
BioMed CentralBMC Developmental Biology

ss
Open AcceResearch article
The clathrin-binding motif and the J-domain of Drosophila Auxilin 
are essential for facilitating Notch ligand endocytosis
Vasundhara Kandachar, Ting Bai and Henry C Chang*

Address: Department of Biological Sciences, Purdue University, 915 West State Street, West Lafayette, Indiana 47907-2054, USA

Email: Vasundhara Kandachar - vkandach@purdue.edu; Ting Bai - bai@purdue.edu; Henry C Chang* - hcchang@purdue.edu

* Corresponding author    

Abstract
Background: Ligand endocytosis plays a critical role in regulating the activity of the Notch
pathway. The Drosophila homolog of auxilin (dAux), a J-domain-containing protein best known for
its role in the disassembly of clathrin coats from clathrin-coated vesicles, has recently been
implicated in Notch signaling, although its exact mechanism remains poorly understood.

Results: To understand the role of auxilin in Notch ligand endocytosis, we have analyzed several
point mutations affecting specific domains of dAux. In agreement with previous work, analysis using
these stronger dAux alleles shows that dAux is required for several Notch-dependent processes,
and its function during Notch signaling is required in the signaling cells. In support of the genetic
evidences, the level of Delta appears elevated in dAux deficient cells, suggesting that the endocytosis
of Notch ligand is disrupted. Deletion analysis shows that the clathrin-binding motif and the J-
domain, when over-expressed, are sufficient for rescuing dAux phenotypes, implying that the
recruitment of Hsc70 to clathrin is a critical role for dAux. However, surface labeling experiment
shows that, in dAux mutant cells, Delta accumulates at the cell surface. In dAux mutant cells, clathrin
appears to form large aggregates, although Delta is not enriched in these aberrant clathrin-positive
structures.

Conclusion: Our data suggest that dAux mutations inhibit Notch ligand internalization at an early
step during clathrin-mediated endocytosis, before the disassembly of clathrin-coated vesicles.
Further, the inhibition of ligand endocytosis in dAux mutant cells possibly occurs due to depletion
of cytosolic pools of clathrin via the formation of clathrin aggregates. Together, our observations
argue that ligand endocytosis is critical for Notch signaling and auxilin participates in Notch signaling
by facilitating ligand internalization.

Background
The Notch pathway, a highly conserved signaling module,
participates in diverse aspects of animal development,
including cell proliferation, differentiation, and pattern
formation [1,2]. Upon ligand binding, Notch undergoes
proteolytic processing, resulting in the release and the
nuclear translocation of NICD (Notch intra cellular

domain) for transcriptional activation [3]. As the Notch
receptor and its ligands are widely expressed, the activities
of this important pathway need to be regulated at multi-
ple levels to prevent inappropriate signaling output.
Recent evidence from several systems has suggested that
ligand endocytosis plays a key role in regulating the activ-
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ity of this cascade, although its exact function in Notch
signaling remains unclear.

Genetic analysis using Drosophila has identified several
factors required for ligand endocytosis during Notch sign-
aling. In Drosophila, there are two known Notch ligands,
Delta (Dl) and Serrate (Ser), both of which appear to uti-
lize an ubiquitin-mediated endocytic pathway to activate
Notch [4-8]. While polyubiquitination is known to facili-
tate protein degradation, covalent addition of a single
ubiquitin moiety to the cytoplasmic tails of membrane
proteins can serve as an internalization signal [9,10]. The
ubiquitination of Dl and Ser for internalization is medi-
ated by neuralized (neur) and mind bomb (mib1), two struc-
turally unrelated but functionally similar E3 ubiquitin
ligases [4,7,11-16]. The subsequent recruitment of ubiqui-
tinated Notch ligands into clathrin-coated vesicles is
thought to depend on liquid facets (lqf, the Drosophila
homolog of epsin), a cargo-specific clathrin adaptor [17-
20]. Dynamin, a GTPase required for the pinching-off of
clathrin-coated vesicles (CCVs) from the plasma mem-
brane, is also required for this event [21,22]. Moreover,
during the asymmetric cell division of sensory organ pre-
cursors, Rab11 (a GTPase associated with recycling endo-
somes) and Sec15 (a component of the exocyst complex)

have been shown to promote Notch signaling and regu-
late Dl trafficking [23,24].

