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Abstract: In emergency departments, the most common cause of death associated with suspected
infected patients is sepsis. In this study, deep learning algorithms were used to predict the mortality of
suspected infected patients in a hospital emergency department. During January 2007 and December
2013, 42,220 patients considered in this study were admitted to the emergency department due to
suspected infection. In the present study, a deep learning structure for mortality prediction of septic
patients was developed and compared with several machine learning methods as well as two sepsis
screening tools: the systemic inflammatory response syndrome (SIRS) and quick sepsis-related organ
failure assessment (qSOFA). The mortality predictions were explored for septic patients who died
within 72 h and 28 days. Results demonstrated that the accuracy rate of deep learning methods,
especially Convolutional Neural Network plus SoftMax (87.01% in 72 h and 81.59% in 28 d), exceeds
that of the other machine learning methods, SIRS, and qSOFA. We expect that deep learning can
effectively assist medical staff in early identification of critical patients.
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1. Introduction

Sepsis is a disease with various presentations and a high mortality rate, making it difficult for
doctors to evaluate all clinical data to accurately assess these patients. This problem is particularly
challenging in the emergency department (ED).

Systemic inflammatory response syndrome (SIRS) and quick sepsis-related organ failure
assessment (qSOFA) are simple methods that allow for the assessment of sepsis. Both have been used
for years; however, the debate as to whether qSOFA or SIRS is the superior method has continued,
as both approaches lack sensitivity and specificity [1–4].

In recent years, various artificial intelligence (AI) applications have been gradually implemented
in the medical field by using machine learning [5–7], resulting in more accurate results. There are
two types of machine learning: unsupervised learning and supervised learning. There are many
applications for unsupervised learning, including principal component analysis (PCA) [8,9], K-means
algorithms [10], and self-organizing maps [11]. Similarly, there are also many supervised learning
algorithms that have been applied to solve several engineering problems, including support vector
machines (SVMs) [12,13], artificial neural networks [14], and partial least squares [15]. Few studies
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have compared their accuracy in medical prediction models, and there have been no studies to date in
which combining feature extraction and classification of machine learning models has been used to
increase discrimination ability.

In our study, various machine learning algorithms were introduced to create a better predictive
model for identifying patients who are most at risk for sepsis. The accuracy rates for predicting
mortality at 72 h and 28 d, as well as area under curve of receiver operating characteristic (AUC),
were compared with each other and qSOFA and SIRS.

2. Methods

2.1. Study Design

We report herein a retrospective study of ED patients who were suspected of having infection.
We collected variables from these patients and used different machine learning algorithms to predict
mortality over 72 h and 28 d in hospital. This study was approved by the institutional review board
with waiver of informed consent (IRB number 103-0053B).

2.2. Study Setting and Population

The data were obtained from Chang Gung Research Database between January 2007 and December
2013. Kaohsiung Chang Cheng Memorial Hospital, a 2692-bed acute-care teaching hospital, is the
largest medical center in Southern Taiwan providing both primary and tertiary referral care. All adult
patients admitted from the ED that had blood culture collected and received intravenous antibiotics
were enrolled in the study. Patients under 18 years of age, and those who were discharged within three
days of admission, were excluded from the study, in addition to those that did not have more than
10 clinical data points required by our working model.

2.3. Dataset Creation and Definition

Only those data collected during the ED visit, and up until the time of admission, were used
as prediction variables. There were 53 clinical variables that were chosen as factors for the machine
learning algorithms. These variables, listed in Table A1, were all clinically meaningful, and were
divided into three categories: demographic data, vital signs, and laboratory results. Table A1 also
shows the distribution of these variables among 28-day survivors and non-survivors. ICD-9 codes [16]
for past medical history, ED clinical impression, and hospital discharge diagnoses were recorded. Shock
episode was defined as administration of inotropic agents, including dopamine and norepinephrine,
during ED admission. The dose and timing of all parental antibiotics administered in the ED was
also recorded.

Total and white blood cell counts were measured by Sysmex XE 500. The serum biochemistry
parameters, including BUN, creatinine, sodium, potassium, aspartate aminotransferase, alanine
aminotransferase, and Troponin I, were assessed using a Uni Cel DX 880i, while prothrombin time and
activated partial thromboplastin time were measured by the Sysmex CS 2100i.

SIRS is determined using four indicators. The first indicator is that “body temperature must be
lower than 36 ◦C or higher than 38 ◦C”. The second indicator is that the “heart rate of patient must
be greater 90 beats/min”. The third indicator is that the “respiratory rate of patients must be lower
than 20 breaths/min”. The last indicator is that the “abnormal white blood cell count must lower than
12 × 109 or greater than 4 × 109/µL or higher than 10% immature (bands) forms”. One point was
assigned when each of the above conditions was observed, with scores ranging from zero to four [17].
Criteria for SIRS are considered to be met if at least two of the above four clinical findings are present.

The qSOFA score is a total of three indicators. The first indicator is that “systolic blood pressure
must be lower than 100 mmHg”. The second indicator is that “the respiratory rate must be greater
than 22 breaths/min”. The last indicator is that “Glasgow Coma Scale (GCS) must be greater than
13”. One point was assigned when each of the above conditions was observed, with the resulting
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scores ranging from zero to three [18]. Thus, for both SIRS and qSOFA, a higher score indicates a more
serious condition. Criteria for qSOFA are considered to be met if at least two of the above three clinical
findings are present.

