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Six new phthalan derivatives cytorhizophins D-I (1-6) as well as three known derivatives
cytorhizophin C, pestacin and rhizophol B were isolated from Cytospora rhizophorae.
Among them, cytorhizophins D-E (1-2) and F-G (3-4) were two pairs of diastereoisomers,
all of them featuring a 1-phenyl-1,3-dihydroisobenzofuran scaffold with a highly
oxygenated O-linked isopentenyl unit. Besides, cytorhizophins H-I (5-6) represent the
first examples of phthalide family with fascinating 6/6/6/5 tetracyclic ring system fusing as
unprecedented furo [4,3,2-kl]xanthen-2 (10bH)-one skeleton. The structures of the new
phthalan derivatives were extensively confirmed by detail spectroscopic analysis. The
partial absolute configurations of compounds 1-6 were established through electronic
circular dichroism (ECD) calculations. Moreover, compounds 1-4 showed remarkable
antioxidant activities with EC50 values ranging from 5.86 to 26.80 μM, which were better
than or comparable to that of ascorbic acid (positive control).
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INTRODUCTION

The free radicals and reactive oxygen species (ROS) were highly reactive intermediates widely
existing in human body, which can react with human biomolecules including lipids, proteins, DNA,
etc, thus causing seriously detrimental health effects, such as neurodegenerative diseases,
atherosclerosis, liver cirrhosis, cataracts, diabetes, and cancer (Kang et al., 2007; López-
Alarcónand Denicola, 2013). With the aim to clear up the oxidative stress resulting by excess
amounts of ROS, numerous remarkable results have been reported in the past decades (Cerutti, 1985;
Halliwell, 1987; Breimer, 1990; Ding et al., 1999; Grisham et al., 2000; Aitken et al., 2012; Russell and
Cotter, 2015; El-Hawary et al., 2019; Kusio et al., 2020). Among them, antioxidant was respected as
one of the most efficient therapeutic strategies against human diseases related to oxidative damage by
ROS (Beckman et al., 1992; Taniguchi et al., 1993).

In the repertoire of pharmaceutical antioxidant discovery and achievements, natural products
exampled by astaxanthin, vitamins, as well as carotenoids have played extremely significant roles
(Quiñones, et al., 2012). Additionally, many attentions have been continuously paid to the discovery
of natural antioxidants. Consequently, more and more nature-originated antioxidants were emerged
and widely used in functional foods, pharmaceutical drugs, and industrial cosmetics (Mussard et al.,
2019; Wen et al., 2017). Polyphenols represent a characteristic family of natural-based organic
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compounds with strong antioxidant activities (Dao et al., 2020;
Bodoira and Maestri, 2020). Phthalans featured by a core
isobenzofuran skeleton were a typical class of phenols, which
have dramatically attractedmanymedicinal scientists attributable
to their affluent structure diversities, novel architecture
complexities, and significant pharmaceutical activities in recent
years (Naito and Kaneko, 1969; Strobel et al., 2002; Harper et al.,
2003; Kapoor et al., 2003; Fotso et al., 2008). Especially, the 1-
phenyl-phthalan moiety is frequently encountered in numerous
natural products and commercially available drugs or drug lead
compounds. Their fascinating biological activities and novel
structural features rendered them appealing targets for the
natural product and pharmaceutical communities.

As a part of our continuing program to discover
structurally unique natural products with significantly
biological potentials from the endophytic fungi (Liu et al.,
2017; Liu et al., 2019a; Liu H.-X. et al., 2019; Chen et al.,
2019), an endophytic fungus, Cytospora rhizophorae A761,
was obtained from the stem of Gynochthodes officinalis
(F.C.How) Razafim. and B. Bremer (basionym: Morinda
officinalis). The chemical investigation on the liquid
culture of C. rhizophorae has resulted in the successful
purification of six novel polyphenolic natural products

cytorhizophins D-I (1-6) as well as three known
derivatives cytorhizophin C (7) (Liu et al., 2019c), pestacin
(8) (Harper et al., 2003) and rhizophol B (9) (Liu et al., 2019c)
(Figure 1). Cytorhizophins D-E (1-2) and F-G (3-4) were two
pairs of diastereoisomers, all of them featured a 1-phenyl-1,3-
dihydroisobenzofuran scaffold with a highly oxygenated
isopentenyl unit. Cytorhizophins H-I (5-6) represent the
first examples of phthalide family with a fascinating 6/6/6/
5 tetracyclic ring system fusing as unprecedented furo [4,3,2-
kl]xanthen-2 (10bH)-one skeleton. Herein, the details of the
extraction, purification, structure elucidation, and
antioxidant activity of cytorhizophins D-I were described.

