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Abstract

Resistance to regulated cell death is one of the hallmarks of human cancers; it maintains cell survival and significantly
limits the effectiveness of conventional drug therapy. Leukemia represents a class of hematologic malignancies that is
characterized by dysregulation of cell death pathways and treatment-related resistance. As the majority of
chemotherapeutic and targeted drugs kill leukemia cells by triggering apoptosis, the observed resistance indicates
the need for novel therapeutic strategies to reactivate nonapoptotic cell death programs in refractory leukemia.
Necroptosis is a regulated form of necrosis that is precisely modulated by intracellular signaling pathways and
thus provides potential molecular targets for rational therapeutic intervention. Indeed, accumulating evidence
indicates that many current antitumor agents can activate necroptotic pathways and thereby induce leukemia
cell death. Elucidation of the complete regulatory mechanism of necroptosis is expected to accelerate the
development of novel therapeutic strategies for overcoming apoptosis resistance in leukemia. Here, we review
the latest research advances in the regulatory mechanisms of necroptosis and summarize the progression of
necroptosis-based therapeutic strategies in leukemia.
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Background
A delicate balance between cell proliferation and death is
essential for maintaining the normal physiological func-
tion of organisms. Dysregulation of regulated cell death
(RCD) contributes to a number of human diseases, includ-
ing cancer. During tumorigenesis, neoplastic cells become
resistant to RCD, which results in unlimited cell growth
and the acquisition of additional oncogenic mutations
[1, 2]. Recently, induction of cell death has been consid-
ered the most important mechanism of various antitumor
agents. Thus, targeting cell death signaling is an attractive
strategy for developing novel anticancer therapies [3].

In recent years, major developments have been made
in the identification and characterization of cell death
programs, and various forms of RCD, including apop-
tosis, autophagy and necroptosis, have been discovered
and evaluated. Apoptosis is the first identified and
best-studied form of RCD, and analyses of this process
have led to the development of multiple anticancer
drugs that reactivate apoptosis to kill tumor cells, in-
cluding leukemia cells [4, 5]. However, inducing apop-
tosis by various antitumor agents is often limited by
therapeutic resistance due to the impairment or defi-
ciency of apoptotic pathways [6]. Thus, identification of
more thoughtful therapies that target alternative forms
of RCD is the main focus in cancer research.
Necrosis was previously considered to be a random

and passive process that required no specific molecular
events. However, a regulated type of necrosis (so-called
necroptosis) was recently discovered via identification of
chemical inhibitors of necrotic cell death (necrostatins),
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which underlines its regulated nature [7, 8]. Receptor-
interacting protein kinase 1 (RIPK1) is a critical regula-
tor of necroptosis. RIPK3 acts as a downstream mediator
of RIPK1 [9], and mixed lineage kinase domain-like
(MLKL) is regarded as the key player in necroptosis
execution [10].
Leukemia refers to a variety of malignant clonal dis-

eases of hematopoietic stem cells that can induce death
and is one of the top ten most dangerous causes of mor-
tality for human beings [6]. In recent years, the survival
rates of leukemia have significantly improved due to the
development of individual chemotherapy and bio-
logical targeted therapy. However, the increasing rate
of treatment-related resistance in leukemia remains a
major challenge for researchers [11]. Given the rising
significance of necroptosis in cancer, a better under-
standing of its detailed regulatory mechanisms is
needed for the development of drugs to trigger
necroptosis in leukemia cells, especially those with
apoptosis resistance. A review of necroptosis and its
relevance in leukemia is therefore urgently needed. In
this review, we will discuss the regulatory mechanism
of necroptosis in detail. We will also summarize the
research progress made in induction of necroptosis in
leukemia cells.

Main text
Mechanisms and regulation of necroptosis
Characteristics of necroptosis
Necroptosis is a novel characterized form of cell death
that has several distinctive characteristics compared to
other types of cell death, particularly apoptosis. Necrop-
tosis is also called “programed necrosis” and shares some
morphological features with necrosis, including early
loss of plasma membrane integrity, translucent cytosol,
increased cell volume and swollen organelles [9, 12].
Unlike necroptotic cells, apoptotic cells lack these fea-
tures and are characterized by plasma membrane bleb-
bing, cell shrinkage, chromatin condensation, cleavage of
chromosomal DNA and formation of apoptotic bodies
without rupture of the plasma membrane (Fig. 1)
[13, 14]. At the biochemical level, apoptosis requires
caspase activation and is mediated by the interplay
of Bcl-2 family proteins or activation of death receptors.
Apoptosis can be blocked by pan-caspase inhibitors (e.g.,
zVAD-fmk) or expression of viral inhibitors of caspases
(e.g., CrmA) [13, 14]. Necroptosis is caspase-independent
and controlled by RIPK1, RIPK3 and MLKL, which can be
blocked by various specific small molecule inhibitors
(Fig. 1) [7, 8, 15]. Another key feature of necroptotic
cells is the release of damage-associated molecular
patterns (DAMPs) and cytokines/chemokines due to
the permeabilization of the plasma membrane, which
can subsequently trigger robust inflammation and an

immune response [16, 17]. In contrast, apoptotic cells
and/or apoptotic bodies are engulfed and then dissolved
via phagocytosis by antigen-presenting cells (APCs) or by
neighboring cells [18], which do not typically induce a
strong immune response (Fig. 1) [8].
Despite these distinctive features, the molecular mech-

