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Abstract

Salmonella enterica serovar Gallinarum biovar Pullorum (bvP) and biovar Gallinarum (bvG)

are the etiological agents of pullorum disease (PD) and fowl typhoid (FT) respectively, which

cause huge economic losses to poultry industry especially in developing countries including

India. Vaccination and biosecurity measures are currently being employed to control and

reduce the S. Gallinarum infections. High endemicity, poor implementation of hygiene and

lack of effective vaccines pose challenges in prevention and control of disease in intensively

maintained poultry flocks. Comparative genome analysis unravels similarities and dissimi-

larities thus facilitating identification of genomic features that aids in pathogenesis, niche

adaptation and in tracing of evolutionary history. The present investigation was carried out

to assess the genotypic differences amongst S.enterica serovar Gallinarum strains including

Indian strain S. Gallinarum Sal40 VTCCBAA614. The comparative genome analysis

revealed an open pan-genome consisting of 5091 coding sequence (CDS) with 3270 CDS

belonging to core-genome, 1254 CDS to dispensable genome and strain specific genes i.e.

singletons ranging from 3 to 102 amongst the analyzed strains. Moreover, the investigated

strains exhibited diversity in genomic features such as virulence factors, genomic islands,

prophage regions, toxin-antitoxin cassettes, and acquired antimicrobial resistance genes.

Core genome identified in the study can give important leads in the direction of design of

rapid and reliable diagnostics, and vaccine design for effective infection control as well as

eradication. Additionally, the identified genetic differences among the S. enterica serovar

Gallinarum strains could be used for bacterial typing, structure based inhibitor development

by future experimental investigations on the data generated.

1. Introduction

Pullorum disease (PD) and fowl typhoid (FT) are two distinct septicaemic diseases caused by

non-motile Salmonella enterica subsp. enterica serovar Gallinarum (S. Gallinarum) biovar
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Pullorum (bvP) and biovar Gallinarum (bvG), respectively, which exhibit host-specificity

towards poultry and aquatic birds [1–3]. The diseases caused by these invasive avian pathogens

cause high morbidity and acute mortality in poultry in India and various countries of Asia,

Africa and South America. Pullorum disease (PD) occurs in young birds and persists for long

periods in spleen and reproductive tract which leads to high mortality [4]. The disease is char-

acterised by white diarrhoea chaperoned with increased antimicrobial resistance (AMR) and

high infection rates [5, 6]. On the other hand, FT can affect birds of all ages but primarily

occurs in adult birds and results in variable morbidity depending on the age, species, and

breed of the bird [7]. Salmonella Enteritidis, a major food-borne pathogen causes infection

which leads to enteritis in multiple hosts in addition to poultry [8]. Although S. Gallinarum

has negligible importance in humans, S. Enteritidis is an important zoonoses [8, 9]. The S. Gal-

linarum, in addition has been found to be a recently evolved ancestors of S. Enteritidis [10].

The virulence of Salmonella spp. is mediated by an arsenal of genes which are capable of

invasion, replication, and colonization inside the host cells [11, 12]. The genetic factors

involved in pathogenesis of FT and PD at molecular and cellular mechanisms are still under

elucidation [2, 13]. The genomic sources of virulence systems in Salmonella enterica serovars

are mainly divided into two elements, one of which is horizontally acquired chromosomally

located mobile genetic elements known as Salmonella pathogenicity Islands (SPIs), and pro-

phage elements, whereas other is plasmids associated with salmonellae [14]. These genetic ele-

ments have played a seminal role in various ecological niche adaptations in different host and

pathogenicity life-style in Salmonella by encoding for proteins carrying out cell-adherence, cel-

lular invasion at host level, induction of innate immune and/or pathophysiological responses

to infection [15, 16]. Two pathogenicity islands, Salmonella pathogenicity island 1 (SPI-1) and

SPI-2 have been described, which play roles in mediating disease by Salmonella enterica
through their respective type III secretion systems (TTSS). SPI which encode T6SSs have been

detected in SPI6, SPI19, 20, 21 in S. Gallinarum and S. Enteritidis [17].

Additionally, prophage lysogeny is a rich contributor of Salmonella genome diversity, and

their acquisition leads to enhanced virulence and pathogenicity [18, 19]. The prophage ele-

ments are being increasingly utilised as molecular markers for strain discrimination [20, 21].

Another crucial genetic element that is involved in persistence, virulence and AMR includes

toxin-antitoxin system (TA system) [22–24]. Furthermore, the Salmonella serovars including

the Gallinarum and Enteritidis are increasingly reporting incidence of antimicrobial resistance

(AMR) [25, 26]. The comparative genomic analysis of pathogens helps in elucidating the diver-

sity and depth of functional set of genes in form of pan-genome and decoding of evolutionary

history [27, 28]. Moreover, it aids in functional annotation, as well as decodes molecular mech-

anisms underlying pathogenesis and niche adaptation by precise measurement of genetic vari-

ation within and between pathogenic groups [29–31].

Recently we determined the first draft genome sequence of an Indian strain of S. Galli-

narum VTCCBAA614 isolated from diseased poultry [32]. The present investigation dealt

with whole genome characterization and assessment of genotypic differences amongst bvG

and bvP strains including in house S. Gallinarum Sal40 VTCCBAA614 strain (Table 1). The

study unravelled pan-genome, core-genome, dispensable genome, and strain specific genes of

the analyzed S. Gallinarum strains. Moreover, the investigation decoded diversity in virulence

factors, genomic islands, prophage regions, TA systems, and acquired AMR genes in the inves-

tigated strains via employment of various computational tools. The genotypic differences

revealed by the study will serve as the genomic resource for the identification and discrimina-

tion of biovars, and could form the basis of structure based inhibitors design and that would

be beneficial to poultry industry. Although comparative genomics analysis of host-adapted sal-

monellae genomes have elucidated various evolutionary and virulence themes [5, 8], this is the
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first report for the assessment of genotypic differences, which includes an Indian strain among

the investigated strains from America and China.

2. Material and methods

2.1 Data collection of Salmonella genomes

The complete genome sequences of eight S. Gallinarum strains i.e., S. Gallinarum str. 287/91

(NC_011274.1), S. Gallinarum str. 9184 (NZ_CP019035.1), S. Pullorum str. ATCC 9120

(NZ_CP012347.1), S. Pullorum str. S06004 (NC_021984.1), S. Pullorum QJ-2D-Sal

(NZ_CP022963.1), S. Gallinarum/pullorum str. CDC1983-67 (NC_022221.1), and S. Galli-

narum/pullorum str. RKS5078 (NC_016831.1) including draft genome sequence of S. Galli-

narum Strain VTCCBAA614 (isolated from chicken in India from FT inflicted broiler flock)

were mined from NCBI database to decode genotypic differences among the S. enterica serovar

Gallinarum strains. In addition the genome sequence of S. Enteritidis str. P125109

(NC_011294.1) [10] a well studied pathogenic Salmonella strain was also retrieved from NCBI

for employment as reference for comparative genome analysis (Table 1). Sequence quality of

genome assemblies is dependent on the sequencing technology used, genome coverage and

aim of the sequencing. Information regarding the investigated genomes such as sequencing

technology used, genome coverage, as well as assembly method was mined from literature as

well as NCBI database and is listed in S2 Table. In addition, measures of genome quality such

as completeness, contamination, coarse consistency, and fine consistency as identified by

EvalG and EvalCon tools of PATRIC database are also listed (S2 Table)

The Indian strain S. Gallinarum VTCCBAA614 [32] is available from our culture collection

at NCVTC, NRCE Hisar. All the sequences were extracted in fasta and GenBank (gbk) format.