Mutations in Drosophila auxilin (dAux), a J-domain-con-
taining regulator in clathrin-mediated transport, were
recently shown to disrupt Notch-dependent processes
[25-27]. Although originally identified as a factor promot-
ing the assembly of clathrin cage from free triskelia [28],
efforts investigating the role of auxilin during clathrin-
mediated endocytosis (CME) have mostly focused on its
cooperation with Hsc70 in mediating the disassembly of
clathrin coats form nascent CCVs [29]. In mammals, there
are two different auxilin-like molecules (auxilin 1 and
GAK/auxilin 2), differing in their tissue distributions and
the presence of a N-terminal Ark family kinase domain
[29-31]. In contrast, the Drosophila genome contains only
one auxilin ortholog, which is structurally more similar to
GAK, as it contains a N-terminal kinase domain, followed
by a PTEN (phosphatase and tensin) homologous region,
a clathrin-binding domain, and a C-terminal dnaJ
domain (Figure 1A) [32]. Biochemical data suggest that
the CBM (clathrin-binding motif) and J-domain recruit
ATP-bound Hsc70 to CCVs and stimulate the ATPase
activity of Hsc70, which drive the disassembly of clathrin
coats [30,33,34]. The PTEN-related region appears to be

dAux mutations cause defects in photoreceptor specificationFigure 1
dAux mutations cause defects in photoreceptor specification. (A) A schematic diagram of Drosophila Auxilin, consisting 
of a N-terminal kinase domain (orange), a PTEN-related domain (blue), clathrin binding motifs (CBM, yellow), and a J-domain 
(pink). The molecular lesions in eight dAux alleles are shown, and those isolated with a FRT chromosome are indicated in blue. 
(B-E) Fluorescent micrographs of larval eye discs from (B, C) Act5C>FLP/+; FRT5-5Z3515, dAuxL78H/FRT5-5Z3515, ubi-GFPnls and (D, E) 
Act5C>FLP/+; FRT5-5Z3515, dAuxF956*/FRT5-5Z3515, ubi-GFPnls animals. The mosaic discs are stained for Elav (red), which labels the 
nuclei of neuronal cells, and mutant tissues are marked by the absence of nuclear-GFP expression (green). (C, E) Boxed areas 
of dAuxL78H and dAuxF956* clones from B and D are shown at a higher magnification. In all the panels, anterior is to the left. Scale 
bar, 50 µm.
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critical for the membrane recruitment of auxilin to clath-
rin-rich regions [35,36]. The N-terminal kinase is known
to phosphorylate subunits of AP1 and AP2 adaptor com-
plexes, possibly modulating the affinity of these adaptors
for cargoes [31,37-40]. However, as not all auxilin
homologs (for example, yeast swa-2 and C. elegans auxi-
lin) contain the kinase and the PTEN-related region [41-
43], the physiological relevance of these domains remains
to be determined.

Initially, the identification of auxilin as a component of
the Drosophila Notch pathway suggests that, to activate
Notch, ligand endocytosis needs to proceed past the step
of clathrin cage disassembly. This implies that the rele-
vance of ligand endocytosis is not the internalization per
se, but a transit of ligand through subsequent endocytic
compartments. However, this interpretation hinges on the
assumption that auxilin participates solely in clathrin
uncoating under physiological conditions. Recent in vitro
investigations have suggested several new functions of
auxilin during CME [32], including facilitating clathrin
exchange during CCV formation [44,45], binding to adap-
tor complexes [46], binding to dynamin to facilitate the
constriction of coated pits [47], and chaperoning dissoci-
ated clathrin for subsequent rounds of endocytosis [48].
Thus, to understand the significance of ligand endocytosis
in Notch, it is critical to determine whether dAux is exclu-
sively involved in clathrin uncoating or has additional
roles during CME under physiological conditions.

Using strong dAux alleles generated from an FRT-contain-
ing chromosome, we have obtained compelling evidences
that dAux mutations cause defects in multiple Notch-
dependent processes and dAux function is required in the
signaling cells. Although the relevant cargo for dAux dur-
ing Notch signaling seems to be Dl, the endocytic func-
tion of dAux is not limited to the Notch ligand, as the
internalizations of other membrane proteins also appear
disrupted. Deletion analysis shows that over-expressed
CBM and J-domain are sufficient for dAux function, sug-
gesting that the recruitment of Hsc70 to CCVs is a core
function of dAux. Furthermore, while the disruption of
dAux function alters the sub-cellular clathrin distribution,
Dl appears to be trapped at the cell surface, away from the
abnormal clathrin-positive structures. Together, our data
support a model, in which dAux facilitates Notch ligand
endocytosis by regulating clathrin dynamics. Moreover,
the fact that Dl is trapped at the plasma membrane in
dAux mutants suggests that the linking of dAux to the
Notch pathway does not exclude the possibility that the
Notch ligand internalization per se plays a pivotal role in
activating Notch.

Results
Mutations in dAux kinase- or J-domains disrupt 
photoreceptor specification
To further understand the role of dAux under physiologi-
cal conditions, we have isolated additional dAux muta-
tions from several rounds of F2 non-complementation
screens. We have nine mutations in dAux, and, for eight of
these nine alleles, the molecular lesions are known (Fig-
ure 1A). Furthermore, three of these alleles, namely
dAuxL78H, dAuxF956*, and dAuxG257E, were generated from
an FRT-containing chromosome; thus permitting dAux
phenotypic analysis in clones.