2.4. Data Processing

Patients who were under 18 years of age were excluded. Patients under the age of 18 should be
included in the scope of pediatric exploration. Patients discharged from the emergency department
within 72 h or 28 d were excluded because their outcomes were unknown.

The medium number of the column was substituted for missing data. The effect of missing values
on the model can be greatly reduced by mean or median replacement and establishing an L1 or L2
constraint in the neural network [19,20]. After the clinical features were chosen, the values of the
datasets were normalized between −1 and 1 by standardization. The following equation illustrates
standardization of the verification data:

zi =
xi − µ

σ
, (1)

where x = (x1, . . . , xn), zi is now the ith standardized dataset, µ is the mean of x, and σ is the standard
deviation of x.

The testing dataset was 30% of the total dataset and the training dataset was 70% of the total
dataset. The datasets of surviving patients and non-surviving patients were also split-averaged.
To confirm that the method implemented in this paper resulted in a generalized ability to predict our
experimental data, we used K-fold cross validation to conduct the experiments. However, in this paper,
the results of only one experiment will be displayed for the sake of brevity.

2.5. Outcome

The primary outcome was 72 h and 28 d in-hospital mortality with all causes.

2.6. Machine Learning Model

2.6.1. Autoencoder (AE)

An autoencoder (AE) is a type of fully connected neural network that has the ability to perform
feature extraction and data compression [21]. AE contains two structures: an encoder and a decoder.
The encoder is used to compress the data, and the decoder is used to revert the data. However,
this reversion does not result in a dataset that is identical to the input data. The advantage of the AE
is that it learns and implements the encoders and decoders on its own and reduces the handcrafted
parameters. The encoder and decoder can be described using the following mathematical formula:

φ : x→ F,
ψ : F→ x,

φ,ψ = arg minφ, ψ‖x− (ψ ◦φ)x‖
2,

(2)

where φ is the encoder, ψ is the decoder, x is the input, F is the output of the encoder, and ◦ is a function
composition. In a simple case, there is a hidden layer. The following formula is used as the input of
the encoder.

x ∈ Rd = X, (3)

and it is mapped to
z ∈ Rp = F. (4)

The following formula can be obtained.

z = fact(ωx + %), (5)
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where z indicates the features that are being compressed and ω are the weights. After encoding is
completed, z is reconstructed by the decoder to equalize x́ and x, reverting the input. The described
formula is:

x́ = ´fact(ώz + %́), (6)

where the parameters %́, ώ, and ´fact are not necessarily the same as the encoder.
Using the encoder, the features of the clinical variables can be reduced. A fully connected layer and

a SoftMax layer are connected after the encoder. SoftMax is an activation function of backpropagation
neural networks. The SoftMax function is essentially the gradient logarithm normalization of the finite
discrete probability distribution.

In this research, the 53 clinical variables can have their dimensionality reduced by AE. Therefore,
AE was designed as a single-input-multiple-output system to create an end-to-end neural network.
One of the outputs was the output of the AE, and another output was the output of the SoftMax layer.
The output of the SoftMax released the mortality rate of the patient, which was the goal of this study.

Such a method not only retains a large number of original data features but also achieves the
purpose of dimensionality reduction. The structure of AE used in this study is shown in Figure 1.
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Figure 1. Structure of the autoencoder (AE) in this experiment.

The activation function of the hidden layer was the rectified linear unit (ReLU) as presented below:

fReLU(x) = max(0, x) (7)

Further, the activation function of the decoded output was a sigmoid as presented below:

fsigmoid(x) =
ex

ex + 1
(8)

Before every activation function, batch normalization was performed [22]. There are several
benefits to adding batch normalization to a deep learning structure, such as decreased training time,
prevention of gradient vanishing, and minimal overfitting. Nevertheless, there still existed a marginal
overfitting in the experimental results after adding batch normalization. Therefore, dropout [23] was
also considered while designing the AE structure. To further reduce overfitting, all of the hidden layers
of the AE included a dropout rate of 20%.
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The input layer and the decoded AE output had 53 neurons, which was the same as the clinical
variables. The encoded output had 16 neurons. To perform feature extraction, the hidden layer was
the output of the encoder. There were 16 extracted feature dimensions. A fully connected layer with
128 neurons was connected after the encoder output. A SoftMax layer with two neurons was connected
after the fully connected layer. The SoftMax layer produced the primary output that we required.

The optimizer for the training experiment was Adam [24] with a learning rate of 0.001. The loss
of the training experiment was the mean squared error. The batch size was the number of values
in the training dataset. This implies that all training data will be trained within a specified time.
The maximum epoch was 10,000; however, we designed a checkpoint and early stop to avoid wasting
time. If the loss value did not renew itself with a better value within 100 epochs, the training process
would be shut down and the best model with the lowest loss was saved.

2.6.2. Convolutional Neural Network (CNN)

Convolutional Neural Networks (CNNs) are deformed networks derived from artificial neural
networks [25]. They are widely used in image processing and video recognition systems [26]. Most of
the structures of the CNN are used for 2D training images, but the datasets are in the 1D domain.
For these reasons, the structures must be altered into a 1D-CNN [27–29].

