clusters that are
in Ci, adds a cluster Xi and each maximal subset X⊂Xi that is not
separated by Ci. All above set become cluster set ′′C . Then Cass

constructs a rooted phylogenetic tree T for ′′C , which is the
whole frame of the resulting network.

Step 4: Cass adds all the simple level- < k networks constructed
in step 2 to the rooted phylogenetic tree T by the method of
ancestor nodes displacement.

When Cass starts constructing a simple level- < k network,
it does not know the number of network level. Thus, it first sets
k = 0 and runs Cass(0),which constructs a simple level- < 0
network. If such a network exists, it outputs the result and halts.
Otherwise, Cass continues to sets k = k + 1, and runs Cass(1),
Cass(2),…, Cass(k), until the constructed network represents
the given clusters sets the soft-wired sense. The process is
very time-consuming, because Cass(k) loops over all taxa and
repeatedly attempts to remove each taxon. The selection of
removed taxa is highly uncertain, which makes the algorithm
depend heavily on the order of input data, and it also reduces
the speed of the construction.

METHOD
Given a set of clusters Y on taxa set X, the frequency of a taxon
x∈X is the number of clusters containing taxon x, denoted by f(x).
The number of edges of the graph IG(Y) is called incompatibility
degree of Y, denoted by d(Y). The incompatibility degree of
a taxon x∈X, denoted by d(x), is the result of subtracting the
incompatibility degree of Y|X|{x} from that of Y, i.e. d(x) = d(Y) –d
(Y|X|{x}). For example, given incompatible cluster set Y = {1, 2}, {2,
3}, we can get taxa frequency f(1) = 1, f(2) = 2, f(3) = 1 and taxa
incompatibility degree d(1) = 0, d(2) = 1, d(3) = 0. Moreover,
we know that only by removing taxa 2, the remaining clusters
are compatible. Frequency and incompatibility degree of taxa
contribute a lot to the compatibility of a cluster set, which will
affect the construction of phylogenetic networks. The premise of
constructing a network is to construct a phylogenetic tree for the
compatible cluster set, which is the result by removing some taxa
from the originally incompatible set of clusters. The key of Frin
method lies in the addition of taxa removal rules, which makes
the algorithm select removed taxa more efficiently. Frin chooses
the removed taxa based on its frequency and incompatibility
degree. Such choices make the remaining cluster set compatible
as quickly as possible.

Frin constructs phylogenetic networks in four steps; steps 1,
3, and 4 are the same as Cass algorithm. Frin improves the step
2 of the Cass for the construction of simple level- < k networks.
Frin first find the non-trivial connected components of the
incompatibility graph IG(Y); next it constructs simple level- <
k network based on taxa frequency and incompatibility degree;
then it constructs a unique phylogenetic trees for compatible
clusters; finally it integrates simple level- < k networks into the
resulting phylogenetic networks. Frin (k) constructs a simple
level- < k network as follows.

For each taxon x∈X′, Frin(k) obtains the frequency and
incompatibility degree, and then calculates the weighted value
|equ_0013.eps| on the frequency and incompatibility degree,
i.e. s(x) = p × f(x) + q × d(x), where p and are q weight values
of its frequency and incompatibility degree. All taxon x∈X′ are

Frontiers in Genetics | www.frontiersin.org December 2019 | Volume 10 | Article 1261

https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles

FrinHong and Wang

4

ordered according to the value of s. Frin(k) selects the taxon
with the maximum s as the removed taxa each time, until the
remaining cluster set is compatible to construct a phylogenetic
tree. Then Frin(k) adds all the removed taxa to the tree as the child
of reticulate nodes, and gets a resulting network representing all
clusters. Here, we set the value of p and q, 0 < p ≤ 1, 0 ≤ q <1, p +
q = 1, and step size is 0.1. Then we can get ten groups of p and
q values, for each group of values, Frin(k) constructs only one
network. To avoid the same network that can be constructed over
and over again when it runs, we ignore constructing the same
network as before by comparing the taxa removal process. Finally,
Frin constructs one or more different networks, and records the
network with less reticulation number and redundant clusters as
the final phylogenetic network.