To assess the strength of these dAux alleles, the lethal
phases of animals carrying these dAux mutations over
Df(3R)ED5021, a deletion (82A1-A2) that removes the
entire dAux locus, were determined. Five of these alleles
(dAuxS214*, dAuxW254*, dAuxW328*, dAuxF956*, and
dAuxW1150*), when trans-heterozygous with the deletion,
died prior to the larval stage. Three of them, dAuxS214*,
dAuxW254*, and dAuxW328*, all contain nonsense muta-
tions within the N-terminal kinase domain, suggesting
that they are strong or null alleles. The early lethal phase
of dAuxF956* and dAuxW1150*, two nonsense mutations
near the C-terminus, most likely reflects the importance of
the J-domain in dAux function. This analysis indicated
that dAuxL78H and dAuxG257E, two missense mutations dis-
rupting highly conserved residues in the sub-domain II
and IX of the N-terminal kinase domain [49] respectively,
are weaker alleles. Thus, the allele series, in descending
allelic strength, can be described as:
S214*≈W254*≈W328* > F956*≈W1150* >
L78H≈G257E > I670K (dAuxI670K is a viable hypomorph).

Previous studies have shown that mutations in the PTEN-
related region cause defects in photoreceptor specification
[25,26]. To test whether mutations in other dAux
domains have similar effects, FLP-induced mutant clones
of dAuxL78H and dAuxF956*, mutations disrupting the
kinase and the J-domain respectively, were stained with α-
Elav, which labels the nuclei of neuronal cells [50]. In
wild-type tissues, an organized set of eight Elav-positive
cells is formed in each cluster. In contrast, as shown in Fig-
ure 1B–E, increased numbers of disorganized Elav-posi-
tive cells were seen in both dAuxL78H and dAuxF956*
mutant clones (Figure 1B–E, indicated by the absence of
the nuclear GFP). This suggests that the integrity of the
kinase and the J-domain, in addition to the PTEN-related
region, is important for the function of dAux during neu-
ronal cell specification. In addition, this neural hypertro-
phy exhibited by dAuxF956* tissues seemed to be more
severe than those of dAuxL78H (in the sense that additional
dAuxL78H Elav-positive cells appeared to be grouped in
clusters, whereas dAuxF956* cells did not), correlating well
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with the allelic strength defined by the lethal phase anal-
ysis.

Notch-dependent proneural enhancement and lateral 
inhibition are both disrupted in dAux mutant tissues
The Drosophila compound eye consists of regular arrays of
~800 ommatidia, each containing eight stereotypically
positioned photoreceptors (R1-R8) and other accessory
cells. The formation of this elaborate pattern is initiated in
the larval eye imaginal disc along the morphogenetic fur-
row (MF, an indentation in the eye disc epithelium),
which sweeps from posterior to anterior across the eye
disc [51]. Behind the furrow, undifferentiated cells are
sequentially recruited to adopt distinct developmental
fates. To further understand the roles of dAux in photore-
ceptor cell differentiation, we investigated the effect of
dAux mutations on the specification of R8, the founder
cell within each cluster. The specification of R8 cells is
known to require at least two Notch-dependent events: 1)
proneural enhancement: an up-regulation of atonal (ato, a
proneural gene) [52] expression in cells near the morpho-
genetic furrow to confer them the capability to adopt a
neuronal fate, and 2) lateral inhibition: a subsequent

restriction of the broad Ato expression to one single R8
cell per cluster behind the MF [53,54].

To determine if dAux is required for these processes,
mosaic eye discs containing dAuxF956* mutant clones were
stained for Ato. As shown in Figure 2A, most dAuxF956*
mutant cells located near the MF expressed less Ato than
their wild-type counterpart, suggesting that dAux has a
role in the proneural enhancement event. Noticeably,
some dAuxF956* mutant cells at the clone border still
expressed an elevated level of Ato (Figure 2C and 2D,
solid arrows). One plausible explanation is that dAux
functions non-cell-autonomously during Notch signaling
(see below); therefore, the Notch pathway in these
dAuxF956* mutant cells could still be activated because
they were juxtaposed to the wild-type cells.