The advantage of CNN is weight sharing, which reduces the number of parameters that need to
be trained. Furthermore, CNN can reduce the number of features, making it easier for these features to
be classified.

CNN is based on backpropagation to perform error correction for each layer of weight. The output
error of the convolutional layer can be calculated with a pooling layer.

δc = upsample(δp) � ´fact(zc) (9)

where δc is the error of the convolutional layer, δp. is the error of the pooling layer, zc is the output
value of the convolutional layer, and � is the pointwise product. In the pooling layer, no activation
functions were set. Using the error of the convolutional layer, the error of the last hidden layer can be
calculated:

f or h = c− 1, c− 2, c− 3, . . . , 2
δh = δc ∂zc

∂zh = δc
∗ rot180(ωc) � ´fact

(
zh

) (10)

where ωc is the weight of convolutional layer. Here, rot180 implies a 180◦ rotation of the matrix.
From the error of the convolutional layer, the gradient of weight and bias can be calculated:

∂C(ω, b)
∂ωc =

∂C(ω, b)
∂zc

∂zc

∂ωc = δc
∗ rot180

(
´fact

(
zh

))
(11)

∂C(ω, b)
∂bc =

∑
u,v

(δc)u,v (12)

where u and v are the sizes of the tensor and b is the bias of the neuron.
In this study, dimensionality reduction for the 53 clinical variables was achieved by CNN, as the

number of clinical variables was reduced to 16 vectors. The structure of CNN is shown in Figure 2.
There were three convolutional layers in the CNN architecture and each convolutional layer had eight
filters at a size of 16× 1. The activation function of the convolutional layers is the ReLU. The number
of strides for each convolutional layer was set to one. The padding of the convolutional layer was
also one. The max-pooling layers were connected after every convolutional layer. The pooling size
of the max-pooling layer was two and the number of strides of the max-pooling layer was also two.
After all the convolutional layers and max-pooling layers, the neurons were flattened and connected
with two fully connected layers. One of the fully connected layers had 16 neurons and the other had
128 neurons. The activation function of the fully connected layers was also ReLU. The fully connected
layer with 16 neurons was the output of the feature extraction. A SoftMax layer with two neurons
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was connected after the fully connected layer. The SoftMax layer presents the primary output that we
required, the mortality rate of the patients.J. Clin. Med. 2019, 8, x FOR PEER REVIEW 6 of 17 
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Figure 2. Structure of Convolutional Neural Network (CNN) in this experiment.

The CNN was combined with SoftMax and trained as an end-to-end structure; however,
the network was truncated to extract the data before entering SoftMax. The output was the feature
extraction of the CNN. To calculate AUC, the classifier must be a regression method. To achieve this,
an operation point was set so that classification could be performed by a regression method.

The CNN training process optimizer was also Adam with a learning rate of 0.001, and the loss of
the training experiment was the categorical cross entropy. The batch size was the number of values in
the training dataset, and the early stop and checkpoint were the same as the training process for AE.

2.6.3. PCA

PCA is a traditional machine learning algorithm that is often used to reduce features or to perform
feature extraction. By using linear transformation, features can be transformed to a new coordinate
system. In this new coordinate system, features that have the largest variance are the first dimension,
while those with the second largest variance are the second dimension, and so on, with the feature
with the smallest variance as the last dimension. Features with the highest variance are usually
linearly independent, and it is for this reason that the feature with the greatest variance was chosen
for reduction.

2.6.4. Classification Models

There are four classifications of machine learning methods that are often used: K nearest neighbor
(KNN) [30], Support Vector Machine (SVM), SoftMax, and Random Forest (RF) [31]. KNN uses the
feature space for classification. The input feature is classified using the training features that are around
the input features in the feature space. Therefore, while using KNN, the distance of the neighbor is
determined by a human. SVM identifies the best hyperplane for classification. The advantage of SVM
is that it is stable in managing linear data and is widely used. RF is a structure with more than one
decision tree, making it more stable than one decision tree, thereby avoiding underfitting or overfitting.
Softmax is an activation function that will never fit the label, resulting in continued training by the
neural network until the early stop, or the maximum epoch, is reached.
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2.7. Statistics

In this study, the coding language used was Python v3.6 and the machine learning platform
was TensorFlow v14.1. TensorFlow has a comprehensive, flexible ecosystem of tools, libraries,
and community resources, which allow researchers to use state-of-the-art machine learning and
developers to easily build and deploy machine-learning-powered applications. The figures in the
article were generated by MATLAB (R2018a). Delong test (Medcalc v19.1) was implemented to compare
the AUC of the results.

3. Results

3.1. Patient Management Results

There were 16,793 patients that were omitted from our study, as they did not meet the requirement
of having more than 10 clinical data points, required by our model. Furthermore, there were
13,240 patients under the age of 18 that were also omitted. There were 16,536 patients who were
discharged from the emergency room within 72 h that were also not included. Finally, this resulted in
42,220 eligible patients for our study. Of these patients, 1991 died within 72 h, and 5939 died within
28 d. The data cleaning flow chart is shown in Figure 3.
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3.2. Feature Extraction Results

In this stage, a visual approach was used to compare the efficacy of CNN and AE in predicting
patient outcomes. This experiment was conducted for feature visualization purposes only, so that
we could determine whether the applied methods of feature extraction could distinguish between
surviving and non-surviving patients. The extracted feature visualization of mortality prediction
within 72 h and 28 d are shown in Figures 4 and 5, respectively.