In addition, Frin sometimes adds dummy taxa to construct
a network. The dummy taxa are removed before outputting the
resulting network.

Example 3.1, given taxa set X = {1, 2, 3, 4, 5} and the cluster
set Y = {{1, 2}, {1, 4}, {3, 4}, {1, 3, 4}, {4, 5}, {1, 2, 3, 4}, {2, 3}, {2,
3, 4}, {2, 3, 4, 5}}, Frin constructs two different networks N1and
N2 for Y, as shown in Figure 1. N1 is a level-3 network with r = 3,
c = 3 and N2 is a level-3 network with r = 3, c = 6, where r is the
reticulation number and c is the number of redundant clusters.
The two networks have the same reticulation number, and N1 has
fewer redundant clusters than N2. Therefore, Frin outputs N1 as the
final network. The example shows that Frin can construct several
different networks for each input trees due to the coefficients’
uncertainty of the taxa frequency and incompatibility degree.
By comparing the number of reticulation nodes and redundant
clusters, we select the optimal network from different networks
as the output.

Example 3.2, we consider the taxa set X = {1, 2, 3, 4, 5, 6, 7,
8, 9, 10} and the cluster set Y = {{7, 8, 9}, {2, 3, 4, 7, 8, 10}, {5,
6, 7, 8, 9}, {2, 3, 4, 5, 6, 7, 8, 9}, {2, 3, 4, 5, 6}, {2, 3, 4, 10}, {2,
3, 4, 5, 6, 7, 8, 10}}. We take the cluster set Y for example to
illustrate that the input data order has different influence degree
on Frin, Cass, BIMLR and Lnetwork. Then we need to give all

permutations of input data, and construct networks for each
permutation. We represent the difference between the resulting
networks by tripartition distance. For all permutations of the
input data, Frin can construct the same network N3, as shown
in Figure 2. Cass constructs three different networks N4, N5,
and N6, and the minimum, maximum, and mean tripartition
distance between them are 1.5, 2, and 1.67 respectively, as
shown in Figure 3 | N4, N5 and N6are the networks constructed
by Cass for all permutations of input data in Example 3.2.
BIMLR constructs three different networks N7, N8, and N9,
and the minimum, maximum and mean tripartition distance
between them is 1, 3, and 2, as shown in Figure 4. Lnetwork also
constructs three different networks N10, N11, and N12, and the
minimum, maximum, and mean tripartition distance between
them is 1, 1.5, and 1.33, as shown in Figure 5. The example
shows that Frin can construct more consistent networks than
other methods for the same data with different input order, i.e.
Frin reduces the influence of input data order. The conclusion
will be demonstrated by the following section.

REsULTs
The experiments are performed on a personal computer with an
Intel Core i5-4200U, 1.6GHz CPU, and 4GB RAM. All programs
are written in Java.

We test the efficiencies of Frin, Cass, Lnetwork, and BIMLR
on artificial and the practical dataset, which can be accessed
from the website (https://sites.google.com/site/cassalgorithm/
data-sets). The results are shown in Tables 1–3. On the one hand,
we use practical data to test the influence of input data order
on constructing network (see Table 1). On the other hand, we
compared the network complexity, i.e. the level; the reticulation

FIGURE 1 | Two networks N1 and N2 are constructed by Frin for the cluster
set of Example 3.1.

FIGURE 2 | N3 is the network constructed by Frin for all permutations of
input data in Example 3.2.

Frontiers in Genetics | www.frontiersin.org December 2019 | Volume 10 | Article 1261

https://sites.google.com/site/cassalgorithm/data-sets
https://sites.google.com/site/cassalgorithm/data-sets
https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles

FrinHong and Wang

5

FIGURE 3 | N4, N5 and N6 are the networks constructed by Cass for all permutations of input data in Example 3.2.