Behind the MF in normal eye discs, the broad Ato expres-
sion is gradually restricted, by Notch-mediated lateral
inhibition, to a single cell in each cluster. Unlike wild
type, dAuxF956* mutant tissues contained clumps of mul-
tiple Ato-positive cells that are not restricted into single
Ato-expressing cells (Figure 2A, open arrows), suggesting
that the process of restricting Ato expression was dis-

dAux mutations disrupt the proneural enhancement and the lateral inhibition during R8 specificationFigure 2
dAux mutations disrupt the proneural enhancement and the lateral inhibition during R8 specification. Projected 
spinning disk confocal micrographs of Act5C>FLP/+; FRT5-5Z3515, dAuxF956*/FRT5-5Z3515, ubi-GFPnls larval eye stained for Atonal (A-
D, red) and Senseless (E-H, red). Regions marked with boxes in (C) and (G) are shown at a higher magnification in (D) and (H), 
respectively. dAuxF956* mutant clones are indicated by the absence of nuclear GFP and outlined with dashed lines in (D) and 
(H). dAuxF956* mutant cells with an elevated level of Atonal expression at the clone border are indicated by solid arrows (C and 
D). Furthermore, groups of Atonal-positive cells that fail to resolve into single Atonal-expressing cells are indicated by open 
arrows (A and D). Scale bar, 50 µm.
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rupted. To further confirm that lateral inhibition during
R8 specification was affected by dAux, FLP-induced eye
disc clones were stained for Senseless (Sens), a Zn finger-
containing transcription factor expressed in the nuclei of
R8 cells [55]. Unlike Ato, whose expression disappears in
more mature R8 cells, sens expression persists in all R8
cells in the eye disc [55]. Similar to the Ato staining, clus-
ters of extra Sens-positive nuclei were seen in dAuxF956*
mutant tissues after the furrow (Figure 2H). Together,
these observations suggest that both proneural enhance-
ment and lateral inhibition, two known Notch-dependent
processes, require dAux.

Mutations in dAux disrupt the formation of the dorsal-
ventral wing boundary
To ask if dAux regulates other Notch-dependent processes,
we examined the effect of dAux mutations on the forma-
tion of the dorsal-ventral (DV) boundary in the develop-
ing wing discs. In normal wing discs, cells in both the
dorsal and ventral compartments express Notch. How-
ever, because of the modification of Notch receptor by
fringe in the dorsal compartment [56,57], these dorsal
cells respond preferentially to Dl signaling from cells in
the ventral compartment. Conversely, the cells in the ven-
tral half respond preferentially to the other Notch ligand,
Ser, which is expressed in the dorsal half. As a result, mar-
gin-specific genes like cut are expressed in a stripe of cells
along the DV border, in a Notch-dependent manner [58].

To test if this process requires dAux, wild-type and
dAuxF956* mosaic wing discs were stained with 2B10 α-
Cut antibody [59]. In wild-type wing discs, a stripe of Cut-

positive cells was seen along the DV border (Figure 3A). In
contrast, Cut staining was absent in dAuxF956* mutant
clones located at the DV border (Figure 3B–D), suggesting
that dAux is required for the DV boundary formation in
wing development. Again, at a higher magnification (Fig-
ure 3D, inset), some dAuxF956* mutant cells at the clone
border still expressed Cut, supporting the possibility that
dAux functions non-cell-autonomously during Notch sig-
naling (see below).

dAux acts non-cell-autonomously during Notch signaling
To determine in which cell dAux is required during Notch
signaling, eye discs containing FLP-induced dAuxF956*
mutant clones were stained for Enhancer of split (E(spl)),
a transcriptional target of Notch signaling [60]. We rea-
soned that, if dAux functions in the receiving cells (cell
autonomous), all mutant cells, regardless of their loca-
tions within the clones, will be unable to activate Notch
and will, therefore, not express E(spl). On the other hand,
if dAux functions in the signaling cells (non-cell autono-
mous), mutant cells at the clone border can still receive
signals from neighboring wild-type cells, and will express
E(spl). Consistent with this reasoning, none of the cells
mutant for Notch receptor (N264-39) within the clones
expressed E(spl) (Figure 4A–C) [61,62]. Conversely, as Dl
is one of the ligands of this signaling cascade, several
DlRevF10 mutant cells at the clone border expressed E(spl)
(Figure 4D–F) [19]. Similarly, some dAuxF956* mutant
cells at the clone border clearly expressed E(spl) (Figure
4G–I). This, along with the observations described in pre-
vious sections regarding Ato and Cut expression, suggests

dAux mutations disrupt Cut expression at the DV boundary in developing wing discsFigure 3
dAux mutations disrupt Cut expression at the DV boundary in developing wing discs. Fluorescent micrographs of 
(A) wild-type and (B-D) Act5C>FLP/+; FRT5-5Z3515, dAuxF956*/FRT5-5Z3515, ubi-GFPnls larval wing discs stained with 2B10 anti-Cut 
antibody (red). A mutant clone at the DV boundary (indicated by the white box) is shown at higher magnification in the inset in 
(D). dAuxF956* mutant clones are indicated by the absence of nuclear GFP (C). Some dAuxF956* cells (indicated by arrows) at the 
clone boundary are Cut-positive (see text for explanation). Scale bar, 50 µm.
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dAux functions in the signal-sending cells during Notch signalingFigure 4
dAux functions in the signal-sending cells during Notch signaling. Projected spinning disk confocal images of (A-C) 
N264-39, FRT9-2/ubi-GFPnls, FRT9-2; Act5C>FLP/+, (D-F) ey-FLP/+; FRT82B, DlRevF10/FRT82B, ubi-GFPnls and (G-I) Act5C>FLP/+; FRT5-