MATERIALS AND METHODS

General Experimental Procedures
The general experimental procedures were described in
supporting information.

Fungal Material
The information of fungal material used in this study were
identical to that of the previous descriptions (Liu et al., 2019a).

FIGURE 1 | Structures of compounds 1-9.
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Extraction and Isolation
The strain Cytospora rhizophorae A761 was kept for 7 days at
28°C and 120 r/m on a rotary shaker in 150 flasks (1,000 ml)
containing 500 ml of potato dextrose broth (potato 20%, glucose
2%, K2HPO4 0.3%, MgSO4•7H2O 0.15%, vitamin B 10 mg/L).
The fermented broth (75 L) was filtered through cheesecloth to
give the broth and mycelia. The fermented broth were subjected
to macroporous resin D101 column with ethanol as eluent. The
EtOH fraction was concentrated under a vacuum to yield a dark
brown gum (37 g). The crude extract was subjected to reversed-
phase silica gel C18 using step gradient elution with MeOH/H2O,
60%→100% to afford six fractions (Fr.): Fr.1-Fr.6.

Then, Fr. 2 (8.92 g) was separated by silica gel flash CC
(n-hexane/EtOAc, 20:1→1:1, v/v) to give nine subfractions
(Fr.2-1 to Fr.2-9). Fr.2-5 (166.2 mg) was subjected to CC on
Sephadex LH-20 (CH2Cl2/MeOH, 1:1, v/v) to give four sub-
fractions (Fr. 2-5-1 to Fr. 2-5-4). Fr. 2-5-4 was further purified by
silica gel flash column chromatography (n-hexane/EtOAc, 10:
1→1:1, v/v) to give 8 (9.0 mg). Fr.2-7 (3.07 g) was subjected to CC
on Sephadex LH-20 (CH2Cl2/MeOH, 1:1, v/v) to give ten sub-
fractions (Fr. 2-7-1 to Fr. 2-7-10). Fr. 2-7-5 was purified by silica
gel flash column chromatography and further purified by
semipreparative HPLC (MeOH/H2O, 60:40, v/v, 3 ml/min) to
give 9 (5.0 mg). Fr. 2-7-6 was divided into five sub-fractions (Fr.2-
7-6-1 to Fr. 2-7-6-5) by silica gel flash column chromatography
(n-hexane/EtOAc, 10:1→1:1, v/v). Fr. 2-7-6-5 was further
separated by semipreparative HPLC (MeOH/H2O, 73:27, v/v,
3 ml/min) to give four sub-fractions (Fr. 2-7-6-5-1 to Fr. 2-7-6-5-
4). Fr. 2-7-6-5-2 (10 mg, tR = 8.3 min) was purified by
semipreparative HPLC equipped with a Chiralpak IC column
(n-hexane 95%/isopropyl alcohol, 7:3, 3 ml/min) to obtain 3
(5.0 mg, tR = 8.6 min) and 4 (2.5 mg, tR = 9.0 min).

Fr. Three was further purified by CC over reversed-phase silica
gel C18 (MeOH/H2O, 20%→100%) to give five subfractions (Fr.3-
1 to Fr.3-5). Fr.3-2 (2.0 g) was divided into seven sub-fractions
(Fr. 3-2-1 to Fr. 3-2-7) by Sephadex LH-20 (CH2Cl2/MeOH, 1:1,
v/v). Fr. 3-2-1 was further purified by repeated silica gel and semi-
preparative HPLC (ACN/H2O, 50:50, v/v, 3 ml/min) to obtain
compound 7 (2.0 mg, tR = 12.0 min). Fr. 3-2-2 was subjected by
silica gel CC (n-hexane/EtOAc, 5:1→1:2, v/v) to yield four sub-
fractions (Fr.3-2-2-1 to Fr. 3-2-2-4). Fr. 3-2-2-1 was purified by
semipreparative HPLC (MeOH/H2O, 60:40, v/v, 3 ml/min) to
give a mixture (10 mg, tR = 8.9 min). The mixture was further
separated by HPLC (Chiralpak IC column, n-hexane 95%/
isopropyl alcohol, 4:1, 3 ml/min) to obtain 2 (4.0 mg, tR =
20.8 min) and 1 (4.0 mg, tR = 25.1 min).