Table 1. Genome statistical information of nine investigated Salmonella strains as obtained by Prokka pipeline and ANI calculator.

#Organism name Geographic

location

Accession number Assembly

status

Total

length

Size GC CDS tRNA tmRNA rRNA rr SNP

detected(MB) Content

%

S. enterica Enteritidis United Kingdom NC_011294.1 Complete 4,685,848 4.68 52.17 4352 85 1 22 2 -

str. P125109

S. enterica Gallinarum Brazil NC_011274.1 Complete 4,658,697 4.65 52.20 4452 77 1 22 2 7832

str. 287/91

S. enterica Gallinarum Not available NZ_CP019035.1 Complete 4,609,911 4.60 52.20 4399 78 1 22 2 7505

str. 9184

S.enterica Gallinarum India JSWQ00000000.1 Contig 4,598,206 4.59 52.22 4455 68 1 4 2 7946

str. Sal40

S.enterica Pullorum USA NZ_CP012347.1 Complete 4,694,842 4.69 52.19 4474 81 1 23 2 7424

str. ATCC 9120

S.enterica Pullorum China NC_021984.1 Complete 4,682,599 4.68 52.14 4635 80 1 22 - 12726

str. S06004

S.enterica Pullorum China NZ_CP022963.1 Complete 4,728,875 4.72 52.17 4548 75 1 22 2 7543

str. QJ-2D-Sal

S.enterica Gallinarum/

Pullorum

China NC_022221.1 Complete 4,623,089 4.62 52.23 4397 78 1 22 2 7786

str. CDC1983-67

S.enterica Gallinarum/

pullorum

Not available NC_016831.1 Complete 4,637,962 4.63 52.21 4451 75 1 22 2 8038

str. RKS5078

https://doi.org/10.1371/journal.pone.0255612.t001
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2.2 Genome statistics and visualization

Genomic features such as number of CDS, tRNA, tmRNA, rRNA and repeat region (rr) were

determined by running Prokka pipeline at UseGalaxy webinterface (Table 1) [33]. The GC%

of the genomes was determined by ANI Calculator which uses OrthoANIu algorithm [34].

Genomes were aligned with S. Enteritidis P125109 genome taken as reference genome. Align-

ment and single nucleotide polymorphism (SNP) detection was performed by using nucmer

and show-snps (with Clr parameter) components of MUMmer package V 3.1 [35]. In addition,

circular plot visualization of CDS, GC content, and GC skew with S. Enteritidis str. P125109 as

reference genome against other Salmonella genomes was generated by EDGAR [36].

2.3 Pan- and core-genome calculations

Pan-genome is the complete set of orthologous genes (OGGs) harboured within a collection of

investigated genomes, whereas, the core-genome refers to the set of genes present in all the

genomes of a collection. On the other hand, dispensable genome refers to the set of genes har-

boured by one or a subset of investigated genomes. Singleton genes are the unique genes that

do not have any homologs in the investigated genomes [37, 38]. EDGAR served as the resource

for pan-genome, core-genome, and singleton genes calculations for the selected Salmonella
strains [36]. A customised project was set up by EDGAR to conduct all the calculations for

pan-genome, core-genome, dispensable genome, and singletons with selection of S. Enteritidis

str. P125109 as reference genome.

2.4 Functional annotation of pan- and core-genome

The functional annotation of core-genome and complete set of strain-specific genes via orthol-

ogy assignment was carried by eggNOG-mapper v2 online portal (http://eggnog-mapper.

embl.de) [39, 40]. The tool employs precomputed clusters and phylogenies from its in house
database and provides orthology assignment to a large set of sequences via fast orthology map-

ping. Out of the total 29,430 CDS that comprised core-genome of nine investigated Salmonella
genomes, 29,125 (98.96%) CDS were queried by eggNOG-mapper v2 for orthology mapping.

On the other side, 153 (48.11%) out of the total 318 strain specific CDS (singletons) were que-

ried for orthology mapping.

2.5 Phylogenetic analysis of the strains

The identified core-genome of the investigated Salmonella strains was employed by EDGAR to

decipher phylogenetic relationship among the strains. Alignment of each CDS set was

obtained by MUSCLE [41], and then further joined to form one huge alignment. The FastTree

software was used to construct the tree. Program employs Shimodaira-Hasegawa (SH) branch

support values to verify the tree topology [42]. Conservation of gene order and genome rear-

rangements among Salmonella genomes were also explored by using EDGAR wherein S.

Enteritidis P125109 was chosen as a reference to create synteny plots. The Indian strain, bvG

VTCCBAA614, was not included, as the use of draft genomes is not recommended in synteny

plot representation.

2.6 Detection of virulence factors

VFanalyzer tool available at VFDB (virulence factor database) was utilized to detect putative

virulence factors in the investigated Salmonella genomes [43]. The first step in the detection of

virulence factors by the tool involves construction of orthologous groups within the query

genome sequence as well as in the pre-investigated Salmonella reference genomes archived in
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the database to avoid detection of paralogs. Next, it carries iterative and exhaustive sequence

similarity search against the VFDB database for accurate detection of virulence factors. Finally,

a context-based data refinement process is performed for virulence factors encoded by gene

clusters [43]. We also carried out additional NCBI BLAST searches for the virulence genes that

showed differential distribution after manual curation of VFanalyzer tool results.

2.7 Detection of Salmonella pathogenicity islands (SPI)

Two approaches were employed to detect SPI’s -the major determinant of S. enterica virulence

via usage of web tool SPIFinder 1.0 available at (https://cge.cbs.dtu.dk/services/SPIFinder) [44]

with default parameters, and NCBI BLAST search of known SPIs extracted from PAIDB v2.0

(http://www.paidb.re.kr/) against investigated genomes [45, 46].

2.8 Identification and in silico characterization of prophage sequences

Potential prophage sequences within the Salmonella genomes were detected and annotated by

employing PHASTER (Phage Search Tool Enhanced Release). PHASTER, an improved ver-

sion of PHAST phage search tools detects candidate prophage regions in the bacterial genomes

and then classifies the identified regions into three classes i.e. intact, incomplete and question-

able on the basis score obtained [47, 48].

2.9 Detection and analysis of Type II Toxin-Antitoxin (TA) gene cassettes

Type II TA loci were predicted in the Salmonella genomes by employing TAfinder [49]. The

parameters used for the detection were BLAST e value: 0.01; HMMer E-value: 1; Maximum

length for candidate toxin/antitoxin: 300; maximum overlap between candidate toxin and anti-

toxin: (-20–150).

2.10 Screening of acquired antimicrobial resistance (AMR) genes

Resfinder available at (https://cge.cbs.dtu.dk/services/ResFinder/) was employed to investigate

the presence of acquired antimicrobial resistance (AMR) genes in the selected Salmonella
strains [50]. Resfinder identifies acquired antibiotic resistance genes foraminoglycoside, β-lac-

tam, colistin, fluoroquinolone, fosfomycin, fusidic acid, glycopeptide, MLS-macrolide, lincosa-

mide and streptogramin B nitroimidazole, oxazolidinone, phenicol, rifampicin,

sulphonamide, tetracycline and trimethoprim. Moreover, both known and unknown chromo-

somal point mutations were also detected in AMR resistance genes such as gyrA, parE, pmrA,

pmrB, parC and 16S_rrsD.