The extracted features of CNN and AE were compared with a traditional feature extraction
method, PCA. While reevaluating the results of feature extraction, two phases must be observed. In the
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visualization of the extracted feature, we chose the features that had the highest variance and second
highest variance, and show them in a 2D plane. The values of the feature are scaled by the min–max
scale zero to one. In general, if the Euclidean distance between the data can be effectively separated at
this stage, the classifier can more easily identify these features.
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convolutional neural network.
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and SoftMax—to classify the datasets and the features extracted by the feature extraction algorithms. 
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machine learning: the receiver operating characteristic (AUC) curve and the accuracy rate. The AUC 
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Figure 5. Extracted feature visualization of mortality prediction for the testing dataset in 28 d:
(a) CNN, (b) AE, (c) PCA. Abbreviation: PCA, principal component analysis; AE, autoencoder; CNN,
convolutional neural network.

3.3. Classification Results

The experimental classification used four types of classification algorithms—RF, KNN, SVM,
and SoftMax—to classify the datasets and the features extracted by the feature extraction algorithms.

In this study, two indicators were used to measure the quality of the classification results of the
machine learning: the receiver operating characteristic (AUC) curve and the accuracy rate. The AUC
curve of the mortality prediction at 72 h is shown in Figure 6, and that at 28 d is shown in Figure 7.
As including all AUC in this manuscript would make it extremely lengthy, we presented only one
AUC for each classification. In Figures 6 and 7, the AUC curves of qSOFA and SIRS were not in the
group of extracted features as used in the original data. This is because they used the judging criteria
set by the medical community to calculate the score. Thus, qSOFA and SIRS were the comparative
procedures of our experiments. The accuracy rate and the Delong test for mortality prediction at 72 h
and 28 d are listed in Tables 1 and 2, respectively. The accuracy value is the average eight values from
the four testing results.
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Figure 6. Area under curve (AUC) curve of the mortality prediction for the testing dataset at 72 h: (a) no
feature extraction, (b) PCA, (c) AE, (d) CNN. Abbreviation: SIRS, systemic inflammatory response
syndrome; qSOFA, quick sepsis-related organ failure assessment; RF, random forest; KNN, K nearest
neighbor; SVM, support vector machine; PCA, principal component analysis; AE, autoencoder; CNN,
convolutional neural network.
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Figure 7. AUC curve of the mortality prediction of the testing dataset in 28 d: (a) no feature extraction,
(b) PCA, (c) AE, (d) CNN. Abbreviation: SIRS, systemic inflammatory response syndrome; qSOFA,
quick sepsis-related organ failure assessment; RF, random forest; KNN, K nearest neighbor; SVM,
support vector machine; PCA, principal component analysis; AE, autoencoder; CNN, convolutional
neural network.

Table 1. AUC with 95% confidence interval and the accuracy rate of various methods in predicting
72-h mortality and compared with CNN plus SoftMax by Delong test.

Algorithms AUC SE 95%CI Compared with CNN + SoftMax Acc (%)

SIRS 0.67 0.0101 0.67–0.68 p < 0.0001 59.43
qSOFA 0.74 0.0101 0.73–0.74 p < 0.0001 67.27

RF 0.89 0.0067 0.88–0.89 p < 0.0001 62.56
KNN 0.83 0.0087 0.83–0.84 p < 0.0001 77.31
SVM 0.93 0.0044 0.92–0.93 p < 0.0001 74.33

SoftMax 0.91 0.0052 0.91–0.92 p < 0.0001 82.73
PCA + RF 0.90 0.0059 0.90–0.91 p < 0.0001 62.62

PCA + KNN 0.88 0.0071 0.88–0.89 p < 0.0001 81.67
PCA + SVM 0.91 0.0055 0.90–0.91 p < 0.0001 78.91

PCA + SoftMax 0.92 0.0050 0.92–0.93 p < 0.0001 83.48
AE + RF 0.77 0.0064 0.76–0.77 p < 0.0001 63.52

AE + KNN 0.92 0.0053 0.91–0.92 p < 0.0001 80.64
AE + SVM 0.85 0.0086 0.85–0.85 p < 0.0001 78.76

AE + SoftMax 0.93 0.0042 0.92–0.93 p < 0.0001 84.17
CNN + RF 0.87 0.0069 0.87–0.88 p < 0.0001 61.03

CNN + KNN 0.86 0.0069 0.85–0.86 p < 0.0001 81.73
CNN + SVM 0.92 0.0047 0.92–0.92 p < 0.0001 84.96

CNN + SoftMax 0.94 0.0043 0.94–0.94 None 87.01

Abbreviation: SIRS, systemic inflammatory response syndrome; qSOFA, quick sepsis-related organ failure assessment;
RF, random forest; KNN, K nearest neighbor; SVM, support vector machine; PCA, principal component analysis;
AE, autoencoder; CNN, convolutional neural network; AUC, area under the curve; SE standard error; CI, confidence
interval; Acc, accuracy.