Fr.3-4 (1.3 g) was separated by silica gel flash CC (n-hexane/
EtOAc, 5:1→1:5, v/v) to yield twelve sub-fractions (Fr.3-3-1 to Fr.
3-3-12). Compound 5 (3.0 mg, tR = 14.0 min) was obtained from
Fr. 3-3-10 by semipreparative HPLC (MeOH/H2O, 60:40, v/v,
3 ml/min). Fr.3-4 (2.8 g) was separated by Sephadex LH-20
(CH2Cl2/MeOH, 1:1, v/v) to give seven sub-fractions (Fr. 3-4-
1 to Fr. 3-4-7). Fr. 3-4-4 was divided into four sub-fractions (Fr.3-
4-4-1 to Fr. 3-4-4-4) by silica gel flash CC (n-hexane/EtOAc, 2:
1→1:2, v/v). Fr. 3-4-4-2 was purified by HPLC (ACN/H2O, 55:45,
v/v, 2 ml/min) to yield compound 6 (4.0 mg, tR = 18.7 min).

Cytorhizophin D (1): yellow powder [α]25D = +34.0 (c 0.12,
MeOH); CD (MeOH, 0.4 mg/ml): 206 (−5.3), 214 (+40.5), 230
(+8.6), 247 (−18.2), 260 (+1.9), 288 (−2.3), 306 (−1.7) nm; UV
(MeOH) λmax (log ε) 213 (5.35), 311 (4.23) nm; IR ]max 3,230,
2,927, 1716, 1,616, 1,472, 1,015, 887, 794 cm−1. For 1H and 13C
NMR, see Table 1; HRESIMS: m/z 373.1285 [M + H]+ (calcd for
C20H21O7, 373.1282).

TABLE 1 | 1H (600 MHz) and13C (150 MHz) NMR data of 1 and 2 in CD3COCD3.

No 1 2

δH δC δH δC

1 6.38, d, 8.1 106.9, CHa 6.38, d, 8.1 106.8, CHa

2 6.98, t, 8.1 130.4, C 6.99, t, 8.1 130.4, C
3 6.38, d, 8.1 106.9, CHa 6.38, d, 8.1 106.8, CHa

4 157.9, C 157.9, C
5 108.4, C 108.3, C
6 157.9 C 157.9, C
7 7.12, s 75.7, CH 7.16, s 75.7, CH
8 111.9, C 112.0, C
9 152.0, C 151.9, C
10 141.2, C 141.0, C
11 142.7, C 142.7, C
12 6.74, s 117.4, CH 6.74, s 117.3, CH
13 145.1, C 145.3, C
14 171.7, C 171.1, C
15 2.31, s 17.9, CH3 2.28, s 17.9, CH3

1′ 82.2, C 81.6, C
2′ 3.13, dd, 4.2, 2.7 56.8, CH 3.17, dd, 4.2, 2.7 56.5, CH
3a′ 2.69, m 43.9, CH2 2.61, m 43.9, CH2

3b′ 2.55, dd, 4.2, 2.7 2.51, dd, 4.2, 2.7
4′ 1.20, s 23.7, CH3 1.22, s 22.1, CH3

5 1.14, s 21.0, CH3 1.17, s 21.9, CH3

aDetected by HMBC.

TABLE 2 | 1H (600 MHz) and13C (150 MHz) NMR data of 3 and 4 in CD3COCD3.