3. Results

3.1 Comparative genome statistics

Comparative genome analysis of selected nine strains of Salmonella species (Table 1) was car-

ried out by employing various bioinformatics tools. The average genome size of the investi-

gated Salmonella strains was 4,657,781 bp, ranging from 4,598,206 bp (S. Gallinarum Sal40

strain VTCCBAA614) to 4,728,875 bp (S. Pullorum QJ-2D-Sal). The average GC content of all

the analyzed genomes was 52.19%, ranging from 52.14% (S. Pullorum str. S06004) to 52.23%

(S. Gallinarum/pullorum str. CDC1983-67) (Table 1). Genomic features of the investigated

Salmonella strains were determined by running Prokka pipeline at Use Galaxy webinterface.

The average number of CDS was observed to be 4463 with highest number detected in S. Pul-

lorum str. S06004 (4635) and the lowest in S. Enteritidis str.
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P125109 (4352) (Table 1). The tRNA sequences identified by Prokka pipeline in the S. Galli-

narum genomes fell in the range of 75–81 i.e. 75 in S. Gallinarum/pullorum str. RKS5078 and

81 in S. Pullorum ATCC 9120. It was 85 in S. Enteritidis str. P125109 (Table 1). In addition, all

the investigated Salmonella genomes were detected to possess only one tmRNA. Notably, only

four rRNA sequence were detected in S. Gallinarum Sal40 strain VTCCBAA614 in comparison

to possession of 23 rRNA sequences in S. Pullorum str. ATCC 9120 and presence of 22 rRNA

sequences in rest of the genomes (Table 1). The circular plot visualization of investigated

genomes with reference to S. Enteritidis str. P125109 depicts varied GC content and GC skew

along with predominant similarity of core-regions of the investigated genomes (Fig 1).

3.2 Pan and core-genome analysis unravels strain specific genes

The pan-genome calculation by customised set up in EDGAR led us to have discrete idea of

the total genetic repository of the Salmonella genomes under study. The pan-genome of S. Gal-

linarum was found to be in open state with growth exponent value of 0.089 (95% confidence

interval 0.084 to 0.093) (S1 Table). The pan-genome development plot showed steady growth

with addition of each new genome and reached 5091 on addition of ninth genome which is

nearly 1.1 times the average number of genes of nine strains (Fig 2A, S1 Table). On the other

hand, core-genome development plot became limited to 3270 genes, with shared genes

decreasing with new genome addition. The extrapolated core-genome size was 2684 (95% con-

fidence interval 2507.66 to 2861.11) (Fig 2B, S1 Table). In addition, singleton development

plot also indicated S. enterica serovar Gallinarum to be in an open pan-genome state as 43 new

genes were predicted to be found at every genome addition (Fig 2C, S1 Table).

Fig 1. Circular plot genome representation of nine investigated Salmonella strains i.e. a) S. Gallinarum str. 287/91 b) S. Gallinarum str. 9184 b) S. Gallinarum Sal40

strain d) S. Pullorum str. ATCC 9120 e) S. Pullorum str. S06004 f) S. Pullorum QJ-2D-Sal g) S. Gallinarum/Pullorum str. CDC1983-67 and h) S. Gallinarum/Pullorum

str. RKS5078 with demonstration of GC content, GC skew and CDS in reference to S. Enteritidis str. P125109.

https://doi.org/10.1371/journal.pone.0255612.g001
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The pan-genome of investigated Salmonella strains with the reference to S. Enteritidis str.

P125109 strain is composed of 5,091 coding sequences (CDS) which include a core-genome of

3,270 (64.2%) CDS, a dispensable genome of 1254 (24.6%) CDS, and 567 (11.1%) singletons.

The complete list of CDS detected as part of pan-genome, core-genome, and singletons with

their function are listed in S3, S4 and S5A–S5I Tables. Notably, a total of 318 CDS in the range

of 3–102 (Table 2, S5 Table) were found as strain specific genes aka singletons in the investi-

gated genomes. Significantly, S. Gallinarum Sal40 strain VTCCBAA614 harboured the highest

number (102) of singletons among the investigated Salmonella strains (Table 2, S5 Table). The

singletons detected were identified to be as hypothetical proteins (61), transposase (13), mem-

brane proteins (8), ATP binding proteins (3) among others. Interestingly, genomes of S. Enter-

itidis str. P125109 and S. Pullorum QJ-2D-Sal possessed 96 and 85 singletons each,

respectively.

On the other hand, S. Pullorum str. ATCC 9120 and S. Pullorum str. S06004 genomes har-

boured ten singletons each, whereas, the rest of the genomes of possessed�5 singletons each

(Table 2, S5A–S5I Table).

Fig 2. Core genome development plot for nine Salmonella genomes. The red curve shows the fitted model. Green represents confidence interval upper

limit and blue demonstrates confidence interval lower limit.

https://doi.org/10.1371/journal.pone.0255612.g002
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Functional annotation of core-genome and strain specific CDS by assignment of orthology

(COG) was performed by eggNOG-mapper v2. The annotation by eggNOG-mapper provided

detailed description of GO term, EC number, annotation level, COG category and description

(S6 Table). 29,125 CDS (98.96%) out of the total 29,430 (core-genome sequences) were queried

by eggNOG-mapper v2 for orthology mapping. The highest number among them belonged to

the functional classes of function unknown (5923) transcription (2592), amino acid metabo-

lism and transport (2196), energy production and conversion (2178), and cell wall/membrane/

envelop biogenesis (2133) (Fig 3A, S6A Table). On the other hand, 153 out of the 318 CDS

(complete set of identified singleton sequences) were queried by eggNOG-mapper v2. The

highest number amongst them belonged to the classes of function unknown (68), replication

and repair (24) and defence mechanism (6) among others. Thirty five singletons were not pro-

vided any COG category by eggNOG-mapper (Fig 3B, S6B Table)).

3.3 Phylogenetic and synteny plot analysis

A phylogenetic tree was constructed on the basis of core-genome comprising of 9,83,299 aa-resi-

dues/bp per genome and 88,49,691 in total of nine Salmonella genomes by EDGAR (Fig 4) using

S. enterica serotype Enteritidis strain P125109 as a reference sequence to demonstrate the evolu-

tionary relationship among the S. Gallinarum strains used in the study.SH support values for our

tree were very good in general, with a minimum value of 0.772 and only two values below the max-

imum of 1.00. The bvG and bvP formed two distinct and strongly supported clades in the phylog-

eny (Fig 4). In concordance with their taxonomic classification bvG strains clustered together i.e.
S. Gallinarum str. 287/91, S. Gallinarum str. 9184 and Gallinarum Sal40 strain VTCCBAA614)

and formed one clade. Whereas, the rest of the bvP strains bifurcated into 2 clades (Fig 4).