5Z3515, dAuxF956*/FRT5-5Z3515, ubi-GFPnls larval eye discs stained with mAB323 anti-E(spl) antibody (red). N264-39, DlRevF10 and 
dAuxF956* mutant cells are indicated by the absence of nuclear GFP, and the boundaries of mutant clones are outlined with dot-
ted lines. Please note that all N264-39 cells are negative for E(spl) staining, whereas some DlRevF10 and dAuxF956* cells at the clone 
boundaries are E(spl)-positive (indicated by arrows). Scale bar, 10 µm.
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dAux mutant cells show an accumulation of Dl at the surfaceFigure 5
dAux mutant cells show an accumulation of Dl at the surface. Confocal images of (A-C and G-I) Act5C>FLP/+; FRT5-

5Z3515, dAuxF956*/FRT5-5Z3515, ubi-GFPnls and (D-F) Act5C>FLP/+; FRT5-5Z3515, dAuxL78H/FRT5-5Z3515, ubi-GFPnls eye discs stained for Dl 
(red). In panels A through F, the Dl staining was performed in the presence of detergent. In contrast, the Dl staining in G- I was 
performed under non-permeabilized conditions, thereby detecting only Dl proteins at the cell surface. dAux mutant cells are 
indicated by the absence of nuclear GFP. Scale bar, 10 µm.
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that, like Dl, dAux is required in the signaling cells in the
Notch cascade.

Mutations in dAux cause Dl accumulation at the cell 
surface
As our genetic data suggest that dAux functions in the sig-
naling cells during Notch signaling, a relevant cargo of
dAux-dependent endocytosis is likely to be Notch ligand.
To test this, FLP-induced mutant clones of dAuxL78H and
dAuxF956* were first stained with C594.9B α-Dl antibody,
which recognizes the extracellular domain of Dl [63].
Compared to the wild-type cells, the intensity of Dl stain-
ing was increased in both dAuxF956* and dAuxL78H mutant
cells (Figure 5C&F). This increase of Dl staining intensity
was more pronounced when the clones were at or near the
morphogenetic furrows, consistent with the phenotype
shown by a mutation in the PTEN-related region [26].

Although this elevated level of Dl seemed to accumulate
around dAux mutant cell periphery (Figure 5C&F), it was
not clear whether Dl proteins were trapped at the plasma
membrane or in vesicular structures inside the cells. To
distinguish between these possibilities, eye discs contain-
ing dAuxF956* mutant clones were stained with C594.9B
under a non-permeabilized condition to label Dl at the
cell surface. In wild-type tissues, a high level of surface Dl
staining was first seen in cells behind the morphogenetic
furrow (Figure 5G&I). In more mature clusters located in
the posterior region of the eye disc, less Dl was seen at the
surface, suggesting that most of Dl was internalized [64].
In dAuxF956* mutant clones, the surface Dl staining
appeared excessive, indicating that the previously
observed peripheral Dl most likely represents Dl accumu-
lated at the cell surface.

dAux mutants show elevated levels of EGF and Notch receptor expressionFigure 6
dAux mutants show elevated levels of EGF and Notch receptor expression. Spinning disk confocal images of 
Act5C>FLP/+; FRT5-5Z3515, dAuxF956*/FRT5-5Z3515, ubi-GFPnls eye disc stained for (A-C) Drosophila EGF receptor (red in merged 
panel) and (D-F) Notch receptor (red in merged panel). dAuxF956* mutant cells are indicated by the absence of nuclear GFP. 
Scale bar, 10 µm.
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Internalization of EGFR and Notch appear disrupted in 
dAux mutant cells
Knockdown of GAK function in mammalian cells was
shown to greatly inhibit the internalization of EGFR [65].
To determine whether the endocytic function of dAux is
specific to Notch ligand, FLP-induced dAuxF956* mutant
eye disc clones were stained with a α-DER antibody [66]
and a α-Notch antibody (C17.9C6) [67], respectively. In
wild-type eye discs, DER is expressed in cells ahead of fur-
row, and its expression is reduced behind the furrow [68].
Compared to wild-type cells, DER staining is elevated in
the mutant cells (Figure 6A–C), suggesting that the inter-
nalization of DER was inhibited. Similarly, the intensity
of Notch staining was increased in dAuxF956* mutant cells
(Figure 6D–F). Thus, although our genetic data suggest
that dAux is required in the signaling cells during Notch
signaling, the endocytic function of dAux is not limited to
the Notch ligand.