anism of necroptosis is believed to be closely related to
other forms of cell demise (e.g., apoptosis and autoph-
agy) [19], which prompted us to explore the regulation
and relative contributions of different cell death modes.
Apoptosis and necroptosis share several upstream sig-
naling elements [20]. Therefore, how does a cell decide
whether to undergo apoptosis or necroptosis? Current
views suggest that the choice of cell death is determined
by a variety of factors, including stimuli, cell type, gen-
etic background and the intracellular environment. Usu-
ally, apoptosis is the preferred mode of death for cells,
and necroptosis functions as an alternative mechanism
to eliminate stressed cells or infected cells that fail to
undergo apoptosis [21]. However, necroptosis can also
play a dominant role under certain circumstances, such
as abnormal metabolism, genetic mutations, viral infec-
tion and exposure to some cytotoxic antitumor drugs
[22–24]. More often, it is a continuous process from
apoptosis to necroptosis [25, 26]. Intensified death sig-
nals and increased stress levels can switch cell death
from apoptosis to necroptosis [27]. Autophagy is a lyso-
somal degradation system that engulfs the cytoplasm
and organelles for cellular renovation and homeostasis,
and it may also participate in crosstalk with necroptosis
[19]. Sometimes, autophagy can serve as a scaffold or
pivotal site to mediate the formation of necrosome com-
plexes, which finally lead to MLKL phosphorylation and
cell necroptosis stimulation [27, 28]. The interrelation-
ship between necroptosis and other cell death pathways
is complicated and should be further explored.

Triggers of necroptosis
Various stimuli can lead to the initiation of necroptosis
[20]. Ligand-receptor interactions are extrinsic pathways
for the initiation of necroptosis. Recent studies have
shown that necroptosis can be induced by the engage-
ment of death receptors (DRs) in the TNF superfamily,
including TNF receptor-1 (TNFR1), FAS (also known as
CD95 or APO-1), TNF-related apoptosis-inducing ligand
receptor 1 (TRAILR1, also known as DR4), and TRAILR2
(also known as DR5, APO-2, TRICK or KILLER). These
receptors trigger necroptosis via their common cytoplas-
mic death domains (DDs) [23, 29]. In addition to DRs,
other types of stimuli, including engagement of Toll-like
receptors 3 and 4 (TLR3, TLR4) by lipopolysaccharides
(LPS), pathogen-derived double-stranded DNA/RNA
(dsDNA/RNA), T-cell receptor stimulation, type I and
type II interferons (IFNs), virus infection via the z-DNA
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sensor DNA-dependent activator of IFN regulatory factors
(DAI) and genotoxic stress, can trigger necroptosis
[23, 30–33]. Several other types of stimuli, including
retinoic acid-inducible gene I (RIG-I), mitochondrial
antiviral signaling protein (MAVS), DAMPs, protein
kinase R (PKR) complexes, nucleotide-binding and
oligomerization domain (NOD)-like receptors (NLRs)
and some antitumor agents, also result in necroptosis
[34, 35]. These triggers are considered to individually
or jointly induce necroptosis in complicated physio-
logical or pathological conditions. It is beyond the
scope of this review to list all the stimuli related to
necroptosis from the current literature; therefore, we
summarize the above triggers, which are most likely
important in necroptosis induction.

Initiation of necroptosis: necrosome formation

Canonical necrosomes One of the most extensively
studied and best-characterized signaling mechanisms of
necroptosis is the binding of TNF-α to TNFR1, which
subsequently recruits a series of intracellular proteins to
form complexes involved in proinflammatory and survival

signaling (complex I), apoptosis (complex II) and necrop-
tosis (necrosome) [8, 36, 37]. Notably, apoptosis pathway
inactivity or deficiency (e.g., when caspase-8 or apoptosis
inhibitors [IAPs] are downregulated or inhibited) must
prevail for TNFR1-mediated necroptosis to ensue [38].
Under certain conditions, such as infection or tissue

impairment, TNF-α binds to and stimulates TNFR1
through the preligand assembly domain of the extracel-
lular portion of TNFR1 and then triggers its trimeriza-
tion [39]. Upon activation, TNFR1 can recruit diverse
intracellular proteins and induce the formation of a
membrane-bound complex called complex I. Complex I
consists of TNF-α receptor associated death domain
(TRADD), E3 ubiquitin ligases TNF-α receptor associate
factor 1, 2 and 5 (TRAF1, 2, 5), cellular inhibitor of
apoptosis protein-1 and -2 (cIAP1/2) and RIPK1 (Fig. 2)
[40–42]. In this complex, RIPK1 is polyubiquitinated by
the ubiquitin ligase cIAP1/2 and other E3 ubiquitin li-
gases, and the polyubiquitin chain contributes to the re-
cruitment of a number of proteins, such as transforming
growth factor β-activated kinase 1 (TAK1), transforming
growth factor β-activated kinase binding protein 2 and 3
(TAB2, 3), nuclear factor kappa B essential modulator

Fig. 1 Schematic diagram describing the morphological and biochemical differences between apoptosis and necroptosis. Apoptotic cells are
characterized by plasma membrane blebbing, cell shrinkage, organelle fragmentation, chromatin condensation, cleavage of chromosomal DNA
and the formation of apoptotic bodies without rupture of the plasma membrane, and apoptotic cells show low emission of DAMPs. Necroptotic
cells share some morphological features to apoptotic cells, resembling necrosis including cell swelling, plasma membrane rupture, translucent
cytosol, and organelle dilation, and necroptotic cells are associated with the abundant release of DAMPs. At the biochemical level, apoptosis and
necroptosis have different intracellular molecular mechanisms as described, and they can be specifically blocked by various types of inhibitors
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(NEMO), and IkB kinase α/β (IKKα/β), and subsequently
facilitates the nuclear factor κB (NF-κB) cell survival
pathways [43–45] (Fig. 2). This change drives the expres-
sion of downstream proteins directly involved in apop-
tosis inhibition, such as B-cell lymphoma 2 (Bcl-2)
family members, the caspase-8 inhibitor FLICE-like in-
hibitory proteins (cFLIP) and cIAPs [46–48]. cFLIP, a
catalytically inactive homolog of caspase-8, was reported
to be an important regulator of apoptosis and necroptosis
[49]. The long cFLIP isoform (cFLIPL) binds to pro-cas-
pase-8 and forms the caspase-8/cFLIPL heterodimer (Fig.
2). For this reason, cFLIPL reduces oligomerization of
caspase-8 at FADD and finally inhibits apoptosis, but the
caspase-8 still maintains sufficient proteolytic activity
[50, 51]. Meanwhile, the heterodimer causes the cleavage