FIGURE 4 | N7, N8 and N9 are the networks constructed by BIMLR for all permutations of input data in Example 3.2.

FIGURE 5 | N10, N11 and N12 are the networks constructed by Lnetwork for all permutations of input data in Example 3.2.

Frontiers in Genetics | www.frontiersin.org December 2019 | Volume 10 | Article 1261

https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles

FrinHong and Wang

6

TABLE 1 | The results of Frin, Cass, Lnetwork and BIMLR on practical datasets with clusters |C| and taxa |X| when input order is different.

Data Firm Cass Lnetwork BIMLR

|C| |X| n mean min max n mean min max n mean min max n mean min max

35 22 1 0 0 0 2 6.5 6.5 6.5 1 0 0 0 1 0 0 0
25 15 1 0 0 0 2 3 3 3 1 0 0 0 1 0 0 0
22 13 2 1.5 1.5 1.5 2 0.5 0.5 0.5 2 1 1 1 2 1.5 1.5 1.5
27 15 3 3.3 1 5 3 3 3 3 2 1 1 1 2 1 1 1
25 13 1 0 0 0 4 6.3 2 7.5 3 1.2 0.5 1.5 1 0 0 0
22 11 2 5.5 5.5 5.5 3 3 2.5 3.5 1 0 0 0 1 0 0 0
17 10 1 0 0 0 3 2 1.5 2.5 3 1.3 1 1.5 3 2 1 3
13 8 1 0 0 0 4 3.6 1.5 4 2 1 1 1 1 0 0 0
23 11 1 0 0 0 4 5.6 3 7.5 2 1 1 1 2 1 1 1
18 10 1 0 0 0 4 1.5 0.5 3 3 2.5 1.5 3.5 3 1.5 0.5 2.5
22 11 2 0.5 0.5 0.5 3 3.2 1.5 5 1 0 0 0 2 0.5 0.5 0.5
12 11 1 0 0 0 2 3 3 3 1 0 0 0 1 0 0 0
21 10 2 5.5 5.5 5.5 4 3.9 1.5 5.5 2 1.5 1.5 1.5 2 0.5 0.5 0.5
13 7 1 0 0 0 4 3.8 1.5 4 2 1 1 1 1 0 0 0
22 10 3 2.7 2 3.5 2 1.5 1.5 1.5 1 0 0 0 2 0.5 0.5 0.5
21.1 11.8 1.5 1.3 1.1 1.4 3.1 3.4 2.2 4.0 1.8 1.2 1.1 1.4 1.6 0.6 0.4 0.7

TABLE 2 | The results of Frin, Cass, Lnetwork and BIMLR on artificial datasets with clusters |C| and taxa |X|.

Data Frin Cass Lnetwork BIMLR

|C| |X| t k r c t k r c t k r c t k r c

86 37 14s 4 9 12 3s 3 8 27 4s 3 8 11 8s 3 8 23
38 20 33s 5 7 11 2s 4 6 25 25s 4 6 15 2s 4 6 25
43 22 1s 3 5 3 1s 2 4 12 1s 3 5 3 1s 3 5 11
72 27 32s 5 7 19 15s 5 7 43 3s 5 7 19 4s 5 7 29
52 22 27s 4 8 12 17s 4 7 33 3s 4 8 15 6s 4 8 15
79 27 3m54s 8 10 80 7m21s 6 8 89 47s 6 8 44 2m40s 8 10 52
38 16 1m44s 6 8 28 15s 5 7 50 4m22s 7 9 36 13s 6 8 25
41 16 2s 4 5 6 1s 4 5 29 1s 4 5 4 1s 4 5 7
12 8 1s 2 2 0 1s 2 2 2 1s 2 2 0 1s 2 2 0
45 20 1m51s 6 7 34 4h4m 6 7 66 35s 6 7 28 17s 6 7 47
22 11 44s 2 3 1 1s 2 3 5 1s 2 3 1 1s 2 3 4
17 10 1s 3 3 4 1s 3 3 8 1s 3 3 4 1s 3 3 7
46 16 6m8s 6 8 10 23s 5 7 34 7s 6 8 15 12s 6 8 22
22 11 41s 4 4 14 2s 4 4 23 3s 4 4 13 2s 5 5 21
22 10 54s 4 4 10 2s 4 4 21 6s 4 4 12 2s 5 5 19
42.3 18.2 1m2s 4.4 6 16 16m51s 3.9 5.5 31 24.9s 4.2 5.8 14.7 15.4s 4.4 6 20.5