No 3 4

δH δC δH δC

1 6.40, d, 8.1 108.0, CH 6.40, d, 8.1 108.0, CH
2 6.96, t. 8.1 129.0, CH 6.96, t. 8.1 129.0, CH
3 6.40, d, 8.1 108.0, CH 6.40, d, 8.1 108.0, CH
4 156.0, C 156.0, C
5 112.2, C 112.2, C
6 156.0, C 156.0, C
7 6.78, br s 79.3 CH 6.79, br s 79.3 CH
8 125.0, C 125.0, C
9 147.5, C 147.5, C
10 140.6, C 140.6, C
11 133.9, C 133.9, C
12 6.51, s 117.4, CH 6.51, s 117.4, CH
13 135.4, C 135.4, C
14 5.52, dd, 12.2, 2.4 72.3, CH2 5.49, dd, 12.2, 2.3 72.3, CH2

14 5.10, dd, 12.2, 2.4 5.15, dd, 12.2, 2.3
15 2.21, s 16.8, CH3 2.21, s 16.7, CH3

1′ 80.3, C 80.3, C
2′ 3.16, dd, 4.5, 2.7 57.2, CH 3.17, dd, 4.5, 2.7 57.3, CH
3a′ 2.75, t, 4.5 44.0, CH2 2.76, t, 4.5 44.0, CH2

3b′ 2.70, dd, 4.5, 2.7 2.69, dd, 4.5, 2.7
4′ 1.27, s 23.3, CH3 1.27, s 23.2, CH3

5′ 1.19, s 21.7, CH3 1.18, s 21.6, CH3
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Cytorhizophin E (2): yellow powder [α]25D = −22.3 (c 0.02,
MeOH); CD (MeOH, 0.3 mg/ml): 206 (+3.8), 214 (−33.5), 231
(−5.3), 247 (+12.9), 262 (−2.3), 288 (+0.9), 308 (+0.6) nm; UV
(MeOH) λmax (log ε) 213 (5.33), 310 (4.26) nm; IR ]max 3,236, 2,926,
1715, 1,614, 1,470, 1,427, 1,268, 1,233, 1,198, 1,162, 1,017, 977, 903,
885, 795, 752, 739 cm−1. For 1H and 13C NMR, see Table 1;
HRESIMS: m/z 373.1281 [M + H]+ (calcd for C20H21O7; 373.1282).

Cytorhizophin F (3): yellow powder [α]25D = +127 (c 0.02,
MeOH); CD (MeOH, 0.15 mg/ml): 207 (+108.0), 238 (−2.4), 286
(−5.2) nm; UV (MeOH) λmax (log ε) 284 (4.15) nm; IR ]max 3,415,
2,953, 1,616, 1,597, 1,472, 1,285, 1,225, 1,140, 1,225, 1,015, 926,
887, 864, 826, 795, 753, 738 cm−1. For 1H and 13C NMR, see
Table 2; HRESIMS:m/z 359.1497 [M + H]+ (calcd for C20H23O6,
359.1489).

Cytorhizophin G (4): yellow powder [α]25D = ‒76 (c 0.08,
MeOH); CD (MeOH, 0.10 mg/ml): 207 (‒75.3), 238 (+2.7),
287 (+4.7) nm; UV (MeOH) λmax (log ε) 282 (4.07) nm; IR
]max 3,290, 1,616, 1,474, 1,472, 1,225, 1,015, 887, 795 cm−1.
For 1H and 13C NMR, see Table 2; HRESIMS: m/z 359.1493
[M + H]+ (calcd for C20H23O6, 359.1489).

Cytorhizophin H (5): pale yellow powder [α]25D = ‒117.5 (c
0.06, MeOH); CD (MeOH, 0.2 mg/ml): 202 (+42.2), 214 (−33.5),
235 (−4.2), 243 (−8.7) nm; UV (MeOH) λmax (log ε) 311 (4.01),
282 (3.90) nm; IR ]max 3,303, 2,828, 1715, 1,462, 1,423, 1,281,
1,236, 1,192, 1,144, 1,045, 1,011, 902, 786 cm−1. For 1H and 13C
NMR, see Table 3; HRESIMS: m/z 373.1285 [M + H]+ (calcd for
C20H21O7, 373.1282).

Cytorhizophin I (6): pale yellow powder [α]25D = ‒39.3 (c 0.02,
MeOH); CD (MeOH, 0.2 mg/ml): 200 (−38.5), 214 (−30.2), 237
(−3.3), 243 (+7.4) nm; UV (MeOH) λmax (log ε) 310 (3.87), 284
(3.84) nm; IR ]max 3,302, 1,472, 1,238, 1,016, 903, 677, 600, 592,
556 cm−1. For 1H and 13C NMR, see Table 3; HRESIMS: m/z
373.1284 [M + H]+ (calcd for C20H21O7, 373.1282).