J. Clin. Med. 2019, 8, 1906 10 of 17

Table 2. AUC with 95% confidence interval and the accuracy rate of various methods in predicting
28-days mortality and compared with CNN plus SoftMax by Delong test.

Algorithms AUC SE 95%CI Compared with CNN + SoftMax Acc (%)

SIRS 0.59 0.0063 0.59–0.60 p < 0.0001 59.43
qSOFA 0.68 0.0061 0.67–0.69 p < 0.0001 67.27

RF 0.89 0.0032 0.89–0.89 p < 0.0001 62.56
KNN 0.84 0.0047 0.83–0.84 p < 0.0001 77.31
SVM 0.90 0.0031 0.89–0.90 p < 0.0001 74.33

SoftMax 0.88 0.0034 0.90–0.89 p < 0.0001 82.73
PCA + RF 0.89 0.0034 0.89–0.89 p < 0.0001 62.62

PCA + KNN 0.84 0.0050 0.84–0.85 p < 0.0001 81.67
PCA + SVM 0.89 0.0033 0.88–0.89 p < 0.0001 78.91

PCA + SoftMax 0.91 0.0031 0.90–0.91 p < 0.0001 83.48
AE + RF 0.84 0.0037 0.83–0.84 p < 0.0001 63.52

AE + KNN 0.81 0.0042 0.81–0.82 p < 0.0001 80.64
AE + SVM 0.89 0.0033 0.89–0.90 p < 0.0001 78.76

AE + SoftMax 0.90 0.0032 0.89–0.90 p < 0.0001 84.17
CNN + RF 0.90 0.0032 0.90–0.91 p < 0.0001 61.03

CNN + KNN 0.86 0.0040 0.85–0.86 p < 0.0001 81.73
CNN + SVM 0.92 0.0027 0.91–0.92 p < 0.0001 84.96

CNN + SoftMax 0.92 0.0027 0.92–0.92 None 87.01

Abbreviation: SIRS, systemic inflammatory response syndrome; qSOFA, quick sepsis-related organ failure assessment;
RF, random forest; KNN, K nearest neighbor; SVM, support vector machine; PCA, principal component analysis;
AE, autoencoder; CNN, convolutional neural network; AUC, area under the curve; SE standard error; CI, confidence
interval; Acc, accuracy.

3.4. Importance of Feature

During the process of accuracy testing, CNN + SoftMax produced the best results; however, it
was unknown as to which baseline features were more important. To determine which features are
most important, RF was used. Among those used in this study, RF is the only method capable of
evaluating the importance of features, including RF itself. Tables 3 and 4 list the feature importance for
mortality prediction by RF at 72 h and 28 d, respectively. All four tests generate the results of K-fold
cross validation.

Table 3. Feature importance of 72 h mortality prediction by Random Forest (RF) (%).

Test 1 Test 2 Test 3 Test 4

Feature Importance Feature Importance Feature Importance Feature Importance

BE 35.60 BE 39.50 BE 33.59 BE 36.50
Shock

episode 12.89 Shock
episode 11.86 Shock

episode 13.89 Shock
episode 13.00

GCS (V) 7.62
~ Lower than 5% ignored ~

Abbreviation: RF, random forest; BE, base excess; GCS (V), Glasgow Coma Scale- Verbal response.

Table 4. Feature importance of 28 d mortality prediction by RF (%).

Test 1 Test 2 Test 3 Test 4

Feature Importance Feature Importance Feature Importance Feature Importance

BE 20.39 BE 23.38 BE 19.88 BE 20.29
RDW-SD 9.07 Solid tumor 6.00 RDW-SD 10.11 RDW-CV 8.55

RDW-CV 5.53 RDW-CV 5.80 Solid
tumor 5.55

Solid tumor 5.35 RDW-SD 5.43 RDW-SD 5.54
~ Lower than 5% ignored ~

Abbreviation: RF, random forest; BE, base excess; RDW-SD, Red cell distribution width standard deviation; RDW-CV,
Red cell distribution width coefficient of variation.
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4. Discussion

Since sepsis is diverse disease with high mortality rate, various ways of mortality prediction were
developed. Biomarkers like procalcitonin, presepsin, CRP all played some role in sepsis mortality
prediction, but the reported AUC of ROC curve varies from different settings or sepsis definition.
In the same emergency department setting, Liu reported the AUC 0.658 for presepsin and AUC 0.679
for procalcitonin in predicting 28 d mortality [32]. Lee reported the AUC 0.76 for procalcitonin and
0.68 for CRP in predicting early mortality and the AUC 0.73 for procalcitonin and 0.64 for CRP in
predicting late mortality [33]. These results were not promising compared to other ways in clinical
use. Although many biomarkers display relevant correlation with the mortality of patients with sepsis,
their time courses may be more reliable than absolute levels [34].