TABLE 3 | The results of Frin, Cass, Lnetwork and BIMLR on practical datasets with clusters |C| and taxa |X|.

Data Frin Cass Lnetwork BIMLR

|C| |X| t k r c t k r c t k r c t k r c

14 4 1s 3 3 0 1s 3 3 0 1s 3 3 0 1s 3 3 0
30 5 1s 4 4 0 2s 4 4 0 2s 4 4 0 1s 4 4 0
62 6 6s 5 5 0 11s 5 5 0 6s 5 5 0 7s 5 5 0
42 10 1s 4 4 8 5s 4 4 34 1s 4 4 8 1s 4 4 8
39 11 23s 6 6 10 21s 5 5 7 13s 5 5 8 3s 5 5 8
61 11 23s 5 5 11 1m26s 5 5 48 5s 5 5 11 1s 5 5 11
75 30 1s 2 2 19 5s 2 2 122 1s 2 2 19 1s 2 2 19
180 51 8s 2 2 0 40s 2 2 0 4s 2 2 0 1s 2 2 0
70 56 1s 1 4 0 1s 1 4 0 1s 1 4 0 2s 1 4 0
270 76 1m7s 2 2 0 6m22s 2 2 0 12s 2 2 0 24s 2 2 0
404 122 4m1s 2 2 0 1h44m 2 2 0 27s 2 2 0 27s 2 2 0
113.4 34.7 43.7s 3.3 3.5 4.4 10m18s 3.2 3.5 10 6.6s 3.4 3.6 8.5 7.1s 3.2 3.5 4.2

Frontiers in Genetics | www.frontiersin.org December 2019 | Volume 10 | Article 1261

https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles

FrinHong and Wang

7

number and the redundant cluster number, of four methods on
artificial and practical data (see Table 2 and 3).

We get all permutations of input order for each data, and then
construct networks for each permutation. Since the running time of
the experiment is factorial, we choose small-scale data as the input.
In order to measure the influence of input data order, we record the
number of different resulting networks and compute the tripartition
distance between them. We use the tripartition distances to measure
the dissimilarity between the networks. The experimental result is
shown in Table 1. Each dataset consists of cluster number |C| and
taxa number |X|. The table records the number of different networks
(n) and mean (mean), minimum (min), maximum (max) values
of the tripartition distance, and the last row is the average of the
corresponding columns. Table 1 shows that the number of different
networks constructed by Frin is less than other three methods for
most data, and the tripartition distance between them is also smaller,
especially compared with Cass algorithm. Hence, Frin constructs
more consistent networks when the input data orders are different.

We test the complexity of the networks constructed by Frin,
Cass, Lnetwork, and BIMLR, including the network level (k), the
reticulation number (r) and the redundant cluster number (c),
and as well as the running time (t) of those methods in h/m/s. The
following tables show the results of experiment on artificial and
practical data with the cluster number |C| and the taxa number
|X|. The last row of the tables is the average of the corresponding
columns. Table 2 compares Frin with other three methods in several
artificial datasets. It shows that Frin consumes less time for the same
input data compared with Cass, and Frin has significantly fewer
redundant clusters than Cass and BIMLR. Table 3 compares the
four methods in several practical datasets. It shows that the average
reticulation number of Frin is slightly larger than the other methods,
but it has fewer redundant clusters than Cass and Lnetwork in most
cases. Thus, the network constructed by Frin is simpler than that
constructed by other methods in the aspect of redundant clusters,

and the execution time of Frin has also been greatly reduced compare
with Cass, although it takes longer than the other two methods.