DPPH Photometric Assay
The DPPH photometric assay were carried out according to our
previously established method (Zhong et al., 2020).

RESULTS AND DISCUSSION

Cytorhizophin D (1) was purified as a yellow powder, and the
molecular formula of 1 had been established as C20H20O7 by
HRESIMS with an obvious ion peak discovered at m/z 373.1285
([M + H]+, calcd for C20H21O7, 373.1282). The IR spectrum of 1
displayed prominent resonance bands at 3,230 and 1,716 cm−1,
clarifying the existence of hydroxy and carbonyl functionality.
The 1H NMR spectrum of 1 exhibited four downshifted protons
at δH 6.74 (1H, s, H-12), δH 6.98 (1H, t, J = 8.2 Hz, H-2), 6.38 (1H,
d, J = 8.2 Hz, H-1), and 6.38 (1H, d, J = 8.2 Hz, H-3), which were
responsive for two independent benzenoid rings. Moreover, the
signals for three methyl groups [δH 1.14 (3H, s), 1.20 (3H, s), 2.31
(3H, s)] signals were also observed in its 1H NMR spectrum.
Additionally, the 13C NMR data (Table 1) coupling with HSQC
data of 1 further identified 20 carbon signals, which could be
readily differentiated to three methyls, two methylenes, six
methines, as well as nine quaternary carbons with a carbonyl
moiety (δC 171.7).

Two spin systems of C-1/C-2/C-3 and C-2′/C-3′ were
successfully assigned by carefully analysis of the 1H-1H COSY
spectrum of 1 (Figure 2). As referring to the fragment C-1/C-2/
C-3, the critical HMBC correlative signals from H-1 to C-3 and
C-5, H-2 to C-4 and C-6 in conjunction with consideration of the
overlapping NMR data of C-1/C-3 as well as C-2/C-4 confirmed
the presence of a symmetric aromatic ring. Moreover, the
conclusive HMBC correlative signals from H3-15 to C-10, C-
11, and C-12 as well as H-12 to C-8, C-10 and C-14 revealed the
existence of the ring B. The linkage of rings A and B via C-7
methine was successfully verified by the unambiguous HMBC
correlations from H-7 to C-4, C-6, C-9, and C-13. The five-
membered lactone ring C was then established with the aid of the
conclusive HMBC correlations from the critical proton H-7 to C-
13 and C-14. Moreover, the key HMBC correlations from H-7 to

TABLE 3 | 1H (600 MHz) and13C (150 MHz) NMR data of 5 and 6 in CD3COCD3.

No 5 6

δH δC δH δC

1 6.76, d, 8.1 106.3, CH 6.62, d, 8.1 111.8, CH
2 7.07, t, 8.1 129.4, C 7.10, t, 8.1 130.1, C
3 6.38, d, 8.1 106.3, CH 6.47, d, 8.1 115.3, CH
4 156.5, C 156.5, C
5 113.1, C 111.6, C
6 158.3, C 160.5, C
7 7.28, s 76.0, CH 7.04, s 75.6, CH
8 141.0, C 141.5, C
9 144.8, C 143.5, C
10 151.2, C 151.3, C
11 142.5, C 142.6, C
12 6.71, s 118.2, CH 6.75, s 118.0, CH
13 111.0, C 111.5, C
14 171.3, C 171.3, C
15 2.24, s 19.0, CH3 2.27, s 18.0, CH3

1′a 4.70, dd, 12.4, 4.3 70.0, CH2 4.52, d, 11.8 79.9, CH2

1′b 4.26, dd, 12.4, 8.9 4.33, dd, 11.8, 5.0
2′ 3.89, dd, 8.8, 4.3 72.9, CH 4.16, t, 5.0 79.1, CH
3′ 86.0, C 84.3, C
4′ 1.44, s 28.3, CH3 1.35, s 21.5, CH3

5′ 1.38, s 18.5, CH3 1.25, s 22.5, CH3

FIGURE 2 | 1H-1H COSYs and key HMBCs of 1-4.
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C-9, and H-12 to C-14 concluded that the lactone ring C was
fused with the benzene ring B to construct the key phthalide core.