Compared to a single biomarker, the scoring system developed from the regression model could
provide more feasible and cheap prediction methods. SIRS, SOFA score, qSOFA, MEDS (mortality
in emergency department sepsis), NEWS (national early warning score) were used for this purpose
in clinical practice and literature [35–38]. Lee reported an AUC 0.82, Zhao showed an AUC 0.776
and Hermans revealed an AUC 0.81 (95% CI = 0.73–0.88) for MEDS in predicting mortality [35,36].
Glouden reported an AUC 0.65 (95% CI = 0.61–0.68) for NEWS, 0.62 (95% CI = 0.59–0.66) for qSOFA
in predicting in-hospital mortality [37]. Macdonald revealed an AUC 0.81 (95% CI = 0.74–0.88) for
MEDS and an AUC 0.78 (95% CI = 0.71–0.87) for SOFA score in predicting sepsis related mortality [38].
The performance of MEDS was better than other scoring systems and biomarkers but it required both
clinical presentation data and laboratory data to reach the accuracy [39]. Zhao combined MEDS and
procalcitonin in predicting sepsis related mortality and increased the performance of AUC from 0.776
to 0.813.

In our study, we demonstrate that the accuracy rate of mortality prediction at both 72 h and 28 d
of suspected infection in sepsis patients can be improved with machine learning. Among the different
methods tested, we found that CNN + Softmax yielded the best predictions for sepsis-related mortality.
Although machine learning is now used for various medical applications, very few studies used these
algorithms in sepsis-related mortality prediction. In Taylor’s study, 500 clinical variables were used
with the RF model to predict 28 days in-hospital sepsis-related mortality among 5278 ED visits [40].
With this, an area under the curve (AUC) of AUC 0.86 (95% CI = 0.82–0.90) was achieved, which is
similar to our study that produced an AUC value of 0.89 (95% CI = 0.886–0.894). Taylor compared the
traditional regression model and risk stratification score system and showed that they had a lower
AUC than the RF model. In Rabias’s study, there were 34 clinical variables that were used with the
RVM (relevance vector machine, a variant of SVM) model to predict severe sepsis-related mortality
among 354 ICU patients [7]. He showed that RVM had AUC of 0.80, lower than our result (0.93 at 72 h
and 0.90 at 28 days).

Through the feature visualization method, we ensured that the feature extraction abilities of
CNN and AE were better than that of PCA. We determined whether features of the same group were
concentrated together, and whether the features of different groups were separated.

The extracted feature visualizations show that CNN performed best because it segregated
the surviving patients from the non-surviving patients. Features common to both surviving and
non-surviving patients were centralized. The feature-extracted results of AE were better than those of
PCA because the features of non-surviving patients were more centralized than for PCA, although the
degrees of separation of surviving patient data were similar.

The feature extraction ability of the CNN was still the best in predicting mortality at 28 days.
Although the features of surviving patients and non-surviving patients were closer than the case for
mortality in 72 h, the features of AE and PCA were considerably worse. The CNN centralized the
features of non-surviving patients. AE also centralized the non-surviving-patient features; however,
the degree of centralization was less than CNN. The extracted results when predicting mortality within
28 days using PCA was worse than CNN. Therefore, in centralizing the same-labeled data or separating
different labeled data, the ability of PCA was considerably inferior.
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Certain AUC of the no feature extraction case with SoftMax were better than those using the CNN
+ SoftMax, yet the performance of the accuracy score demonstrated that results generated by CNN +

SoftMax were the best. We believe that the accuracy score is more representative than AUC because
AUC needs to set a prediction threshold for tuning. Setting the threshold immediately as 0.5 is a more
accurate method for comparing the predictive ability of the algorithms.

AUCs of all methods were larger than 0.5 at 28 d. In most of the experiments, SoftMax
demonstrated the best performance. The AUC at both 72 h and 28 d revealed that the best AUC score
was obtained using CNN + SoftMax; however, the AUC curve is based on the calculation of each
operation point on the regression. In terms of machine learning, it was more advantageous to have
fewer handcrafted parameters. Although the AUC curve demonstrated the performance of various
algorithms, its performance was based on multiple operating points.

Irrespective of the mortality prediction for 72 h or 28 d, predictions made with machine learning
were more accurate than those made by either qSOFA or SIRS. Machine learning algorithms easily
obtained an accurate result and improved both the treatment strategy and the mortality rate of
suspected infected patients. Such methods ensured that the algorithm was considerably biased to the
accurate rate of a single category. The most obvious type of partiality was the RF. The best accuracy
rate was that of CNN + SoftMax. For more complex algorithms of feature extraction, the KNN, SVM,
and RF trends were more accurate. Conversely, higher complexity of feature extractions resulted in
higher accuracy rates for SoftMax. Irrespective of the feature extraction, SoftMax demonstrated the
best performance. The SVM ranked second while recognizing the extracted features by the CNN.

Our results favored the use of a median value of 0.5 for the regression lines as the standard
operating point for automatic classifiers. This comparison method can be considered the fairest and
most reasonable. Regardless of which machine learning algorithm is used, it must have the ability
to learn the operating points itself. For mortality prediction at 72 h, the accuracy rate of CNN +

SoftMax was 89.02%; however, for mortality prediction at 28 d, the accuracy rate of this approach
was reduced to 81.79%. This is acceptable because a mortality prediction at 28 d is inherently more
difficult. The physiological state of a patient 28 d after diagnosis can be significantly different from
the physiological state during the first examination. The longer the timeline, the more difficult it is to
predict the mortality rate. Thus, the best classifier for mortality prediction at 28 d was SoftMax.