The synteny plot analysis performed by EDGAR of the investigated Salmonella genomes in

reference to S. Enteritidis str. P125109 depicted large scale genomic rearrangements which

included relocations, inversions, duplications and deletions (Fig 5). It was observed that all bvP

strains genomes showed high degree of conservation of gene order among genomes. The highly

similar genomic rearrangement within bvP comprised of inversion and duplication. However,

the bvG strain 9184 was characterized by large region of inversion, which was not observed in

bvG 287/91 in reference to S. Enteritidis str. P125109 strain. Synteny plot of individual investi-

gated strains against the reference genome of S. Enteritidis str. P125109 is shown in S1 Fig.

3.4 Virulence factor detection

Putative virulence factors were detected by VFanalyzer tool in investigated Salmonella
genomes. The tool identified candidate virulence factors related to capsule, fimbrial adherence,

Table 2. Number of CDS identified in pan genome, core genome and singletons of the investigated Salmonella genomes.

Organism and strain Accession number Pan genome Core genome No of singletons

S.enterica Enteritidis str. P125109 NC_011294.1 5091 3270 96

S. enterica Gallinarum str. 287/91 NC_011274.1 3

S.enterica Gallinarum str. 9184 NZ_CP019035.1 4

S. enterica Gallinarum str. Sal40 strain JSWQ00000000.1 102

S.enterica Pullorum str. ATCC 9120 NZ_CP012347.1 10

S. enterica Pullorum str. S06004 NC_021984.1 10

S. enterica Pullorum str. QJ-2D-Sal NZ_CP022963.1 85

S. enterica Gallinarum/pullorum str. CDC1983-67 NC_022221.1 3

S. enterica Gallinarum/pullorum str. RKS5078 NC_016831.1 5

https://doi.org/10.1371/journal.pone.0255612.t002
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macrophage inducible genes, magnesium uptake, non-fimbrial adherence, regulation, secre-

tion system, stress adaptation, autotransporter and invasion as listed (S7A–S7C Table). Fim-

brial adherence genes which includes agf/csg, bcf, fim, lpf, peg, pef, saf, sef, sta, stb, stc, std, ste,

Fig 4. Unrooted phylogenetic tree showing taxonomic positions of the investigated Salmonella strains constructed by

EDGAR on the basis of core genome set. Branch support values that were lower than the maximum values of 1.0 are shown

at the respective branches.

https://doi.org/10.1371/journal.pone.0255612.g004

Fig 3. a) Distribution of COG functional classes in core genome of investigated Salmonella strains by eggnog mapper b) Distribution of COG functional categories in

strain specific genes by eggnog mapper.

https://doi.org/10.1371/journal.pone.0255612.g003
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stf, stg, sth, sti, stj, stk and tcf were searched for in the investigated genomes. Notably, pef, sta,

stc, stg, stj, stk and tcf operons were not observed in any of the analyzed genomes. Manual cura-

tion of the results obtained from the tool alongwith BLASTN searches revealed that among the

Fig 5. Synteny plot constructed by EDGAR of eight S. Gallinarum strains i.e. a) S. Pullorum str. ATCC 9120 (b) S. Gallinarum str. 287/91 c) S. Pullorum QJ-2D-Sal

(d) S. Gallinarum/Pullorum str. CDC1983-67 (e) S. Gallinarum str. 9184, (f) S. Gallinarum/Pullorum str. RKS5078 (g) S. Pullorum str. S06004 against the reference of

S. Enteritidis str. P125109.

https://doi.org/10.1371/journal.pone.0255612.g005
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fimbrial adherence determinants, chaperone-usher fimbrial gene operons of bcf, fim, lpf, peg,

saf, stb, std, ste, stf, sth and sti were present in the S. Enteritidis str. P125109, however genes in

the fimbrial operon sef were predicted to be missing in this strain (S7C Table).

On the other hand, among the investigated S. Gallinarum genomes, chaperone-usher fim-

brial gene operons, bcf, fim, lpf, peg, saf, stb, ste, stf, sth and sti were present. Fimbrial operon

sef and std operon were additionally predicted to be disrupted in the S. Gallinarum genomes,

with stdA and stdB showing no significant similarity and stdC homolog showing divergent

sequence (69.11% similarity) on BLASTN analysis (S7B Table). The operon of adhesin called

thin curled fimbriae (curli), which is encoded by the agf /csg fimbrial gene cluster was detected

in all the 9 genomes analysed (S7C Table).

The std operon was detected in 3 out of 5 bvP genomes (S. Pullorum str. ATCC 9120, S. Pul-

lorum str. S06004 and S. Pullorum str. QJ-2D-Sal) as well as S. Enteritidis str. P125109 and was

absent in genomes of S. Gallinarum str. 287/91, S. Gallinarum str. 9184, S. Gallinarum Sal40

str. VTCCBAA614, S. Gallinarum/pullorum str. CDC1983-67 and S. Gallinarum/pullorum str.

RKS5078 (S7 Table). The sef operon was disrupted showing complete absence of sefA and sefD
genes in all the genomes. Sef operon was not detected in S. Gallinarum Sal40 str.

VTCCBAA614 strain. The disruption in fim operon was only observed in S. Pullorum str.

S06004 (S7C Table).

3.5 Detection of Salmonella Pathogenic Islands (SPIs)

A total of 113 homologs of SPIs with an average of 14.77 SPIs were detected in the investigated

Salmonella genomes by the combined usage of web tool SPIFinder 1.0and NCBI BLAST

search. The integrated approach revealed presence of high sequence identity SP-1, SP-2, SP-3,

SP-4, SPI-5, SPI-12, SPI-13, SP-14, C63PI and SPCS54 islands in their genomes (S8A and S8B

Table). The detected SPIs varied in the range of 0.3 to 41.8 kb in terms of size. Interestingly, 3

SPI-13 (AY956834, AY956833, AY956832) and 2 SPI-14 (AY956835, AY956836) were

observed in each of the investigated genome with the exception of S. Gallinarum str. 9184

genome, wherein SPI-14 (AY956836) (0.4 kb) was not detected. Moreover, SPI-12 was also not

observed in S. Gallinarum Sal40 strain VTCCBAA614. Notably, various other SPIs and resis-

tance islands reported in S. enterica serovar such as SESS LEE, SGI-1, SPI-10, SPI-11, SPI-2,

SPI-6, SPI-7, and HP1 whose sequence were extracted from PAIDB database were not found

to be present by both the approaches. The features of detected SPI homologs in their respective

genomes such as starting position, end position, size, and external annotation if any are

detailed in (S8A and S8B Table).

3.6 Identification and analysis of prophage and prophage remnant regions

Each of the analyzed Salmonella genome was detected to possess at least one candidate pro-

phage region by PHASTER (S2 Fig, S9 Table). In total, 23 prophage regions were identified in

which fifteen were classified as putative intact regions and eight as incomplete prophage

regions by PHASTER (S2 Fig, S9A Table). The detailed information of the identified prophage

regions i.e., region name, region length, completeness, score, total protein, region position and

GC percentage in the respective Salmonella genomes as determined by the web server are listed

in S9A Table. The highest number of prophage region were detected in S. Pullorum QJ-2D-Sal

and S. Pullorum str. S06004 with each possessing three complete prophages and one incom-

plete prophage region. In total, there were 5 different propahge elements with Gifsy_2 being

the most common, which was detected in all genomes analysed. On the other hand, all 3 bvG

possessed only a single (Gifsy_2) intact prophage element. Whereas bvP harboured a variety of

phage elements including Gifsy_2. The average size of identified prophage regions was 36.31
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kb in which largest (64.3 kb) and smallest (8.5 kb) candidate prophage regions were observed

in S. Enteritidis str. P125109. On the other hand, the average size of identified complete pro-

phage sequences in the analyzed Salmonella genomes was found to be 44.98 kb with lowest

size of 29.2 kb belonging to S. Pullorum str. ATCC 9120. (S9A and S9B Table). Whereas, larg-

est intact prophage region of 64.3 kb was observed in S. Enteritidis str. P125109 genome. The

GC percentage in identified prophage region varied from 45.59% to 53.21% (S9A Table). On

the other hand GC% of complete prophage regions varied from 47.23% to 53.21% (S9B Table).