of the necroptosis core regulators RIPK1 and RIPK3, thus
inhibiting necroptosis [52, 53]. Therefore, the absence of
cFLIPL can induce caspase-dependent apoptosis or
caspase-independent necroptosis. However, another short
type of cFLIP isoform (cFLIPS) can combine with and in-
activate caspase-8, which allows the activation of RIPK1/3
and thus leads to necroptosis (Fig. 2) [54]. Therefore, we
believe that ubiquitylated RIPK1 can prevent cell death via
activating survival pathways. Hence, complex I is a crucial
checkpoint for cell survival and death. More recently, an
additional transcription-independent checkpoint has been
shown to modulate the contribution of RIPK1 to cell
demise. RIPK1 phosphorylation by IKKα/β in complex
I prevents RIPK1 kinase-dependent formation of the
death complex [55]. RIPK1 is also a direct substrate

Fig. 2 A schematic overview of the molecular signaling pathways involved in necroptosis. Upon TNF-α stimulation, activated TNFR1 recruits various
downstream proteins, including RIPK1, to form prosurvival complex I, resulting in RIPK1 polyubiquitination and subsequently facilitating NF-κB
signaling to prevent cell death (see text). Phosphorylation of RIPK1 by MK2 can also limit RIPK1 activation and the subsequent assembly
of the death complex through the IKKα/β independent way. Inhibition of cIAPs (by Smac or Smac mimetics) leads to CYLD-mediated
deubiquitination of RIPK1 and its dissociation from TNFR1, resulting in the formation of different prodeath complexes (complex IIa, IIb and the
necrosome). Complex IIa contains TRADD and can be formed independently of the scaffold and kinase function of RIPK1. In contrast, complex IIb lacks
TRADD and requires RIPK1 kinase activity for cell death induction. Complex IIa and IIb activate caspase-8, leading to apoptotic cell death. If caspase-8
activity is blocked, RIPK1 will bind to RIPK3 to form necrosomes and promote RIPK3 autophosphorylation and activation. Activated RIPK3 is currently
known to function via at least two downstream effectors: MLKL and CaMKII, which are effector molecules leading to necroptosis through multiple
mechanisms. Other stimuli, including FasL, TRAIL, CD3/CD28, LPS, dsDNA/RNA and IFNs, can stimulate their corresponding receptors to
activate necrosomes to promote necroptosis. Infection with some viruses directly activates RIPK3 through DAI, TIRF or ICP6. Anticancer
agents, genotoxic stress and some other factors can also trigger RIPK1/RIPK3-dependent necroptosis. Necroptosis is inhibited experimentally by
specific inhibitors of RIPK1, RIPK3 and MLKL, as shown above
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of MAPK-activated protein kinase 2 (MK2). Phosphoryl-
ation of RIPK1 by MK2 can limit cytosolic activation of
RIPK1 and the subsequent assembly of the death complex
that drives RIPK1-dependent apoptosis and necroptosis,
representing a mechanism that is distinct from the regula-
tory function of RIPK1 mediated by IKKα/β [56–58].
The degradation of cIAPs caused by second

mitochondria-derived activator of caspases (Smac) or
synthetic Smac-mimetics [47, 59–61] can reduce RIPK1
ubiquitination via deubiquitinase enzymes such as cylin-
dromatosis (CYLD), resulting in RIPK1 dissociation
from the plasma membrane and its conversion from a
prosurvival into a pro-death protein [62, 63]. RIPK1
deubiquitination leads to the suppression of NF-κB and
reduction of cFLIP and simultaneously promotes the for-
mation of the cytosolic pro-cell death complex (complex
II, also called ‘ripoptosome’) (Fig. 2) [54, 55]. Different
types of complex II can be distinguished (IIa and IIb),
depending on the composition and activity of the pro-
teins therein. Complex IIa is formed after dissociation of
TRADD from TNFR1 and results in the recruitment of
downstream RIPK1, FAS-associated death domain pro-
tein (FADD) and pro-caspase-8, leading to caspase-8
activation. The activated caspase-8 then cleaves and in-
activates RIPK1/RIPK3 and subsequently induces a type
of RIPK1-independent apoptosis (Fig. 2) [8, 52, 54, 64, 65].
In conditions where cIAPs, TAK1, NEMO, and IKKα/β
are inhibited or absent, a similar complex (complex IIb) is
formed without TRADD (Fig. 2), where RIPK1 kinase ac-
tivity is required for caspase-8 activation and promotes
RIPK1 kinase activity-dependent apoptosis [66–69]. In
some cell types or conditions, the levels of RIPK3 and
MLKL are sufficiently high; caspase-8 activity is reduced,
blocked or absent; and RIPK1 in complex II will recruit
RIPK3. Then, a series of auto- and cross-phosphorylation
reactions occur between RIPK1 and RIPK3 through their
respective homotypic interaction motif (RHIM) domains,
evolving to form a functional signaling complex called the
necrosome [65, 70]. In necrosomes, activated RIPK3 re-
cruits and phosphorylates the downstream pseudokinase
MLKL, stimulating its oligomerization and translocation
to the plasma membrane to trigger necroptosis (Fig. 2)
[10, 71, 72]. The complex interaction between these cellu-
lar conditions forms the basis for either allowing or pre-
venting the execution of necroptosis. The successful
initiation of necroptosis via TNF-α/TNFR1 signaling is
often based on the downregulation or inhibition of cIAPs
and caspase-8 [72–74].