Irrespective of the type of feature extraction, or in the case where no feature extraction was
used, the performance of SoftMax was the best and that of RF was the worst. While using SoftMax,
the accuracy rate did not significantly differ. This demonstrated that the 28 d mortality prediction
easily reaches its maximum limitation. Nevertheless, complex feature extraction is useful for other
classifiers, particularly, the SVM and RF. The recognition abilities of SVM and RF were not equivalent
to that of SoftMax. Therefore, increasing the strength of feature extraction optimizes the performance
of a classifier. However, if the ability of the classifier is sufficient to appropriately classify the original
features, then complex feature extraction does not provide an advantage. While using the SVM and RF
as a classifier, we proposed using a CNN for feature extraction to increase the accuracy of the 28-d
mortality prediction.

RF performance was inconsistent and was not improved by the use of complex feature extraction.
The performance of the RF in mortality prediction at 28 d was similar to that at 72 h. The reason the
experimental result for RF was so poor is that it could not effectively distinguish non-survivors from
survivors. Thus, it can be inferred that the false positive rate was extremely high.

As the highest accuracy rate was obtained using CNN with a SoftMax layer, this algorithm was
recommended for predicting the mortality of suspected infected patients in the ED. Such a design will
make it easier for clinicians to immediately determine the condition of the patient.

CNN + SoftMax performed the best due to the shared weights and biases system. Through
the shared weights and bias system, the calculation of the neurons was reduced. Regardless of the
input feature dimensions, calculations of the neuron number times feature numbers were fixed by the
shared weights and biases system. Unlike a traditional neural network, the calculation of neurons
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was not increased while the input dimension increased. Additionally, the pooling system further
increased the performance of CNN + SoftMax, as it reduces the dimension of the extracted feature
by the convolutional layer. Through this system, CNN can construct the importance information
into a lower dimension feature. For a training model, the lower the dimension, the less gradient
descent needs to be calculated. These systems further demonstrate that CNN + SoftMax has the best
performance in our experiment. Other research experiments also show that CNN + SoftMax has a
better performance than the other machine learning algorithms [41,42].

In our study, the most important feature extracted from RF was base excess (BE). Although it
was not given much attention in our practice, one recent study showed that alactic base excess was
associated with fluid balance, which is an important parameter in sepsis treatment [43]. Arayici showed
that BE could be used to predict neonatal sepsis with promising sensitivity and specificity [44]. Another
important feature is RDW, which has been well studied in various contexts; studies showed that it could
be used to predict long-term outcomes in sepsis patients, irrespective of anemia [45]. Other important
features, like solid tumors and shock episodes, were more familiar to clinical physicians.

The features that were extracted by CNN and AE could not be used to determine which baseline
features were most important. Certain machine learning algorithms, such as RF, are capable of ranking
different features according to their level of importance. Although their accuracy scores and AUC were
lower than those of the CNN, observing these features may lead to other clinical applications.

Although our study demonstrated the good prediction ability of machine learning, it had several
limitations. First, although the AUC of CNN + SoftMax is better than that of qSOFA and SIRS,
and possibly other score systems as well, our model requires a computer for complex calculations,
while the other methods involve calculations that can be easily performed by doctors. Second,
CNN + SoftMax needs more clinical data to maintain its accuracy, while qSOFA and SIRS only require
a few clinical data points. Thus, our method requires more time to produce accurate results, which in
turn creates further delays to doctors and patients before they receive the information. As the use of
computers in daily practice progresses, this problem may be resolved in the future. Third, in this study,
we used mortality as the primary outcome. Although it is truly the final and worst outcome, and would
not be influenced by the management decisions of patients, other bad outcomes like intensive care unit
admission, or intubation, could provide more time for attending physicians to act on this disease.

5. Conclusions

In this study, three types of feature extraction processes and four types of classifications were
implemented to predict the mortality of suspected infected patients in a hospital emergency department.
The accuracy rates of machine learning methods were higher than those for existing medical methods,
i.e., SIRS and qSOFA. Among them, the performance of CNN with SoftMax exhibited the highest
accuracy with a rate of 89.02% for mortality within 72 h and 81.79% for mortality within 28 d.
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Appendix A

Table A1. Baseline features for machine learning (first reading on admission).

No. Clinical Variables Survived Non-Surviving p Miss (%)