3.7 Presence of toxin antitoxin cassettes

TA loci were identified in all the investigated Salmonella genomes. A total of 149 Type II TA

loci were identified, ranging from 16 to 18 in each of the genome analysed (Fig 6, S10 Table).

The length of the identified toxin and antitoxin proteins varied from 73–475 and 55–319 aa,

respectively each. Majority of the identified candidate toxin proteins (58) harboured relElike_-

domain in their structure. While, other candidate toxin proteins showed the presence of GNA-

Tlike_domain (24), MazFlike_domain (9), COG2929like_domain (9), yeeU (8), doc (5),

PINlike_domain (3), and NULL (24) in their structures respectively (Fig 6, S10 Table). On the

other hand, identified candidate antitoxin proteins majorly possessed RHHlike_domain (60).

Whilst, other domains that were observed included Xrelike_domain(27), COG5606like_do-

main(9), YhfGlike_domain (9), yeeU (8), PHDlike_domain (5), doc (4), AbrBlike_domain (3)

and NULL (24) in rest of the investigated candidate antitoxins (Fig 6, S10 Table). The detailed

description of identified TA loci in Salmonella genomes which includes location in the

genome, length, strand, family and domain are summarised in S10 Table.

3.8 Detection of acquired antibiotic resistance genes/chromosomal point

mutations

Interestingly, all the analyzed Salmonella genomes harboured acquired aminoglycoside resis-

tance gene (aac(6’)-Iaa) (S3 Fig, S11 Table) as determined by Resfinder. The information

related to identity, contig and position of the identified aminoglycoside gene in their respective

genomes is listed in S11 Table. On the other hand, no acquired resistance gene for beta-lactam,

colistin, fluoroquinolone, fosfomycin, fusidic acid, glycopeptide, MLS-macrolide, lincosamide

and streptogramin B nitroimidazole, oxazolidinone, phenicol, rifampicin, sulphonamide, tet-

racycline, and trimethoprim was detected in the analyzed Salmonella genomes by Resfinder.

Strikingly, known chromosomal point mutation in gyrA was detected in 2 bvG and 2 bvP

genomes out of the nine analysed i.e., S. Gallinarum str. 287/91, S. Gallinarum Sal40 strain

VTCCBAA614, S. Pullorum str. S06004 and S. Pullorum QJ-2D-Sal (S11 Table). In addition,

unknown mutations were detected in 16S_rrsD gene of all the analysed genomes (S11 Table).

Moreover, unknown mutations in parE were detected by Resfinder in S. Gallinarum Sal40

strain VTCCBAA614 and S. Pullorum str. S06004. A total of six antimicrobial resistance genes

(acquired, known and unknown chromosomal point mutations) were identified among the

nine investigated strains.

4. Discussion

Salmonella enterica subsp. enterica comprises of both host-adapted and host-promiscuous

pathotypes that causes a spectrum of diseases depending on the serovar or host [51, 52]. Pullo-

rum Disease (PD) and Fowl Typhoid (FT) caused by S. Gallinarum biovars Pullorum (bvP)

and Gallinarum (bvG) respectively are endemic in countries of Asia and South America lead-

ing to huge economic losses to poultry industry [1, 5, 53]. It is interesting to note that as com-

pared to FT, the PD reports have been low in India [54]. On the other hand, PD is frequent in
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China, being prevalent in every province [5]. Biosecurity and vaccinations applied in combina-

tion are important strategies to prevent and control these diseases in commercial and breeding

flocks. Most commercially available vaccines are killed vaccines, although vaccination strate-

gies for effective Salmonella control mainly include use of live attenuated strains capable of

inducing a cellular immune response [55] still concerns about poor protection, lack of under-

standing of genetic basis of attenuation and residual pathogenicity remain [56–58].A progress

can be made by a thorough understanding of the genetic virulence makeup of prevalent strains.

Recently, we had obtained the first draft genome sequence of an Indian strain of S. Gallinarum

VTCCBAA614 isolated from diseased poultry [32]. In the present investigation, we performed

comparative genome analysis of eight strains of S. Gallinarum bvG and bvP originating from

different countries (Brazil, USA, China and India) including in house strain with host-

promiscuous S. Enteritidis str. P125109 taken as reference genome to characterize their

Fig 6. Toxin-antitoxin cassettes identified by TA finder in investigated Salmonella strains with functional classification of candidate toxin and antitoxin proteins.

https://doi.org/10.1371/journal.pone.0255612.g006
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genomes and gain insights into pan genome, pathogenesis, mobiliome, resistome, and

taxonomy.

For a comprehensive analysis in an open pan-genome, determination of minimum number

of necessary strains is difficult [27]. The present analysis entails sufficient genotypic variability,

as our selected eight genomes represent a single serovar Gallinarum of Salmonella enterica ssp.

enterica, and the total SNP count in each genome varied from 7424 to 12,726 (Table 1). The

pan-genome of investigated strains of S. Gallinarum comprises of 5091 CDS with a core-

genome of 3270 CDS and an indispensible genome of 1254 CDS (Table 2). With a Rcp of 64%,

the genomes depict a fairly high degree of genomic diversity and asymmetry [59].

The pan-genome and core-genome development plot analysis in the present investigation

revealed S. Gallinarum to possess an open pan-genome state (Fig 2A and 2B). A steady growth

with addition of new genomes is depicted in the pan-genome development plot, which indi-

cates the capacity of this sympatric species to rapidly acquire exogenous DNA [60]. The core

development plot becomes limited to about 2600 genes (Fig 2B). The acquisition of exogenous

DNA poses obvious challenge for control strategies against FT/PD, however core-genome

based antigen selection also offers insight for vaccine candidates. It is important to examine

these core genes for reverse vaccinology application as their presence in all strains and high

degree of conservation makes them effective source of potentially universal antigens [61].

Although the dispensable genes are strain-restricted, they can also be explored and exploited

for immune-antigens [61] (Fig 3, S6B Table). Interestingly, strain specific genes were also

detected in all the investigated genomes in the range of 3–102 (S5 Table). Furthermore, single-

ton development plot demonstrated the possibility of finding 43 new genes with each newly

sequenced genome (Fig 2C). Indian strain S. Gallinarum Sal40 strain VTCCBAA614 har-

boured the highest number of singletons i.e. 102 whilst S. Enteritidis str. P125109 possessed 96

singletons (S5 Table). Whether the presence of large number of singletons in S. Gallinarum

Sal40 strain VTCCBAA614 and S. Pullorum QJ-2D-Sal, in comparison to other investigated

strains is related to higher acquisition of foreign genes requires to be investigated.

Lower core-genome to pan-genome ratio and presence of large number of singletons in S.