Noncanonical necrosomes In classical necroptosis,
necrosomes are formed via the RIPK1-RIPK3 activation
model through the RHIM domain. Phosphorylation of
RIPK1 and RIPK3 at

the kinase domain induces RHIM-mediated interac-
tions, which result in the formation of amyloid-like fila-
mentous signaling complexes [65, 70, 75] and culminate
with necroptosis. In addition to RIPK1/3, other proteins
such as TRIF (TIR-domain-containing adapter-inducing
interferon-β; also known as TICAM1, TIR domain-con-
taining adapter molecule 1), DAI (DNA activator of
interferon; also known as ZBP1, Z-DNA binding protein
1) and ICP6 (viral ribonucleotide reductase large subunit)
also have RHIM domains. These RHIM domain-contain-
ing proteins may function as a platform allowing RIPK3
oligomerization, autophosphorylation and activation
through a RIPK1-independent mechanism that often in-
volves an RHIM-RHIM interaction (Fig. 2) [30, 76–79].
Hence, they can form the necrosome, which is considered
a noncanonical necrosome. For example, upon cyto-
megalovirus (CMV) infection in some cell types, DAI can
activate RIPK3 directly via an RHIM-RHIM interaction
but does not involve RIPK1 kinase activity [80]. After her-
pes simplex virus 1 (HSV-1) infection, the viral protein
ICP6 interacts with RIP3 through a RHIM-RHIM inter-
action to trigger necroptosis and host defense, which do
not require RIPK1 [79, 81]. Similarly, TLR3 and TLR4 ini-
tiate RIPK1-independent necroptosis mediated by the
TRIF adaptor through the formation of the so-called
TRIF-RIPK3 necrosome [30, 76]. Thus far, it is unclear
how exactly RIPK3 is activated downstream of these
RHIM domain-containing proteins. TRIF is an adapter
that responds to the activation of TLRs, such as RIPK1
and RIPK3, and it is also a cleavage substrate for
caspase-8. Recent studies have shown that inhibition of
RIPK1 does not affect TLR3-mediated necroptosis. Unlike
RIPK1, TRIF does not have kinase activity, indicating that
the mechanism by which TRIF stimulates RIPK3 is differ-
ent from the RIPK1-mediated RIPK3 activation [30].
Wang X et al. demonstrated that HSV-1 with an ICP6 de-
letion failed to induce effective necroptosis in infected
cells. Furthermore, ectopic expression of ICP6, but not
RHIM mutant ICP6, directly activated RIPK3/MLKL-me-
diated necroptosis [79]. Other studies have revealed that
the perinatal lethality of RHIM-deficient RIPK1 knock-in
mice can be rescued by DAI deficiency, which will prevent
DAI/RIPK3/MLKL-dependent necroptosis during devel-
opment. These findings indirectly proved that DAI will
bind and activate RIPK3 to form a DAI-RIPK3 necrosome,
which will participate in nonclassic necroptosis [82, 83].

Execution of necroptosis: MLKL activation
Recent studies have identified the pseudokinase MLKL as
a major executioner of necroptosis [10]. Following
stabilization of the RIPK1-RIPK3 complex, MLKL is re-
cruited to form a functional necrosome [10, 72, 84].
Normally, MLKL remains inactive as a monomer in the
cytosol [72]. Once the necrosome forms, the activated
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RIPK3 recruits and phosphorylates the downstream
MLKL at Ser345, Ser347, Ser358 and Thr357 and the
mouse MLKL at Ser352 and Thr349 within the MLKL ac-
tivation loop [10, 72, 85], which results in an open con-
formational shift of MLKL and exposure of its four-helical
bundle domain [10, 86]. Destabilization of the structure
promotes MLKL oligomerization, resulting in the trans-
location of the MLKL oligomer from the cytosol to the
plasma membranes (as well as to intracellular mem-
branes), where it compromises the membrane integrity to
promote necroptotic death (Fig. 2) [87–89]. Several hy-
potheses have been proposed to explain the mechanism of
MLKL oligomer targeting to the cellular membrane and
induction of cell death. Some have suggested that the
MLKL oligomer can directly form a pore in the plasma
membrane after binding to negatively charged phospho-
lipids, subsequently causing necrotic membrane disrup-
tion. Lipids play a crucial role in MLKL membrane
targeting. Phosphorylated MLKL forms an oligomer that
can interact with phosphatidylinositol phosphates (PIPs,
mostly including PI[5]P and PI[4,5]P2) on the inner sur-
face of the plasma membrane through a low affinity site in
its N-terminal bundle domain [88, 89]. This process may
result in different modes of membrane permeabilization
(including carpet, barrel stave and toroidal) [90]. Interest-
ingly, necroptosis can be blocked by interfering with the
formation of PI(5)P or PI(4,5)P2 [88]. The relocalization of
MLKL oligomers to the plasma membrane also induces
ion-pore dysregulation (including Na+ and Ca2+ influx)
through association with ion channels, which accelerates
membrane permeabilization and damage due to the in-
crease in intracellular osmotic pressure and nanopore
formation in the plasma membrane (Fig. 2) [91–94]. Alter-
natively, RIPK3 can activate Ca2+-calmodulin-dependent
protein kinase II (CaMKII) independently of MLKL,
which in turn induces an ion influx by activating multiple
ion channels (Fig. 2) [95]. Nonetheless, it is still unclear
whether the observed ion influx is a consequence or the
cause of necroptotic cell death [76].
MLKL oligomers also target the mitochondrial mem-

brane and induce mitochondrial permeability transition
(MPT) alteration, which can subsequently cause mito-
chondrial disruption [96]. Mitochondrial disruption in-
duces ATP depletion and excessive reactive oxygen
species (ROS) production to contribute to cell death
[97]. ROS are an important effector during necroptotic
cell death and can kill cells in a positive feedback loop
[12, 96, 98]. Although we have listed various execution
mechanisms downstream of necrosomes, the full
necroptotic cell death process remains to be elucidated.