We describe the application of Frin to the Poaceae dataset
and also compare it with other programs. The dataset consists of
three phylogenetic trees of the Poaceae family, which are based on
sequences data for three difference gene loci, petD, ndhB, and rpl2.
The gene sequences are downloaded from NCBI database. We
do sequence alignment on the obtained sequence using Clustalx,
and construct a phylogenetic tree using Phylip. Frin constructs
a level-5 network with 10 taxa, 5 reticulations and 31 redundant
clusters for the three gene trees of poaceae datasets. The resulting
network is shown in Figure 6 using Dendroscope3 (Huson et al.,
2007; Vaughan, 2017). For the same input, BIMLR constructs a
level-5 network with r = 5, c = 33 and Lnetwork constructs a
level-5 network with r = 5, c = 37; while Cass algorithm cannot
construct the network in a day. The result shows that the network
constructed by Frin is the simplest. It illustrates that the network
constructed by Frin which can describe real evolutionary history
better than the other methods.

CONCLUsION
In this paper, we propose an efficient method called Frin
to construct phylogenetic networks. In the process of
construction, Frin considers the two factors that affect the
compatibility of a cluster set, which are the frequency and
incompatibility degree of taxa, respectively. Frin can construct
several different networks, and select the simplest network
from them as the resulting network. The experimental
results show that Frin is an improved method. First, Frin can
construct less different networks when the input data order
is different than the other methods. Second, the networks
constructed by Frin have less the number of redundant
clusters than the other methods in the case of the level and
the reticulation number of the networks not are increasing.
Both facts indicate that Frin can better describe the biological
evolutionary history.

DATA AVAILABILITY sTATEMENT
The datasets generated for this study can be found in Github
(https://github.com/wangjuanimu/Frin). The artificial and the
practical datasets can be accessed from the Cass website (https://
sites.google.com/site/cassalgorithm/data231 sets).

AUTHOR CONTRIBUTIONs
YH proposed the method and designed the experiments. YH and
JW wrote the paper.

FUNDING
The work was supported by National Natural Science Foundation
of China under Grant No. 61661040.

FIGURE 6 | Frin constructs a level-5 network with r = 5, c = 31 for the three
gene trees of the Poaceae datasets.

Frontiers in Genetics | www.frontiersin.org December 2019 | Volume 10 | Article 1261

https://github.com/wangjuanimu/Frin
https://sites.google.com/site/cassalgorithm/data231 sets
https://sites.google.com/site/cassalgorithm/data231 sets
https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles

FrinHong and Wang

8

REFERENCEs
Albrecht, B., Scornavacca, C., and Cenci, A. (2012). Fast computation of minimum

hybridization networks. Bioinformatics 28 (2), 191–197. doi: 10.1093/
bioinformatics/btr618

Albrecht, B. (2015). Computing all hybridization networks for multiple binary
phylogenetic input trees. BMC Bioinf. 16 (1), 1–15. doi: 10.1186/s12859-015-0660-7

Bordewich, M., Linz, S., and John, K. S. (2007). A reduction algorithm for computing
the hybridization number of two trees. Evol. Bioinf. 3, 117693430700300. doi:
10.1177/117693430700300017

Doolittle, W. F. (1999). Phylogenetic classification and the universal tree. Science
284 (5423), 2124–2128. doi: 10.1126/science.284.54232124

Francis, A., Huber, K. T., and Moulton, V. (2018). Tree-based unrooted phylogenetic
networks. Bull. Math. Biol. 80 (2), 404–416. doi: 10.1007/s11538-017-0381-3

Gambette, P., Huber, K. T., and Kelk, S. (2017). On the challenge of reconstructing
level-1 phylogenetic networks from triplets and clusters. J. Math. Biol. 74 (7),
1729–1751. doi: 10.1007/s00285-016-1068-3

Gunawan, A. D. M., Lu, B., and Zhang, L. (2016). A program for verification of
phylogenetic network models. Bioinformatics 32 (17), i503–i510. doi: 10.1093/
bioinformatics/btw467