Furthermore, with the aid of the spin fragment C-2′/C-3′, a
highly oxygenated isopentyl unit was strongly suggested to
connect with the phthalide core through an ether bond in 1,
answering for the informative HMBC correlations from the
methyl protons H3-4′ to C-1′, C-2′ together with H3-5′ to C-
1′, C-2′. Moreover, there was an epoxy ring in the isopentyl unit,
which could be further concluded through the high-field shift of
C-2′ (δC 56.8) and C-3′ (δC 43.9) together with the molecular
formula. Because the lack of direct HMBC correlations from the
isopentyl unit and the ring B, the location of isopentyl moiety
could be readily assigned at C-10 position by comparing the
carbon resonance shifts of the C-9 (δC 152.0) and C-11 (δC 142.7)
along with the definitive NOESY correlations frommethyls H3-4′
and H3-5′ to H3-15. Consequentially, the planar structure of 1
was finally elucidated as outlined in Figure 1.

Cytorhizophin E (2) was obtained as a yellow powder and found
to possess a molecular formula of C20H20O7 based on the HRESIMS
ion peak at m/z 373.1281 [M + H]+, indicating eleven indices of
hydrogen deficiency. The IR spectrum of 2 was quite similar to that
of 1. The inspection of the NMR data (Table 1) of 2 with those of 1
demonstrated that 2 displayed close similarity with 1. The obvious
differences were the chemical shifts of the H-7 (δH 7.16 ppm for 1
versus 7.12 ppm for 2), H-15 (δH 2.31 ppm for 1 versus 2.28 ppm for
2), H-2′ (δH 3.13 ppm for 1 versus 3.17 ppm for 2), H-3′ (δH 2.69,
2.55 ppm for 1 versus 2.61, 2.51 ppm for 2), H3-4′ (δH 1.20 ppm for
1 versus 1.22 ppm for 2), and H3-5′ (δH 1.14 ppm for 1 versus
1.17 ppm for 2), which strongly concluded that the compounds 1
and 2 should be a pair of diastereoisomers.

To determine the absolute configuration of 1 and 2, the
experimental and TDDFT calculated circular dichroism (CD)

spectra at cam-b3lyp/def2svp level were performed. The
calculated ECD spectrum with 7R configuration showed very
excellent similarities to those of the experimental CD spectrum of
1 as shown in Figure 3. Thus, the absolute configuration at C-7 of
1 was rationally assigned as R. Moreover, the calculated ECD
Cotton effects of the 7S enantiomer were well agreement with
those in the experimental ECD spectrum of 2. Cytorhizophins D
(1) and E (2) possessed a couple of distant stereogenic centers at
C-7 and C-2′ positions, which made the establishment for the
absolute configuration of C-2′ to be challenged. The absolute
configuration of C-2′ was deducted as R as that of the co-isolated
compound rhizophol B, which was confirmed by X-ray
diffraction (Liu Z. et al., 2019). Therefore, the absolute
stereochemistries for 1 and 2 were clarified as 7R,2′R and 7S,2′R.

Cytorhizophin F (3) was also afforded as a yellow powder. The
molecular formula of 3 was confirmed as C20H22O6 by its
(+)-HRESIMS m/z 359.1497 [M + H]+. The 1D NMR
spectroscopic data of the natural product 3 showed a
collection of typical resonance signals responsive for a 1,2,3-
trisubstituted benzene ring and an isopentyl unit, which showed
very close similarity to the structure of 1. After a detail inspection
and interpretation of 1D NMR spectra of 3, it could readily
disclose that its planar structure should be closely similar to that
of 1, and the major difference between them was the absence of
carbonyl group in compound 3. This conclusion further
strengthened on the basis of the signals for the O-substituted
methylene [δC 72.3, δH 5.10 (dd, J = 2.4, 12.2 Hz), 5.22 (dd, J = 2.4,
12.2 Hz)] in 3 instead of a carbonyl functionality in 1. Moreover,
the informative HMBC correlative signals from H-7 to C-4, C-6,
C-9, C-13, and C-14 could further strengthen this deduction.
Thus, the planar structure of 3 was completely elucidated as
depicted in Figure 1.

FIGURE 3 | Experimental and calculated ECD spectra of 1 and 2.