Necroptosis and inflammation: DAMPs release
Necroptosis is closely associated with inflammation. The
final stage of cell necroptosis, known as propagation,

can lead to robust inflammation mainly through massive
release of intracellular contents [17]. The majority of
these cellular components are collectively described as
DAMPs (Fig. 2) [99]. In contrast, apoptosis is generally
nonimmunogenic because of plasma membrane shrink-
age and orderly intracellular content disassembly, which
results in nearly no release of DAMPs [16, 17]. DAMPs
represent a collection of cellular components and mole-
cules that are exposed or released by dying, injured or
stressed cells, which act as a key contributor to trigger-
ing the inflammatory response. Generally, DAMPs in-
clude cytokines and alarmins that are released mainly by
dying cells, such as the interleukin-1 family cytokines
and S100 proteins. Additionally, several cellular compo-
nents that are originally functional and nonimmunologi-
cal can be released by damaged cells to act as DAMPs.
These include histones and HMGB (high-mobility group
protein) family members, DNA and RNA outside of nu-
clei or mitochondria, ribonucleoproteins, heat-shock
proteins, purine metabolites, F-actin, calreticulin, etc.
[17, 99, 100]. The release of DAMPs from the disinte-
grating cells suffering necroptosis is generally believed to
be the primary mechanism of the inflammatory response
mediated by MLKL-necrosome activation and MLKL
oligomer insertion in the plasma membrane [17, 101].
This hypothesis has been supported by evidence that
specific DAMPs are released by necroptotic cells, which
are important mediators of inflammation [102]. These
necroptosis-specific DAMPs include cytosolic lactate de-
hydrogenase and lysosomal hexosiminidase, as well as
organ-specific proteins, such as heart or kidney creatine
kinase and liver alanine aminotransferase [102]. Based
on these findings, we speculate that necroptosis-specific
DAMPs can be used for diagnostic biomarker develop-
ment compared with other types of regulated necrotic
cell death events, such as pyroptosis or ferroptosis [8].
To date, the full range of the specific DAMPs as media-
tors of necroptosis-induced inflammation requires fur-
ther investigation.

Detection and pharmacological targeting of necroptosis
Due to a lack of specific molecular markers of necroptosis,
a combination of approaches is often required to distin-
guish necroptosis from other cell death modalities. Trans-
mission electron microscopy (TEM) or H&E staining is
widely used to provide morphological evidence of necrosis
[103]. PI permeability, loss of mitochondrial membrane
potential (MMP), production of intracellular ROS, deple-
tion of ATP and other factors are the detectable character-
istics of necroptosis, but they do not distinguish
necroptosis from other types of cell death [103, 104].
RIPK1, RIPK3 and MLKL are usually regarded as essential
biochemical markers of necroptosis. Their activation can
be detected by changes in the protein expression and
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phosphorylation status using immunoblotting or immuno-
staining [105, 106]. The formation of necrosome com-
plexes can be observed by RIPK1/RIPK3 and RIPK3/
MLKL interactions using immunoprecipitation or other
methods [75]. The existence of RIPK1, RIPK3 and MLKL
is necessary for necroptosis execution. We can use various
approaches, such as gene knockout, siRNA/shRNA
knockdown, small-molecule inhibitors and kinase-dead or
interacting domain-deficient mutants, to further deter-
mine the role of these molecules in necroptosis.
Researchers have made major efforts to develop small-mol-
ecule inhibitors that target these proteins (Fig. 1).
Necrotatin-1 (Nec-1) was the first RIPK1 inhibitor identi-
fied by Yuan J’s group [7], and it has recently been widely
used in the study of necroptosis. However, Nec-1 is not just
the inhibitor of RIPK1 but also a potent inhibitor of indo-
leamine 2,3-dioxygenase (IDO), which is an immunomodu-
latory enzyme that regulates the formation of kynurenine
[107]. Thus, interpretation of the results obtained with
Nec-1 should always be used with caution. Additionally,
GSK2982772 is a newly identified RIPK1 inhibitor detected
by chemical screening [108]. The RIPK3 inhibitors
GSK840, GSK843, GSK872 [30, 109] and dabrafenib [110]
and the MLKL inhibitor necrosulfonamide (NSA) [72] are
also used for research. In addition, the anticancer
drugs ponatinib and pazopanib were recently found
to inhibit both RIPK1 and RIPK3 (Fig. 2) [111]. Other
types of RIPK1/RIPK3/MLKL inhibitors are still under
development.

Therapeutic induction of necroptosis in leukemia cells
Impairment of cell death pathways and evasion of RCD,
especially apoptosis, are hallmarks of various cancers, in-
cluding leukemia, that contribute to tumor initiation,
progression and treatment resistance [1, 112]. Resistance
to chemotherapy is currently a major problem in cancer
treatment, and it is frequently associated with failure of
tumor cells to undergo apoptosis [1]. Therefore, there is
an urgent need to develop new therapies to promote cell
death in cancers. Necroptosis, as a recently identified
form of nonapoptotic RCD, may offer an alternative op-
tion to trigger apoptosis-resistant cancer cell death.
Elucidation of the signal transduction pathways of
necroptosis in cancer cells is expected to help develop
novel strategies to trigger necroptosis in leukemia ther-
apy. Thus far, accumulating work has proven that the in-
duction of necroptosis may overcome drug resistance in
cancers. In the following paragraphs, we provide a brief
summary of findings regarding necroptosis in several
major types of leukemia (Table 1).