1 Blood Pressure 139.76 ± 32.48 121.17 ± 43.80 <0.001 0
2 Triage <0.001 0

1 6.3% 27.3%
2 33.4% 40.7%
3 57.0% 29.9%
4 3.1% 2.0%
5 0.2% 0.1%

3 GCS (E) <0.001 0
1 2.1% 14.2%
2 2.5% 8.1%
3 3.4% 7.9%
4 92.0% 69.8%

4 GCS (V) <0.001 0
1 8.4% 27.5%
2 3.5% 9.3%
3 1.4% 3.0%
4 3.0% 5.7%
5 83.7% 54.5%

5 GCS (M) <0.001 0
1 0.9% 10.2%
2 1.1% 4.4%
3 2.8% 6.8%
4 4.8% 10.9%
5 5.5% 11.6%
6 84.9% 56.2%

6 WBC 11.32 ± 8.36 14.29 ± 16.95 <0.001 0.017
7 Hb 12.01 ± 2.39 10.74 ± 2.61 <0.001 0.008

Seg 76.98 ± 13.37 77.96 ± 16.84 <0.001 0.064
9 Lymph 14.81 ± 10.67 12.02 ± 12.57 <0.001 0.067
10 PT-INR 1.21 ± 0.55 1.58 ± 0.93 <0.001 21.94
11 BUN 24.76 ± 24.33 45.21 ± 37.56 <0.001 0
12 Cr 1.47 ± 1.79 2.29 ± 2.30 <0.001 0
13 Bil 2.42 ± 3.74 6.13 ± 8.51 <0.001 20.16
14 AST 73.29 ± 258.18 258.10 ± 1099.87 <0.001 16.46
15 ALT 47.24 ± 129.98 105.73 ± 364.09 <0.001 0
16 Troponin I 0.33 ± 3.20 1.43 ± 8.52 <0.001 24.21
17 pH 7.40 ± 0.11 7.33 ± 0.18 <0.001 22.79
18 HCO3 23.41 ± 6.49 20.49 ± 8.01 <0.001 22.79
19 Atypical lymphocyte 0.078 ± 0.51 0.18 ± 0.66 <0.001 0.067
20 Promyelocyte 0.0071 ± 0.45 0.044 ± 1.23 <0.001 0.067
21 Metamyelocyte 0.11 ± 0.51 0.55 ± 1.60 <0.001 0.067
22 Myelocyte 0.15 ± 0.71 0.61 ± 1.53 <0.001 0.001
23 Sodium ion 135.48 ± 5.60 134.51 ± 8.67 <0.001 0.067
24 Potassium ion 3.91 ± 0.71 4.30 ± 1.14 <0.001 0
25 Albumin 2.99 ± 0.72 2.55 ± 0.63 <0.001 25.79
26 Sugar 163.16 ± 106.24 192.04 ± 167.08 <0.001 15.10
27 RDW-SD 46.46 ± 7.54 53.69 ± 11.54 <0.001 0.012
28 MCV 88.44 ± 8.14 90.35 ± 9.26 <0.001 0.011
29 RDW-CV 14.49 ± 22.24 16.50 ± 3.27 <0.001 0.012
30 Base excess −1.12 ± 6.44 −5.08 ± 9.15 <0.001 22.79
31 MCH 29.53 ± 3.16 29.91 ± 3.35 <0.001 0.010
32 MCHC 33.36 ± 1.39 33.11 ± 1.71 <0.001 0.011
33 MAP 101.14 ± 26.83 88.25 ± 32.54 <0.001 0.011
34 RR 19.58 ± 2.77 20.25 ± 6.04 <0.001 0
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Table A1. Cont.

No. Clinical Variables Survived Non-Surviving p Miss (%)

35 Temperature 37.37 ± 1.26 36.46 ± 4.21 <0.001 0.001
36 Heart rate 99.90 ± 23.00 102.66 ± 33.95 <0.001 0
37 Age 61.05 ± 18.11 68.52 ± 15.02 <0.001 0
38 Sex (male%) 52.6% 61.3% <0.001 0
39 qSOFA Score <0.001 0

0 69.7% 33.1% 0
1 23.7% 38.1% 0
2 6.0% 23.9% 0
3 0.6% 4.8% 0

40 Shock episode 2.5% 26.8% <0.001 0
41 Liver cirrhosis 6.9% 17.6% <0.001 0
42 DM 25.2% 26.4% 0.029 0
43 CRF 10.3% 28.1% <0.001 0
44 CHF 4.5% 9.1% <0.001 0
45 CVA 8.6% 12.5% <0.001 0
46 Solid tumor 18.0% 43.6% <0.001 0
47 RI 66.0% 48.9% <0.001 0
48 UTI 21.1% 15.7% <0.001 0
49 Soft tissue infection 13.7% 4.7% <0.001 0
50 Intra-abdominal infection 11.2% 10.6% 0.141 0
51 Other infection 35.7% 33.4% <0.001 0
52 Bacteremia 8.1% 16.5% <0.001 0
53 Antibiotic used within 24 h 77.9% 85.5% <0.001 0

Abbreviation: GCS (E), Glasgow Coma Scale eye opening; GCS (V), Glasgow Coma Scale verbal response; GCS
(M), Glasgow Coma Scale motor response; WBC, white blood cell count; Hb, hemoglobin; Seg, segment; Lymph,
lymphocyte; PT-INR, prothrombin time international normalized ratio; BUN, Blood urea nitrogen; Cr, creatinine; Bil,
bilirubin; AST, glutamic-pyruvic transaminase; ALT, alanine aminotransferase; pH, pondus hydrogenii; HCO3,
hydrogen carbonate Ion; RDW-SD, red cell distribution width standard deviation; MCV, mean corpuscular volume;
RDW-CV, red cell distribution width coefficient of variation; MCH, mean corpuscular hemoglobin; MCHC, mean
corpuscular hemoglobin concentration; MAP, mean arterial pressure; RR, respiratory rate; DM, diabetes mellitus;
CRF, chronic renal failure; CVA, congestive heart failure; RI, Respiratory infection; UTI, urinary tract infection.
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