Gunawan, A. D. M., Lu, B., and Zhang, L. (2018). Fast methods for solving the
cluster containment problem for phylogenetic networks. Bioinformatics 34
(17), i680–i686. doi: 10.1093/bioinformatics/bty594

Gusfield, D., Bansal, V., and Bafna, V. (2007a). A decomposition theory for
phylogenetic networks and incompatible characters. J. Comput. Biol. 14 (10),
1247–1272. doi: 10.1089/cmb.20060137

Gusfield, D., Hickerson, D., and Eddhu, S. (2007b). An efficiently computed lower bound
on the number of recombination in phylogenetic networks: theory and empirical
study. Discrete Appl. Math. 155 (6-7), 806–830. doi: 10.1016/j.dam.2005.05.044

Huber, K. T., van Iersel, L., and Moulton, V. (2017). Reconstructing phylogenetic
level-1 networks from nondense binet and trinet sets. Algorithm. 77 (1), 173–
200. doi: 10.1007/s00453-015-0069-8

Huson, D. H., and Rupp, R. (2008). Summarizing multiple gene trees using cluster
networks. Int. Workshop Algo. Bioinf. 5251, 296–305. doi: 978-3-540-87361-7_25

Huson, D. H., and Scornavacca, C. (2011). A survey of combinatorial methods for
phylogenetic networks. Genome Biol. Evol. 3, 23–35. doi: 10.1093/gbe/evq077

Huson, D. H., Rupp, R., Berry, V., Gambette, P., and Paul, C. (2007). Computing
galled networks from real data. Bioinformatics 25 (12), i85–i93. doi: 10.1093/
bioinformatics/btp217

Huson, D. H., Richter, D. C., and Rausch C. (2007). Dendroscope: an interactive viewer for
large phylogenetic trees. BMC Bioinf. 8 (1), 460–460. doi: 10.1186/1471-2105-8-460

Iersel, L. V., Keijsper, J., and Kelk, S. (2009). Constructing Level-2 phylogenetic
networks from triplets. EEE/ACM Trans. Comput. Biol. Bioinform. 6, 667–681.
doi: 10.1109/TCBB.2009.22

Jansson, J., and Sung, W. K. (2006). Algorithms for combining rooted triplets into
a galled phylogenetic network. SIAM J. Comput. 35, 1098–1121. doi: 10.1137/
S0097539704446529

Kelk, S., and Scornavacca, C. (2014). Constructing minimal phylogenetic networks
from softwired clusters is fixed parameter tractable. Algorithm. 68 (4), 886–915.
doi: 10.1007/s00453-012-9708-5

Linz, S., and Semple, C. (2009). Hybridization in Nonbinary Trees. IEEE/ACM
Trans. Comput. Biol. Bioinf. 6 (1), 30–45. doi: 10.1109/TCBB.2008.86

Makarenkov, V., Kevorkov, D., and Legendre, P. (2006). Phylogenetic network
construction approaches. Appl. Mycol. Biotechnol. 6 (06), 61–97. doi: 10.1016/
S1874-5334(06)80006-7

Mirzaei S., and Wu, Y. (2016). Fast construction of near parsimonious hybridization
networks for multiple phylogenetic trees. IEEE/ACM Trans. Comput. Biol.
Bioinf. 13 (3), 1–1. doi: 10.1109/TCBB.2015.2462336

Nakhleh, L. (2011). Evolutionary Phylogenetic Networks: Models and Issues.The
Problem Solving Handbook for Computational Biology and Bioinformatics.
Springer, pp.125-158.doi: 10.1007/978-0-387-09760-2_7

Van Iersel, L., Kelk, S., Rupp, R., and Huson, D. (2010). Phylogenetic networks
do not need to be complex: using fewer reticulations to represent conflicting
clusters. Bioinformatics 26 (12), i124–i131. doi: 10.1093/bioinformatics/
btq202