Acute myeloid leukemia
Acute myeloid leukemia (AML) is an aggressive disease
that represents the most frequent malignant myeloid

neoplasm in adults [113]. Despite current aggressive
treatment strategies, the prognosis of AML is still poor
due to its low survival and high relapse rate [113]. Thus
far, most current therapies exert their antileukemic ef-
fects by promoting apoptosis in AML cells [114].
Apoptosis-resistant AML cells usually fail to undergo
apoptosis due to the impairment of related pathways
[114], and thus, induction of nonapoptotic cell death,
such as necroptosis, is needed to overcome the treat-
ment resistance and improve the outcomes of AML.
IAP proteins represent a family of antiapoptotic pro-

teins that block RCD through various mechanisms [115].
As we described before, the IAP family members cIAP1/
2 can act as E3 ubiquitin ligases that mediate ubiquitina-
tion of RIPK1 and contribute to canonical NF-kB
signaling activation, which leads to cell survival [43].
Once deubiquitinated, RIPK1 can promote apoptosis or
necroptosis based on the caspase-8 activity [40]. Another
IAP, membrane X-linked inhibitor of apoptosis (XIAP),
is known to block apoptosis by inhibiting caspase-9 and
-3/-7 activation [116]. Therefore, the IAPs may be an
important node that determines cell survival or death.
IAPs can be neutralized by Smac, which is released from
the mitochondrial intermembrane space into the cytosol
during apoptosis [115]. Therefore, Smac can cause cell
death via two pathways: a caspase-dependent apoptotic
pathway or a caspase-independent necroptotic pathway.
IAPs were shown to be overexpressed in AML cells and
correlate with poor prognosis [117–119], so they are
considered promising targets for therapeutic purposes.
Smac mimetics have been artificially designed in recent
years to antagonize IAP proteins [47, 48, 115, 120–122].
Thus, using Smac mimetics can induce necroptosis as
an alternative option for AML cells that are refractory to
apoptosis. [73]. Brumatti G et al. [123] found that AML
cells are sensitive to clinical Smac mimetic birinapant-
induced apoptosis. Blocking the activity of caspase-8 by
the clinical caspase inhibitor emricasan/IDN-6556 can
augment the killing effect of birinapant by triggering
necroptotic cell death. The researchers finally demonstrated
the antileukemic efficacy and safety of the induction of
necroptosis via a birinapant/emricasan combination in vivo,
which should be clinically investigated as a therapeutic op-
portunity. Another type of Smac mimetic, BV6, can also
elicit necroptosis depending on TNF-α and the activation
of its downstream components of the necroptosis pathway,
such as RIPK1, RIPK3 and MLKL, in AML cells, in which
apoptosis is inhibited pharmacologically by the pan-caspase
inhibitor zVAD-fmk or genetically by caspase-8 knock-
down. Additionally, BV6 triggers necroptosis in apoptosis-
resistant patient-derived AML blasts [124]. Several studies
have suggested that BV6 can act in concert with a series of
commonly used clinical drugs in AML treatment,
such as cytarabine, the demethylating agents azacitidine
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or decitabine and the histone deacetylase inhibitors
MS275 or SAHA, to trigger necroptosis in apoptosis-re-
sistant AML cells in a synergistic manner mediated by
TNFα/RIPK1/RIPK3/MLKL activation [125–127]. Inter-
estingly, the multitargeting kinase inhibitor sorafenib used
for the treatment of AML [128] can limit BV6-induced
necroptosis in apoptosis-resistant AML cells via inhibiting
phosphorylation of MLKL, which has important implica-
tions for the application of sorafenib in treatment of AML
[11]. Although admittedly still in early stages of develop-
ment, some clinical studies with Smac mimetics have been
performed in myeloid malignancies, including birinapant
in AML (NCT01486784), myelodysplastic syndrome
(NCT01828346, NCT02147873) and chronic myelomono-
cytic leukemia (NCT02147873). Additionally, there are/
have been some clinic trials using Smac mimetics
(e.g., birinapant, LCL161 and AT-406) in lymphoma
(NCT00993239, NCT01078649) and multiple mye-
loma (NCT03111992). Evidence obtained indicate that
these Smac mimetics exert favorable antitumor activ-
ity in treatment resistance patients including leukemia
and was well tolerated. Vomiting, nausea, diarrhea
and other gastrointestinal symptoms were common
side effects of these drugs but not severe. Neutropenia
and cytokines releasing were also observed in some pa-
tients, but they are controllable [129–131]. The data above
indicated that Smac mimetics might be a novel effective
clinical agent in treating drug-resistance leukemia by trig-
gering necroptosis, and thus need to be further studied.

In addition to the Smac mimetic-centered strategy,
other methods or mechanisms have also been demon-
strated to induce necroptosis and thus bypass apoptosis
resistance in AML cells. Alharbi R et al. found that
blocking the interaction of HOX family transcription
factors, which play key roles in AML cell survival [132],
with the cofactor PBX by a short, cell-penetrating pep-
tide (HXR9) can induce necroptosis in AML-derived cell
lines and primary AML cells from patients [133]. Add-
itionally, this effect can be synergistically enhanced by
the protein kinase C signaling inhibitor Ro31 [133].
Granulocyte-macrophage colony-stimulating factor re-
ceptors (GM-CSFR) are overexpressed in most AML
cells [134], which are responsive to GM-CSF [135].
Thus, selectively targeting cells with increased levels of
GM-CSF receptors may be a promising method for more
effectively treating AML. Several studies have shown
that a recombinant fusion protein diphtheria toxin-
GM-CSF (DT-GMCSF) exerts selective killing effects on
AML cells by inducing apoptosis, while sparing normal
hemopoietic cells [134, 136]. Horita H’s research showed
that DT-GMCSF triggers necroptotic death in AML cells
that are defective in apoptosis, suggesting that
DT-GMCSF can activate multiple death pathways, in-
cluding necroptosis and apoptosis [137]. In addition, the
quinazolinone derivative erastin that exhibits synthetic
lethality with expression of the RAS oncogene was re-
cently shown to induce mixed types of cell death, includ-
ing necroptosis, in AML cells. The erastin induced