Clathrin distribution was disrupted in dAux mutant clones
We have previously observed a genetic interaction
between dAux and clathrin light chain (Clc) [26]. To test
directly whether clathrin distribution was disrupted by
dAux, the localization of a Clc-GFP fusion [69] was exam-
ined in FLP-induced dAux mutant clones in eye discs. In
wild-type cells (marked by the presence of a membrane-
associated, myr-mRFP), Clc-GFP appeared as vesicular
structures near the cell periphery (Figure 7). In both
dAuxL78H and dAuxF956* mutant cells (marked by the
absence of myr-mRFP), vesicular Clc-GFP still appeared
near cell periphery but its intensity was clearly elevated
(Figure 7). Furthermore, large and bright spots of Clc-GFP
staining could be seen (arrows), suggesting that Clc-GFP
or Clc-positive structures may form aggregates in dAux
mutant cells. These data suggest that normal clathrin dis-
tribution depends on both the kinase and the J-domain of
dAux. Interestingly, although the level of Dl proteins
appeared elevated, staining of Clc-GFP- expressing
dAuxF956* mutant cells with C594.9B α-Dl antibody
showed that Dl was not enriched in these large Clc-posi-
tive structures (Figure 7G–N).

The CBM and J-domains are indispensable for dAux 
function in Notch signaling
To investigate the domains critical for dAux function, we
generated a series of mRFP-tagged dAux derivatives, each
with a particular domain or a subset of domains removed
(Figure 8A). These include UAS-dAuxFL-mRFP (full-
length), UAS-dAux∆K-mRFP (kinase domain deleted),
UAS-dAuxCJ-mRFP (kinase and PTEN-related domains
deleted), UAS-dAux∆C-mRFP (CBM deleted) and UAS-
dAux∆J-mRFP (J-domain deleted). Using a α-DsRed anti-
body (Clontech) and the Act5C-GAL4 driver, bands of
expected sizes were detected in blots of extracts prepared

from these transgenic flies (Figure 8B), indicating that
these truncated dAux proteins were expressed.

To investigate the functional relevance of various dAux
domains during Notch signaling, the abilities of these
deletions, expressed using the Act5C-GAL4 driver, to res-
cue the supernumerary photoreceptor phenotype exhib-
ited by dAux mutant eye discs were determined. While
Act5C-GAL4 or UAS-dAux-mRFP constructs (not shown)
alone had no effect, expression of dAuxFL-mRFP com-
pletely suppressed the disorganization and the extra Elav-
positive cell defects in FLP-induced dAuxF956* clones (Fig-
ure 8C). Similarly, expression of dAux∆K-mRFP or dAuxCJ-
mRFP in dAuxF956*clones displayed arrays of normal com-
plement of Elav-positive cells, suggesting that over-expres-
sion of dAux without its kinase domain and the PTEN-
related region can restore normal Notch signaling (Figure
8D&E). In addition, it should be noted that expression of
dAuxFL, dAux∆K or dAuxCJ could rescue dAux mutants to
adult viability (data not shown). In contrast, expression of
dAux∆C-mRFP and dAux∆J-mRFP could not rescue the
extra Elav-positive cell defects in dAuxF956* clones (Figure
8F&G). Over-expression of dAux∆J-mRFP appeared to
have some dominant negative effects. For instance, ani-
mals mutant for dAuxL78H/dAuxW328* died during the lar-
val stage. However, these mutants died before the larval
stage when the J-domain deletion was expressed under the
control of Act5C-GAL4 (data not shown). The results of
these rescue experiments were confirmed using two inde-
pendent transgenic lines from each construct and held
true for another dAux allele (dAuxL78H), indicating that it
is not allele specific. Together, these results suggest that
while the kinase and PTEN-related domains are less criti-
cal, the J-domain and the CBM region are essential for
dAux function.

Discussion
From a F2 non-complementation screen, we have isolated
several new dAux alleles, some of which contain point
mutations disrupting specific domains. Consistent with
our previous analysis of a viable dAux allele, strong dAux
mutations affect several Notch-mediated processes,
including photoreceptor specification in the eye and DV
boundary formation in the wing. These phenotypes are
consistent with the genetic interactions exhibited between
dAux and Notch [26] and between dAux and lqf [25]. Taken
together, these genetic observations strengthen the notion
that endocytosis plays a critical role in Notch signaling,
and suggest that dAux functions in multiple Notch-
dependent events.