Enteritidis str. P125109 and other investigated strains suggests the dynamic state of S. Galli-

narum genome. Salmonella Gallinarum has undergone extensive degradation and also

acquired specific genes related to virulence, non-virulence, metabolism, information storage

by horizontal gene transfer which may contribute to its avian host specificity [10, 27, 62].

Studies on very large number of Salmonella enterica genomes such as one employing 4893

genomes detected a pan-genome of 25.3 Mbp, a strict core of 1.5 Mbp present in all genomes,

and a conserved core of 3.2 Mbp found in at least 96% of these genomes [63]. This makes for a

strong case for creating a database of serovar specific genome components such as for S. Galli-

narum, a host specific pathogen.

Following core-genome identification, its functional analysis by employment of eggNOG-

mapper v2revealed that large number of the CDS (20%) belonged to function unknown cate-

gory (5923), which indicates that our understanding of genetic repertoire of Salmonella
genome is limited. It is probable that a sizeable number of such CDS may be mutant pheno-

types for protein-coding genes [64]. Otherwise the maximum genes were related to transcrip-

tion, cell-wall and membrane biogenesis, energy metabolism, amino acid metabolism and

transportation among others (Fig 3, S6A Table). The identified core-genome is also dominated

by ATP-binding cassette (ABC) exporters which could be explored as novel drug targets [65].

On the other hand, the functional annotation of complete set of strain specific CDS of investi-

gated strains fell in the categories of function unknown, replication and repair, and defence

mechanism among others (Fig 3, S6B Table).
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The core-genome based phylogeny (Fig 4) of S. Gallinarum biovars. from different geo-

graphical origins has clearly divided strains into divergent clades, and Indian strain was

grouped externally in the S. Gallinarum clade, as in previous study [1]. Similarly, the phyloge-

netic relationship between S. Gallinarum biovars and S. Enteritidis has been genomically ana-

lysed, which highlighted the shared ancestry of bvP and bvG with S. Enteritidis descendent

originating in a ‘second’ clade [8]. In a recent study, the core-genome SNP phylogeny of only

bvP strains from China has divided it into four lineages [5], which suggests that the study of

within biovar genomic epidemiology of Indian bvG strains will similarly need inclusion of

more number of local strains. The genomic diversity within the investigated S. Gallinarum

strains is supported by large scale genomic rearrangement events including inversions, dele-

tions, relocations and duplications detected in synteny analysis (Fig 5, S1 Fig).

The evolution of host-adapted serovars of salmonellae has traversed a path of periodic gene

acquisition and gene disruption as a mechanism of niche adaptation away from enteric loca-

tion to systemic one [8]. These genetic elements contribute to the bacterial virulence, patho-

genesis, fitness in specific niche, and evolution [8, 12]. Putative virulence factors in the

investigated Salmonella genomes related to fimbrial adherence and secretion system among

others were searched and analysed (S7A–S7C Table).

The fimbrial antigens play an important role in adherence of bacteria to the cell surface,

which is essential to the pathogenesis of the disease, leading to bacterial invasion [66].

Although a number of fimbriae have been described in Salmonella, the chaperone-usher path-

way represent the major fimbriae encoded by Salmonella [67–72].

The degradation in fimbrial operon in S. Gallinarum has been associated with departure

from intestinal colonization [5]. In our investigation, the fimbrial operons Agf/Csg, bcf, lpf, peg,

saf, stb, ste, stf, sth and sti were observed to be present in all of the S. Gallinarum genomes.

Suez et al, (2013) [73] performed Comparative Genomic Hybridization (CGH) on 5656 Salmo-
nella ORF representing 12 invasive Salmonella serovars including serovar Dublin and Cholera-

suis, 2 host-associated serovars, and detected five fimbrial clusters (bcf, csg, stb, sth and sti) to

be part of core genome for invasion and systemic disease in humans. In our study, among the

S. Gallinarum genomes, chaperone-usher fimbrial gene operons, bcf, lpf, peg, saf, stb, ste, stf,
sth and sti were detected to be part of the core genome. Notably, in the S. Gallinarum genomes

studied, operon fim, sef, and std were predicted to be disrupted (S7C Table).

Hu et al, (2019) [5], reported std along with saf and csg to be intact in almost all the S. Pullo-

rum strains in their study. On the other hand, we detected differential distribution of std
operon in our study. The std operon, which was detected in S. Enteritidis str. P125109 was not

detected in any of the 3 bvG, and 2 of the 5 bvP genomes studied (i.e., S. Gallinarum/pullorum

str. CDC1983-67 and S. Gallinarum/pullorum str. RKS5078). In addition to std operon, the sef
operon, sefA and D genes were not detected in S. Enteritidis str. P125109 and all other investi-

gated genomes.SEF14 plays a role in the colonization of Peyer’s patches and in the adhesion

and invasion of intestine epithelial cells [74–76].

The lpf, fim, and agf /csg operons, which were detected in all of our investigated genomes,

encode fimbrial proteins which mediate attachment of S. enterica serotype Typhimurium in

epithelial cell lines in vitro for long-term intestinal persistence [77]. The gene csgD of agf /csg

operon activates the production of curli fimbriae by transcriptional activation of the csgBAC

operon encoding the structural genes of curli fimbriae [78]. The csgA gene of agf /csgoperon

has also been evidenced to be involved in biofilm formation in S. Pullorum, which may con-

tribute to the virulence [79].

The type 1 fimbriae (T1F) are important virulence factors in Enterobactericeae including

Salmonella spp., and is commonly expressed in virulent strains of Salmonella spp. [80, 81]. In

our study, the fim operon was detected in all genomes except absence of fimA and I genes in S.
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Pullorum str. S06004 genome. The genes responsible for synthesis of T1F are fimI, fimC, fimD,

fimH, and fimF, and fimA promoter region making a single operon [82].

In all the genomes studied, pegABCD operon was detected to be the part of core genome.

The peg fimbrial gene cluster originally discovered in S. enterica subsp. enterica serovars Para-

typhi A, Enteritidis, and Gallinarum [10], is considered to influence caecal colonisation of

chickens by S. Enteritidis [83]. However, Hu et al, 2019 [5], found the peg operon, disrupted in

all strains of S. Pullorum, suggesting their redundancy.

The Salmonella pathogenicity island 1 (SPI-1), encoding type III secretion system (T3SS)

secreted effector genes, consisting of sopA, sopB, sopD, sopD2, sopE and sopE2 are involved in

the inflammation and diahhorea [84]. sopA, sopB, sopD, sopE and sopE2 were detected in all

genomes except in S. Gallinarum strain 9184. Among the Salmonella pathogenicity island II

(SPI-II) encoding T3SS effectors (pipB2, sseG, sseI, ssek2, and ssaS), the sseI and ssek2 were

detected in S. Enteritidis str. P125109, however, sseI was not detected in any bvG and bvP

strains, and sseK2 was absent in 3 bvG (str. 287/91, str.9184, str. VTCCBAA614) and 1 bvP

strain (str. CDC1983-67). The SPI-2 effectors (sseI, sifA, sseF, pipB2, spiC, sspH2, and slrP)

have been shown to play a role in inflammation, particularly in inhibition of dendritic cell

migration from intestinal environment [85]. Recently, it has been demonstrated that pseudo-

genization of sseI in sequence type 313 (ST313) Salmonella Typhimurium has rendered it inva-

sive in sub-Saharan African region human subjects [86]. Our BLAST results clearly show the

genes to be truncated in all bvG/bvP strains studied (S7B Table). sseI is a also a pseudogene in

S. Enteritidis isolates which cause systemic infection within immunocompromised hosts [87].

We next focussed our investigation on identification and analysis of candidate virulence

factors that were previously not identified in the genomes of the analyzed strains which

included genomic islands, prophages, TA cassettes and AMR genes.