Van Iersel, L., Kelk, S., and Stamoulis, G. (2017). On unrooted and root-uncertain
variants of several well-known phylogenetic network problems. Algorithm 80,
2993–3022. doi: 10.1007/s00453-017-0366-5

Vaughan, T. G. (2017). IcyTree: rapid browser-based visualization for phylogenetic
trees and networks. Bioinformatics 33 (15), 2392–2394. doi: 10.1093/bioinformatics/
btx155

Wang, J., Guo, M., Liu, X., Liu, Y., Wang, C., Xing, L., et al. (2013a). LNETWORK:
an efficient and effective method for constructing phylogenetic networks.
Bioinf. 29 (18), 2269–2276. doi: 10.1093/bioinformatics/btt378

Wang, J., Guo, M., Xing, L., Che, K., Liu, X., and Wang, C. (2013b). BIMLR:
a method for constructing rooted phylogenetic networks from rooted
phylogenetic trees. Gene 527 (1), 344–351. doi: 10.1016/j.gene.2013.06.036

Wu, Y. (2010). Close lower and upper bounds for the minimum reticulate network
of multiple phylogenetic trees. Bioinformatics 26 (12), i140–i148. doi: 10.1093/
bioinformatics/btq198

Yu, Y., and Nakhleh, L. (2015). A maximum pseudo-likelihood approach for
phylogenetic networks. BMC Genomics 16 (10), S10. doi: 10.1186/1471-2164-
16-S10-S10

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2019 Hong and Wang. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is permitted, provided the original
author(s) and the copyright owner(s) are credited and that the original publication
in this journal is cited, in accordance with accepted academic practice. No use,
distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Genetics | www.frontiersin.org December 2019 | Volume 10 | Article 1261

https://doi.org/10.1093/bioinformatics/btr618
https://doi.org/10.1093/bioinformatics/btr618
https://doi.org/10.1186/s12859-015-0660-7
https://doi.org/10.1177/117693430700300017
https://doi.org/10.1126/science.284.54232124
https://doi.org/10.1007/s11538-017-0381-3
https://doi.org/10.1007/s00285-016-1068-3
https://doi.org/10.1093/bioinformatics/btw467
https://doi.org/10.1093/bioinformatics/btw467
https://doi.org/10.1093/bioinformatics/bty594
https://doi.org/10.1089/cmb.20060137
https://doi.org/10.1016/j.dam.2005.05.044
https://doi.org/10.1007/s00453-015-0069-8
http://978-3-540-87361-7_25
https://doi.org/10.1093/gbe/evq077
https://doi.org/10.1093/bioinformatics/btp217
https://doi.org/10.1093/bioinformatics/btp217
https://doi.org/10.1186/1471-2105-8-460
http://doi.org/10.1109/TCBB.2009.22
https://doi.org/10.1137/S0097539704446529
https://doi.org/10.1137/S0097539704446529
https://doi.org/10.1007/s00453-012-9708-5
https://doi.org/10.1109/TCBB.2008.86
https://doi.org/10.1016/S1874-5334(06)80006-7
https://doi.org/10.1016/S1874-5334(06)80006-7
https://doi.org/10.1109/TCBB.2015.2462336
http://doi.org/10.1007/978-0-387-09760-2_7
http://doi.org/10.1093/bioinformatics/btq202
http://doi.org/10.1093/bioinformatics/btq202
http://doi.org/10.1007/s00453-017-0366-
https://doi.org/10.1093/bioinformatics/btx155
https://doi.org/10.1093/bioinformatics/btx155
http://doi.org/10.1093/bioinformatics/btt378
https://doi.org/10.1093/bioinformatics/btq198
https://doi.org/10.1093/bioinformatics/btq198
https://doi.org/10.1186/1471-2164-16-S10-S10
https://doi.org/10.1186/1471-2164-16-S10-S10
https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles

	Frin: An Efficient Method for Representing Genome Evolutionary History
	Introduction
	Preliminaries
	Related Knowledge
	Cass Algorithm

	Method
	Results
	Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	References