As the functional importance of endocytosis has been sug-
gested for both the signaling and receiving cells during
Notch signaling [22], it is critical to determine in which
cell is dAux function required. Although we have previ-
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dAux mutation disrupts clathrin distributionFigure 7
dAux mutation disrupts clathrin distribution. Confocal images of (A-F) ey>FLP/UAS-EGFP-Clc; FRT5-5Z3515, dAuxL78H/FRT5-

5Z3515, GMR-myr-mRFP and (G-N) ey>FLP/UAS-EGFP-Clc; FRT5-5Z3515, dAuxF956*/FRT5-5Z3515, GMR-myr-mRFP eye discs at two differ-
ent optical planes (apical: A-C and G-J, and basal: D-F and K-N). For panels A-F, EGFP-tagged Clc, expressed in all cells, is 
shown in green, and dAuxL78H mutant cells are indicated by the absence of a membrane-associated mRFP (myr-mRFP, shown in 
red). For panels G-N, EGFP-Clc is shown in green, Dl staining is shown in red, and dAuxF956* mutant cells are indicated by the 
absence of a membrane-associated myr-mRFP (blue). Arrows indicate the intense Clc-EGFP-positive structures around the cell 
periphery. The dAuxL78H clone (A-F) is located in the posterior part of the eye disc, whereas this dAuxF956* clone (G-N) is 
located near the furrow. As a result, the anterior boundary of the dAuxF956* clone is not marked because GMR-myr-mRFP is only 
active in cells posterior to the furrow [85]. In the basal section of the dAuxF956* clone, less vesicular Dl staining was seen, com-
pared to the nearby wild-type cells. Scale bar, 10 µm.
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The CBM and J-domains are necessary for dAux function in Notch signalingFigure 8
The CBM and J-domains are necessary for dAux function in Notch signaling. (A) A schematic diagram depicting var-
ious mRFP-tagged dAux constructs (see text for explanation). (B) A Western blot of extracts from flies expressing dAuxFL-
mRFP (lane 1), dAux∆K-mRFP (lane 2), dAuxCJ-mRFP (lane 3), dAux∆C- mRFP (lane 4), and dAux∆J-mRFP (lane 5) under the 
control of Act5C-Gal4. The blot was stained with anti-DsRed antibody, which recognizes the mRFP tag. The sizes of protein 
standards (in kD) are indicated on the left. (C-G) Projected spinning disk confocal images of larval eye discs from (C) 
Act5C>FLP/UAS-dAuxFL-mRFP; FRT5-5Z3515, dAuxF956*/FRT5-5Z3515, ubi-GFPnls, (D) Act5C>FLP/UAS-dAux∆K-mRFP; FRT5-5Z3515, dAuxF956*/
FRT5-5Z3515, ubi-GFPnls, (E) Act5C>FLP/UAS-dAuxCJ-mRFP; FRT5-5Z3515, dAuxF956*/FRT5-5Z3515, ubi-GFPnls, (F) Act5C>FLP/UAS-dAux∆C-
mRFP; FRT5-5Z3515, dAuxF956*/FRT5-5Z3515, ubi-GFPnls, and (G) Act5C>FLP/UAS-dAux∆J-mRFP; FRT5-5Z3515, dAuxF956*/FRT5-5Z3515, ubi-
GFPnls. These eye discs were stained with α-Elav antibody (red), and dAuxF956* mutant clones are indicated by the absence of 
nuclear GFP (green) and outlined by white dotted lines. The fluorescence from mRFP was not shown to present a clearer view 
of the organization of Elav-positive cells in dAux clones. Scale Bar, 10 µm.
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ously concluded that dAux is needed in the signaling cells,
the evidence, obtained from mitotic clones of a weak dAux
allele, was less than convincing [26]. To adequately
address this critical issue, we have monitored the expres-
sion of E(spl), a Notch target gene, in clones mutant for
strong dAux alleles. Using these reagents, it is clear that
dAux mutant cells at the clone border can still activate
Notch (a similar result was seen with Cut and Ato stain-
ing), suggesting dAux acts non-cell autonomously. These
genetic data imply that the relevant cargo is likely to be the
Notch ligand. Indeed, as shown by the surface labeling
experiment, Dl internalization is disrupted in dAux
mutant cells.

Inhibition of auxilin function by mutations
[25,26,42,43], RNAi [31,41,65,70], or injection of inhibi-
tory peptides [71] is known to interfere with the endocy-
tosis of many molecules. In mammalian cells, inhibition
of GAK function causes a decrease in the internalization of
EGFR and transferrin [31,65]. Our observation suggests
that, similar to the mammalian cells, dAux participates in
the endocytosis of EGFR, although we did not previously
observe a genetic interaction between DER and dAux [26].
It is possible that this lack of interaction between dAux
and DER reflects the low sensitivity of our genetic assay.
Alternatively, it may be that a defect in DER internaliza-
tion does not significantly impact its signaling during eye
development. Consistent with this, we have been unable
to detect a drastic increase in the phosphorylation of MAP
kinase, a downstream event of DER activation, in
dAuxF956* mutant clones (data not shown). Nevertheless,
our data show that, although the developmental defects of
dAux resemble those of Notch, Notch ligand is not the sole
cargo of auxilin-mediated endocytosis. This apparent spe-
cificity of dAux's Notch-like phenotypes suggests that the
Notch pathway, compared to other signaling cascades,
may be more sensitive to disruptions in the clathrin-medi-
ated endocytosis.