The acquisition of virulence capability enhancement en masse by acquisition of SPI has

been hall mark of S. Gallinarum [17, 88]. A total of 113 SPI homologs with nearly 15 SPIs per

genome were detected by combinatorial usage of SPIfinder and BLAST searching (S8A and S8B

Table), which uncovered the presence of homologs of SP-1, SP-2, SP-3, SP-4, SPI-5, SPI-12, SPI-

13, SP-14, C63PI and SPCS54 island in the investigated genomes (S8A and S8B Table). The pres-

ence of particular SPIs in each of the genomes indicates their specificity towards S. Gallinarum

and S. Enteritidis and thus corroborates with previously published reports of SPIs showing serovar

specificity [44, 89, 90].Notably, the role of SPI’s other than SP1 and SP2 in virulence and pathology

of S. Gallinarum infections has not been analyzed in detail. The elucidation of functional role of

other SPIs thus requires further experimental investigations with functional knockout mutations

or via targeting and deletion of SPIs by utilization of CRISPR-Cas systems [91–94]. The limitation

of manually screening mutant phenotypes in functional knockout mutation studies has led to use

of high-thoroughput sequencing technologies in conjunction with transposon mutagenesis i.e.,

transposon sequencing (Tn-seq) [95, 96]. Transposon-directed insertion site sequencing (TraDIS)

was used to study the mechanisms used by Salmonella to enter and persist within the bovine lym-

phatic system in comparison to intestinal colonization [97]. Several variations of Tn-seq have

been devised which mainly differ in transposon junction sequence amplification techniques,

which can be applied to obtain global gene functional information in Salmonella.

Notably, SPI-12 (NC_006905_P4, 11.1 kb), and SPI-14 (AY956836, 0.4kb) were not

detected in S. Gallinarum Sal40 strain VTCCBAA614 and S. Gallinarum str. 9184, respectively.

SPI-12 has been shown to be crucial for bacterial survival in the host [98]. SPI-14 has been

recently identified as being involved in Salmonella intestinal survival and invasion via activa-

tion of SPI-1 genes [99].

Prophages contribute to pathogenicity, bacterial fitness, diversity, resistance to phages, anti-

microbial resistance, evolution as well as aid in increased environmental tolerance [20, 100, 101].
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In our study, the intact prophages were detected in the range of 1–3 with the highest number in

bvP QJ-2D-Sal and bvP str. S06004. As in our study, a recent study also detected only a single

phage in all of their bvG genomes, which is less than 5±3 prophage regions per genome detected

in 1,760 S. enterica genomes, using Phaster [102]. However the observed prophage diversity in

our study is in contrast with lower diversity reported by [103], using 2 strains of S. Gallinarum.

The gifsy_2 prophage element which was detected in all genomes analysed in this study was ear-

lier detected predominantly in S. Typhimurium genome [102]. Significantly prophage element

ST104 detected in bvP QJ-2D-Sal has been previously reported in MDR S. Typhimurium DT104

as phage ST104. Notably, prophage and plasmids acquisition has been demonstrated in S. Pullo-

rum leading to emergence of multi-drug resistant (MDR) strains [5, 104]. Our study also high-

lights variable number of propahges detected in bvP as compared to single prophage element

detected in bvG. Hu et al, 2019 [5] also detected multiple prophage elements in their bvP

genomes, which leads to high genetic diversity besides AMR. The differential presence of pro-

phages in the current study indicates the ability of S. Gallinarum genomes to acquire new gene

content, and introduce diversity in them which is in accordance with the singleton development

plot that depicted the finding of 43 new genes with each newly sequenced genome. This is further

refurbished by detection of holin, phage-like protein, phage membrane protein, side tail fibre

protein genes among 104 singletons detected in S. Gallinarum Sal40 strain by EDGAR (S4I

Table)). The differential distribution of prophages in the current study can be utilized as markers

for strain characterization, diversity assessment, tracking of strains, determination of transmis-

sion history of S. enterica Gallinarum strains as phage typing has been widely employed by vari-

ous investigators for these goals in various bacterial species [21, 105–109]. Moreover, cryptic

prophages identified in the study can be utilized as drug target after determination of their role

and essentiality status in the genome as they are permanent resident of microbial genomes [110].

In order to elucidate the role of prophages of S. Gallinarum, prophage induction may be

achieved using the SOS response activated by chemicals such as mitomycin C, hydrogen per-

oxide and UV radiation, which cause DNA damage, apart from instances of spontaneous

induction, and inflammation [111–113]. Induced prophages can be further studied by geno-

mic sequencing and bioinformatic methods [112]. Further, specific prophage methylation pat-

tern and repertoire of methyltransferase motif estimation can give useful insights on prophage

gene expression [114]. Nothwithstanding the widespread repression of prophage genes, tran-

scriptomics data analysis of propahge regions can be an important way forward [112, 115].

Toxin-antitoxin operons which are implicated in pathogenicity, virulence, persistence,

stress endurance, and antibiotic resistance in bacteria and archae were searched for in the

investigated Salmonella genomes [116–118]. The computational search revealed a total of 149

TA cassettes in the range of 16–18 in the investigated S. Gallinarum genomes (S10 Table). Sig-

nificantly, a majority of the toxins of identified TA systems belonged to relElike family and

highest number of identified antitoxins possessed RHH like domain (S10 Table, Fig 6). The

presence of 149 Toxin antitoxin operons in the range of 16–18 in each of the analyzed S. Galli-

narum genomes indicates their possible role in growth regulation, niche adaptation, encoun-

tering of various stress responses inside macrophage as well as in persistence, as has been

observed in various bacteria and archaea including S. Typhimurium LT2, [24, 117, 119]. More-

over, the biological significance of presence of large number of TA’s may be due to their poten-

tial involvement in number of underlying regulatory pathways, as can be inferred by

identification of different domains such as GNATlike_domain (24 nos.), MazFlike_domain (9

nos.), COG2929 like_domain (9 nos.), yeeU (8 nos.), doc (5 nos.), and PINlike_domain (3

nos.) in the structure of the toxins detected in the study. These TA domains have been previ-

ously reported to be associated with distinct features and different functional roles [117, 120].

As the acquisition of TA operons can be either through horizontal gene transfer or gene
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amplification [121], therefore the diversity of TA operons observed in Salmonella genomes

reemphasizes the flexible nature of S. Gallinarum genome. Elucidation of their role requires

further experimental analysis to be carried out.

The in silico identified TA systems also requires to be experimentally characterized before

considering them as bonafide TA operons by designing assays to test whether toxicity of over-

expressed toxin protein of TA pair is abrogated by over-expression of putative antitoxin protein in

heterologous systems [122–124]. Moreover, experimental investigation is required to decode their

role in pathogenesis. In addition, to knock out studies a number of powerful genetic tools can be

employed to elucidate the function of detected virulence factors. Ectopic expression of TA systems

can be studied to decipher their role in growth regulation [125, 126]. In addition, site directed

mutagenesis can be utilized for detection of residues crucial for toxin activity for functional char-

acterization of TA systems [127, 128]. Moreover, expression profile of identified TA modules in

response to various stresses at multiple time points can be detected by using whole genome micro-

array platform comprising of TA loci probes and that could lead to co-expressed genes/pathways

[129]. The Salmonella TA systems can be considered as potent targets for structure based inhibitor

design as has been previously employed against various other bacteria [130, 131].