Table 1 Necroptosis-inducing anti-leukemia agents

Disease Agents Targets Mechanisms of necroptosis Ref

AML Birinapant+Emricasan cIAPs, caspase-8 TNFR1 signaling; RIPK1/RIPK3/MLKL dependent [123]

BV6+zVAD-fmk cIAPs, pan-caspase RIPK1/RIPK3/MLKL dependent; autocrine TNF-α [124]

BV6+Cytarabine cIAPs, DNA synthesis RIPK1/RIPK3/MLKL dependent; autocrine TNF-α [125]

BV6+Azacitidine or Decitabine cIAPs, DNA methylation RIPK1/RIPK3/MLKL dependent; autocrine TNF-α [126]

BV6+MS275 or SAHA cIAPs, Histone deacetylase RIPK1/RIPK3/MLKL dependent; autocrine TNF-α [127]

HXR9 HOX/PBX dimer RIPK1 dependent [133]

Diphtheria toxin GM-CSF Protein synthesis RIPK1 dependent [137]

Erastin Unknown RIPK3 dependent; c-JNK and p38 dependent [138]

ALL BV6+Dexamethasone cIAPs, Glucocorticoid receptor RIPK1/RIPK3/MLKL activation; Bak activation and mitochondrial
perturbation

[143]

BV6, LCL161, Birinapant cIAPs RIPK1/RIPK3/MLKL dependent; autocrine TNF-α; enhanced by
hyperosmotic stress

[145]

BV6 + Azacytidine cIAPs, DNA methylation RIPK1/RIPK3/MLKL-dependent; autocrine TNF-α [145]

Obatoclax Bcl-2 Autophagy-dependent; mediated by RIPK1, CYLD [149, 151]

MG132, Bortezomib Proteasome RIPK3/MLKL dependent; accumulation of polyubiquitinated
RIPK3

[154]

CLL Ethacrynic acid LEF1 CYLD activation [159, 160]

CML LQFM018 Unknown TNFR1 and CYLD upregulation; involvement of dopamine
D4 receptor

[165]

Pig7 Lysosomal MLKL activation; alteration of MMP and ROS levels [167]
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necroptosis is RIPK3 dependent manner and related to
c-JUN N-terminal kinase (c-JNK) and p38 [138].

Acute lymphoblastic leukemia
Despite aggressive application of individualized chemo-
therapy, acute lymphoblastic leukemia (ALL) patients
with high-risk, drug-refractory or relapsed disease still
have a poor prognosis [139, 140]. As in many tumors,
general deregulation of cell death pathways and failure
to undergo chemotherapy-induced apoptosis constitute
a key mechanism for drug resistance and clonal escape
in ALL [141, 142]. This finding emphasizes the need to
develop alternative strategies to induce other types of
RCD, such as necroptosis, in ALL.
As mentioned above, Smac mimetic-based therapies

are promising strategies to trigger necroptosis in
apoptosis-resistant cells. The Smac mimetic BV6 and
dexamethasone cooperate in the induction of necropto-
sis in ALL cells that are deficient in caspase-dependent
apoptosis activation [143]. Furthermore. Rohde K et al.
found that BV6/dexamethasone-triggered necroptosis
relies on RIPK1/RIPK3/MLKL activation, followed by
downstream Bak activation and mitochondrial perturb-
ation (including ROS production and a drop in MMP),
suggesting that mitochondrial dysfunction might serve
as an amplification step in this process [143]. Using
patient-derived xenograft models and CRISPR-based
genome editing methodology, researchers demonstrated
that another type of Smac mimetic, birinapant, can
circumvent escape from apoptosis in drug-resistant and
relapsed ALL by activating RIPK1/RIPK3/MLKL-
dependent necroptosis [144]. Similar to its effects in
AML, the Smac mimetic BV6 can also cooperate with
the demethylating agent azacytidine to induce necropto-
tic cell death in ALL cells that are resistant to apoptosis
[145]. Interestingly, hyperosmotic stress can boost Smac
mimetic (e.g., BV6, LCL161, birinapant)-induced necrop-
tosis by complementary TNF secretion in ALL cells, thus
indicating that physicochemical modulation of the tumor
environment can be utilized to enhance treatment effi-
cacy of Smac mimetic-based therapies for ALL [146].
Antiapoptotic Bcl-2 protein family members (e.g.,

Mcl-1, Bcl-XL) are highly expressed in ALL and are often
associated with chemotherapy resistance [147, 148]. Based
on these findings, the potential of the pan-Bcl-2 family
small molecule inhibitor obatoclax for combination ther-
apy in refractory ALL was studied. Bonapace L et al.
demonstrated that a combination of obatoclax could
resensitize multidrug-resistant childhood ALL cells to
glucocorticoids through rapid activation of autophagy-
dependent necroptosis [149]. MLL gene translocations,
which occur in 75% of ALL in infants younger than 1 year
old, are related to poor prognosis [150]. Additionally, the
expression of Bcl-2 family members is often upregulated

in MLL-translocation infant ALL cells [151]. Urtishak K et
al.’s study described multiple death mechanisms, including
necroptosis, of obatoclax in killing infant ALL primary
cells with MLL translocations that confer chemotherapy
resistance [151]. Though the limited efficacy and signifi-
cant toxicity of obatoclax in the recently clinic trials re-
strict its application in clinical therapy, obatoclax still has
the potential as a cancer therapy when modified for less
toxic side effects or when combined with other
antileukemia agents [152]. Defects in the ubiquitin-prote-
asome system (UPS) can lead to various disorders, includ-
ing tumorigenesis. Clinically targeting UPS has been
proven to be an effective therapeutic approach in treating
multiple cancers [153]. Moriwaki K et al. showed that
treatment with the proteasome inhibitors MG132 and
bortezomib can directly activate the necroptotic pathway
in the ALL-derived cell line Jurkat, which is based on the
RIPK3-MLKL interaction via RHIM domains [154].