FIGURE 4 | Experimental and calculated ECD spectra of 3 and 4.
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Cytorhizophin G (4) was obtained to be a yellow powder and
had same molecular formula with that of 3 as determined by its
HREIMS ion peak at m/z 359.1493 [M + H]+, revealing ten
degrees of unsaturation. Obviously, the 13C NMR spectroscopic
data and HSQC spectrum of 4 collectively suggested 20 carbon
signals, and all of them showed very similar chemical shifts to
those of 3. Their little differences between chemical shifts implied
that they shared the same planar structure. For compound 4, the
Cotton effects in the ECD spectrum were almost direct contrary
to those of 3, suggesting that 4 should share the opposite
configuration at C-7 position comparing with 3, attributed to
the slight contribution of C-2′ chiral center. The configuration of
chiral center for C-7 was further confirmed by ECD calculations
in Figure 4. The results showed that the theoretical ECD curve for
7R agreed with the experimental plot of 3, 7S was matched with
the experimental plot of 4. Therefore, the absolute configurations
of 3 and 4 were successfully established as 7R,2′R, 7S,2′R,
correspondingly.

Cytorhizophin H (5) was isolated as a pale yellow powder and
assigned an HRESIMS ion peak at m/z 373.1285 [M + H]+

(C20H21O7, calcd 373.1282), which perfectly agreed the
molecular formula of C20H20O7 and showed 11 degrees of
hydrogen deficiency. The 1H NMR spectrum of 5 exhibited
four aromatic protons [δH 7.28 (1H, s, H-12), 7.07 (1H, t, J =
8.1 Hz, H-2), 6.76 (1H, d, J = 8.1 Hz, H-1), 6.38 (1H, d, J = 8.1 Hz,
H-3)] as well as the characteristic proton resonance signals of
three methyls [δH 2.24 (3H, s, H3-15), 1.44 (3H, s, H3-4′), 1.38
(3H, s, H3-5′)].

Analysis of 1D as well as 2D NMR spectra including COSY,
HSQC, and HMBC could readily finish the preliminary
construction of the planar structure of 5 as shown in
Figure 5. Firstly, the obvious HMBC correlations from H-1 to
C-3 and C-5, H-2 to C-4 and C-6 along with the pivotal spin
system C-1/C-2/C-3 successfully evidenced the presence of a
1,2,3-trisubstituted aromatic ring A. Secondly, as referring to
the other spin system of C-1′/C-2′, the existence of a highly
oxygenated C-5 isopentyl unit was then verified with the aid of
the HMBC correlative signals from H3-4′ to C-2′ and C-3′, H3-5′
to C-2′ and C-3′. Moreover, the location of isopentyl
functionality had been assigned to attach at C-6 position in

the ring A through the C-1′-O-C-6 ether bond, attributable to
the decisive HMBC cross-peak from H-1′ to C-6. Additionally,
the resulting penta-substituted ring B was finally established and
clarified by the HMBC correlations from H-12 to C-8, C-10 and
C-14, H3-15 to C-10, C-11, and C-12. Taking the degrees of
unsaturation into account, the assignment of a benzopyran ring
between C-4 and C-9 via a fused oxygen bridge was eventually
verified. Moreover, the asymmetrical 1H and 13C NMR signals for
the typical trisubstituted aromatic ring C further strengthened the
conclusion. Therefore, the planar structure of 5 was determined
and established to possess a fascinating 6/6/6/5 tetracyclic ring
system fusing as unusual furo [4,3,2-kl]xanthen-2 (10bH)-one
skeleton and showed in Figure 1.

Cytorhizophin I (6) was separated as a pale yellow powder and
assigned an HRESIMS ion peak at m/z 373.1285 [M + H]+ (calcd
for C20H21O7, 373.1282), which perfectly agreed with the
molecular formula of C20H20O7 and showed 11 degrees of
hydrogen deficiency. The 1H NMR spectrum of 6 exhibited
four aromatic protons [δH 6.75 (1H, s, H-10), 7.10 (1H, t, J =
8.1 Hz, H-2), 6.62 (1H, d, J = 8.1 Hz, H-1), and 6.47 (1H, d, J = 8.1
Hz, H-3)], suggesting the existence of two phenyl rings.
Interestingly, close comparison of the NMR data of
compounds 5 and 6 as shown in Table 3 indicated that these
two compounds ought to share a significantly similar core
structure. The further HMBC correlations analysis collectively
pointed to that the compounds 5 and 6 were a pair of
diastereoisomers.