Although plasmids are important carriers of AMR genes in Salmonella serovars, [132], we

detected the presence of acquired aminoglycoside resistance gene (aac(6’)-Iaa) in all the investi-

gated Salmonella genomes (S3 Fig, S11A Table). Neuert et al., 2018 [133] found in their study on

Non-typhoidal Salmonella (NTS), that nearly all but eight of the total 3,491 isolates carried an ami-

noglycoside acetyltransferase aac(60)-type gene. However, only eleven showed phenotypic resis-

tance to an aminoglycoside antimicrobial. In another study, the genes associated with ant and aph
were found in all aminoglycoside-resistant Salmonella isolates, but aac genes were only found in

Salmonella ser. Typhimurium and Salmonella ser. Heidelberg from chicken-sourced isolates

[134]. The observation is in concordance with previously published reports stating that aminogly-

cosides exhibit weak bactericidal activity against intracellular S. enterica serovars [135]. Strikingly,

known mutation in gyrA were also observed in four genomes out of the nine investigated i.e., S.

Gallinarum str. 287/91, S. Gallinarum Sal40 strain VTCCBAA614, S. Pullorum str. S06004 and S.

Pullorum QJ-2D-Sal (S11B Table). Koerich et al (2018) [58] also reported high resistance to drugs

from macrolide and quinolone groups in Salmonella Gallinarum field isolates. Literature mining

has revealed that mutations in gyrA are associated with resistance to fluoroquinolones in eight

species of Enterobacteriaceae [136]. Chromosonal point mutations in rrsD gene in the helix 34

region, which results in changes to the drug-binding site in the ribosomal 16S rRNA has been

reported to confer resistance against aminoglycoside spectinomycin of Salmonella enterica serovar

Typhimurium gene [137, 138]. Workers have also reported mutations in rrsD genes in 2 S. enter-
ica isolates from cattle and chicken in South Africa [139].

Antimicrobial resistance in Salmonella serovars is a serious poultry husbandry and public

health problem all over the world including Asian, and South American region [58, 140, 141].

The observation of variable Antimicrobial resistant genes in the study can be utilized as AMR

markers. The presence of additional AMR genes in S. enterica Gallinarum str. Sal40 and S. enterica
Pullorum str. S06004 indicates the ability of acquiring exogenous DNA for adaptation in response

to environmental requirements. The differential presence underlines the need of NGS based map-

ping of AMR genes in S. Gallinarum serovars to better manage their control measures [142].

A number of investigators have previously carried out comparative genome analysis of S.

Gallinarum with several other serovars which includes S. Enteritidis, S. Typhimurium to

decode the genomic differences amongst them. The comparative genome analysis of S. Enteri-

tidis PT4, S. Typhimurium LT2 and S. Gallinarum 287/91 was carried by Thomson et al.,
(2008) [10] wherein they reported predominant similarity and synteny in their core genomes

and overrepresentation of putative pseudogenes in S. Gallinarum 287/91 in comparison to S.

PLOS ONE Comparative genome analysis of Salmonella enterica

PLOS ONE | https://doi.org/10.1371/journal.pone.0255612 August 19, 2021 18 / 29

https://doi.org/10.1371/journal.pone.0255612


Enteritidis str. P125109. Similarly, a genomic comparison between S. Gallinarum and S. Pullo-

rum was carried out by Feng and associates [143] and they included S. Gallinarum str.

CDC1983-67, S. Gallinarum str. RKS5078, S. Gallinarum str. 287/91, and S. Enteritidis str.

P125109 and reported a high number and differential distribution of pseudogenes in bvG and

bvP strains in reference to S. Enteritidis strain. On the other hand, genome comparison

between closely related S. enterica serovars Enteritidis, Dublin, and Gallinarum revealed differ-

ential distribution of prophages and pseudogenes in their genomes along besides SNPs, inser-

tions, and deletions amongst the investigated strains [103]. In a similar manner, to decode

different host-specificities, genes related to SPI of S. Enteritidis PT4 (NCTC 13349) and S. Gal-

linarum 287/91 NCTC 13346 were compared by Eswarappa et al. 2009 [144] and detected 24

positively selected genes that included SPI-2 TTSS and effector proteins of SPI-1 TTSS.

The present study suggests that the host restricted S. Gallinarum strains harbour strain spe-

cific genes and they exhibit differential distribution of putative virulence factors such as geno-

mic islands, prophage regions, TA cassettes, and acquired AMR genes in their genomes. This

study also highlights the need to analyse more number of S. Gallinarum genomes to under-

stand the phylogeny and better capture of its pan-genome biodiversity. This comparative

genomic analysis of S. Gallinarum serovar has provided a valuable insight and laid foundation

for future experimental studies to be carried out to decipher the underlying mechanisms driv-

ing the pathogenesis and virulence of this avian restricted pathogen.

5. Conclusion

Salmonella enterica serovar Gallinarum biovar Pullorum (bvP) and biovar Gallinarum (bvG), are

the causative agents of disease (PD) and fowl typhoid (FT) respectively, which causes considerable

economic losses to poultry industry worldwide especially in developing countries including India.

Comprehensive comparative genome analysis of eight S. enterica serovar Gallinarum strains origi-

nating from different geographical regions including Indian strain S. Gallinarum Sal40

VTCCBAA614 was carried out to decode the genotypic differences amongst them with a focus on

detection and analysis of candidate virulence factors. The investigation revealed an open pan-

genome for S. Gallinarum encompassing 5091 coding sequence (CDS) with 3270 CDS belonging

to core-genome, 1254 CDS to dispensable genome and strain specific genes amongst the analyzed

strains. Furthermore, analysis of distribution of candidate virulence factors in the investigated

strains revealed diversity and differential distribution of genomic features such as genomic islands,

prophage regions, toxin-antitoxin operons, and acquired antimicrobial resistance genes. The fim-

brial operons Agf/Csg, bcf, lpf, peg, saf, stb, ste, stf, sth and sti were observed to be present in all of

the S. Gallinarum genomes, whereas operon sef, and std showed differential distribution. The

computational search unravelled the existence of high sequence identity genomic islands SP-1,

SP-2, SP-3, SP-4, SPI-5, SPI-12, SPI-13, SP-14, C63PI and SPCS54 in their genomes. Additionally,

23 prophage regions and 149 Type II TA loci were also identified and characterized in the investi-

gated genomes. The genomic variability detected among the S. enterica serovar Gallinarum strains

will form the basis for future experimental investigations and could be used for bacterial typing.

The core genome assignment can be utilised towards design of diagnostics, as well as drug and

vaccine target prediction for effective surveillance, prevention, and control.
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lyzed Salmonella strains performed by eggNOG-mapper v2. Functional annotation of CDS of
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Consolidated details of virulence factor (VF) identified by VF analyzer tool and BLASTN

searches in the investigated Salmonella genomes. Virulence genes.
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in the genomes of nine Salmonella strains that were investigated in the study with description

of a) region number b) region length c) completeness d) score e) total proteins f) region posi-
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