Chronic lymphoblastic leukemia
Chronic lymphoblastic leukemia (CLL) refers to a
hematological malignancy characterized by the clonal
expansion and accumulation of small B lymphocytes that
have a mature appearance [155]. Despite the substantial
progress in pathobiology research and the development
of effective treatment regimens, CLL remains incurable
at present [156]. An impaired cell death program con-
tributes to the accumulation of monoclonal B cells as
well as chemotherapy resistance [157]. Recent studies
have revealed that CLL cells have defects not only in the
apoptosis program but also in the necroptosis pathway.
Similar to other studies, researchers have observed the
production of TNFα and degradation of cIAP1/2 in CLL
cells treated with Smac mimetics. Unexpectedly, CLL
cells are unable to form the ripoptosome complex and
are killed by apoptosis or necroptosis, which may be as-
sociated with the aberrant upstream NF-kB regulation
[158]. Li J’s team also found that CLL cells failed to
undergo necroptosis upon TNF-α/zVAD-fmk costimula-
tion due to the strong downregulation of RIPK3 and
CYLD [159]. Then, the researchers found that the high
level of Lymphoid enhancer-binding factor 1 (LEF1), a
downstream effector of Wnt/β-catenin signaling, might
act as a transcription repressor of CYLD and predict ad-
verse prognosis (decreased TFS and OS) in CLL [159, 160].
Inhibiting LEF1 by ethacrynic acid or gene knockdown can
sensitize CLL cells to death receptor ligation-induced
necroptosis, which may be a promising therapeutic strategy
for CLL [159, 160]. Venetoclax, a small and orally available
molecule that specifically targets Bcl-2, was recently ap-
proved by the United States Food and Drug Administration
for the treatment of CLL. Venetoclax showed a manageable
safety profile and induced substantial responses in patients
with relapsed CLL, including those with poor prognostic
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features, and venetoclax represents the most likely future
direction in targeted CLL therapy [161]. However, the rela-
tionship between necroptosis stimulation and the killing ef-
fects of venetoclax on CLL cells remains unclear and needs
to be further investigated.

Chronic myeloid leukemia
The introduction of selective BCR-ABL tyrosine kinase
inhibitors (TKIs) has significantly improved the progno-
sis of chronic myeloid leukemia (CML), mainly through
inducing apoptotic cell death, but drug resistance still
exists in some patients [162]. TKI-resistant CML cells are
usually characterized by apoptosis resistance [163, 164]
and thus require an alternative approach, such as necrop-
tosis, to reactivate cell death in CML. Unfortunately, lim-
ited progress has been made in studying necroptosis in
CML, probably due to its favorable prognosis. Here, we
provide a brief review of this progress. A newly synthe-
sized piperazine-containing compound, LQFM018, has
been proven to promote necroptosis in the CML cell line
K562, as shown by the cell membrane rupture, mitochon-
drial damage with MMP loss and ROS overproduction
and upregulation of TNFR1 and CYLD, with no involve-
ment of caspase-3 and caspase-8 activation. This process
most likely involves the dopamine D4 receptor [165]. The
p53-induced gene 7 (pig7), which localizes to the lyso-
somal membrane, is considered one of the key factors in-
volved in p53-induced apoptosis [166]. Liu J and his
colleagues’ work has shown that overexpression of pig7
did not directly activate the caspase apoptotic pathway
but decreased the lysosomal stability
and significantly sensitized the drug-resistant CML cell

line K562/ADM (has low endogenous pig7 expression)
to chemotherapeutic drugs through necroptosis
involving multiple cell death mechanisms. This cell

death is associated with alteration of MMP and ROS
levels, as well as MLKL activation [167]. In addition,
homoharringtonine (HHT), a plant alkaloid that was re-
cently approved by the FDA to treat patients with CML,
is regarded as an efficient sensitizer for TRAIL-induced
necroptosis in multiple human solid tumor cell lines
[168]. Based on this finding, HHT/TRAIL combination
therapy may be used to treat apoptosis-resistant CML,
which needs to be further studied and confirmed.

Conclusions
Necroptosis has recently attracted attention as a form of
RCD that can be triggered even under conditions of dis-
abled apoptosis. Notably, activation of the RIP1/RIP3/
MLKL pathway was shown to be the main mechanism
for necroptosis initiation and execution. Because apop-
tosis evasion represents a hallmark of human cancers,
including leukemia, therapeutic induction of necroptosis
may open new directions for treatment strategies in

apoptosis-resistant leukemia. While a series of drugs and
compounds have been shown to trigger necroptosis in
leukemia cells, the precise molecular targets of most of
these agents in promoting leukocyte necroptosis remain
unclear. Additionally, evidence has shown that some
components of the cell death pathway that mediate
necroptosis are often scarce or even lacking, which
prompted us to obtain a deeper understanding of the
molecular signaling network that regulates necroptotic
cell death. In conclusion, targeting necroptosis for the
treatment of leukemia presents significant advantages
over current strategies. However, a better understanding
of the underlying molecular mechanisms of necroptosis
is required before necroptosis can be used in clinical
therapeutic interventions.
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