The natural products 5 and 6 possessed two distant
stereocenters C-7 and C-2′. In order to establish their
absolute configurations of diastereoisomers 5 and 6, the
effort towards theoretical ECD calculation at b3lyp/6-311
+ g (d,p) level were performed. The results revealed that the

FIGURE 5 | Key 1H-1H COSY, and HMBC correlations of 5 and 6.

FIGURE 6 | Experimental and calculated ECD spectra of 5 and 6.
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theoretical ECD plots of 7S and 7R matched with the
experimental spectra of 5 and 6, respectively, which
allowed to establish the absolute configurations of 7S for 5
and 7R for 6 (Figure 6). Unsatisfactorily, the absolute
configuration for C-2′ was failed to be assigned by the little
amount and the lack of CD contribution.

Due to the structural novelty cytorhizophins H-I (5-6)
with fascinating 6/6/6/5 tetracyclic furo [4,3,2-kl]xanthen-2
(10bH)-one skeletons, their biogenetic pathways were
proposed as shown in Scheme 1. Cytorhizophins H-I (5-6)

were bio-originated from the monodictyphenone (7), the
following selective oxidation, reduction, and
hemiacetalization transformations would result the critical
intermediate i, which underwent selective oxidative
lactonization and dehydrated to generate the key
precursors ii and iii, respectively. Then, the selective
prenylation of iii further gave rise to cytorhizophins H-I
(5-6).

The characteristic of polyhydroxy groups in these new
compounds logically suggested that they might possess
antioxidant activity. The further experimental testing
confirmed that compounds 1-6 indeed showed significant
antioxidant activity as evaluated by DPPH (2,2-diphenyl-1-
picrylhydrazyl) scavenging assay and described in the
Experimental part (Coteele et al., 1996; Mensor et al., 2001).
Compounds 1-4 showed remarkable DPPH radical scavenging
activities with EC50 values ranging from 5.86 to 26.80 μM, which
are better than that of the positive control ascorbic acid (EC50 of
25.53 μM). Compounds 5 and 6 were found to be weak DPPH
scavengers at a concentration of 100 μM (Table 4). From a
comparison of the structures of compounds 1-4 with
compounds 5 and 6, it could be readily found that the
opening of the middle ring might play the predominant roles
in enhancing their DPPH scavenging capacity.

SCHEME 1 | Plausible Biosynthetic Pathways of 5 and 6.

TABLE 4 | Antioxidant activities of compounds 1-6.

Compounds EC50 (μM)a

DPPH radical scavenging

1 17.39 ± 0.94
2 26.80 ± 0.62
3 5.86 ± 0.71
4 7.72 ± 0.36
5 >100
6 >100
Ascorbic acid 25.53 ± 0.21

aEC50 is defined as the concentration sufficient to obtain 50% of a maximum effect
estimate in 100%, Values are expressed as the mean ± SD.
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CONCLUSION

The chemical research on the endophytic fungus Cytospora
rhizophorae has disclosed a new range of antioxidative
ingredients, involving six novel phthalan derivatives named as
cytorhizophins D-I (1-6). Among them, cytorhizophins D-E (1-
2) and F-G (3-4) were two pairs of diastereoisomers, and all of
them featuring a 1-phenyl-1,3-dihydroisobenzofuran scaffold
with a highly oxygenated O-linked isopentenyl unit; whereas
cytorhizophins H-I (5-6) represent the first examples of
phthalide family with a fascinating 6/6/6/5 tetracyclic ring
system fusing as unprecedented furo [4,3,2-kl]xanthen-2
(10bH)-one skeleton. Compounds 1-4 showed significant
DPPH radical scavenging activities with EC50 values ranging
from 5.86 to 26.80 μM, which are much better than that of the
positive control ascorbic acid (EC50 of 25.53 μM). Therefore,
the preliminary results revealed that cytorhizophins D-G
might be served as promising lead compounds for the
development of bio-available potent anti-oxidant drugs. The
detailed potential mechanisms to explain the antioxidant
action of these compounds is now underway and will be
reported in due course.
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