Sequencing analysis of our dAux alleles revealed that dis-
ruptions in the kinase, the PTEN-related region, and the J-
domain could all result in abnormal Notch signaling.
Noticeably, our screen did not isolate any point mutation
in CBM, although the deletion analysis suggests that the
CBM is critical for dAux function. This apparent discrep-
ancy is likely due to the fact that the CBM domain con-
tains multiple redundant clathrin-binding motifs [72,73],
thereby obscuring the effect of eliminating one single
motif by a point mutation. Interestingly, the removal of
the CBM from the yeast auxilin (swa-2) does not com-
pletely eliminate its function in vivo [73]. The reason for
this difference is unclear but it is possible that swa-2 con-
tains other protein domains capable of substituting for
the CBM. Similar to a study of the mammalian GAK [31],
our deletion analysis confirmed the importance of the J-

domain, as over-expression of the dAux∆J construct fails to
restore the extra photoreceptor cell defect. The CBM and J
domains are thought to facilitate the recruitment of Hsc70
to CCVs, and a fragment consisting of CBM and J domain
alone has been shown to support clathrin uncoating in
vitro [30,33,34]. In support of this notion that the recruit-
ment of Hsc70 to CCVs is likely to be a critical step, over-
expression of the CBM and J domain alone could restore
the supernumerary Elav-positive cell phenotype.

Conversely, our observation also implies that the loss of
the kinase and PTEN-related region could be compen-
sated by the over-expression of the CBM and J-domain.
The PTEN-related region is thought to participate in the
membrane recruitment of auxilin during CME [35,36].
Thus it is imaginable that a defect in the subcellular local-
ization is less deleterious when the fragment consisting of
CBM and J-domain is over-expressed. It is unclear how the
requirement of kinase domain can be compensated by the
over-expression of the CBM and J-domain, as the relevant
substrate for dAux kinase domain during Notch signaling
is not known. It should be mentioned that elevated
expression of dAuxCJ rescued the extra Elav-positive cell
phenotype in both dAuxF956* and dAuxL78H (point muta-
tions disrupting the J-domain and the kinase domain
respectively), arguing against a scenario in which the
kinase domain of endogenous dAuxF956* mutant proteins
could complement the over-expressed dAuxCJ in trans. It is
possible that some functional redundancy exists between
dAux and Numb-associated kinase (NAK, the Drosophila
homolog of adaptin-associated kinase) [74], as the kinase
domains from both factors are known to phosphorylate
adaptor complexes [31,37,75-78]. However, although
mutations in subunits of Drosophila AP1 and AP2 com-
plexes have been implicated in other Notch-dependent
processes [79,80], it is not clear if these adaptor complexes
have a role in the Notch processes we examined.
Homozygous α -adaptin mutants do not appear to exhibit
a neurogenic phenotype [69,80]. Furthermore, the
removal of one copy of AP2 µ subunit (by a deletion) has
no effect on the dAuxI670K rough eye phenotype (data not
shown). In any case, it should be stressed that the kinase
and the PTEN-related region do play a role in Notch sign-
aling, as point mutations disrupting these domains cause
Notch-like defects, albeit to a weaker extent. Taken
together, these results suggest the role of the kinase and
the PTEN-related region during Notch ligand endocytosis
is less than obligatory.

What is the role of ligand endocytosis in Notch signaling?
It has been suggested that, after receptor-ligand binding,
ligand endocytosis may provide a mechanical stress or
other types of micro-environment (clustered ligand and
receptor, etc.) to facilitate Notch cleavage or NECD shed-
ding [21,81]. Alternatively, before binding to Notch, the
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ligands may have to enter a particular recycling pathway
to render them active [20,23,24]. We initially viewed the
linking of dAux to Notch as evidence favoring the latter
model because it suggests that ligand endocytosis needs to
proceed past clathrin uncoating. However, as an increased
level of the Dl appeared to be trapped at the mutant cell
surface, not inside CCVs, the linking of dAux to Notch cer-
tainly does not exclude the model that ligand internaliza-
tion per se is critical for Notch signaling. Biochemical
analysis has suggested several additional functions for
auxilin during the CCV cycle besides uncoating [32].
Although abnormal clathrin distribution was observed in
dAux cells, given the resolution of our analysis, it is
unclear which particular step(s) were affected. It is possi-
ble that mutations in dAux directly inhibit Notch ligand
endocytosis by disrupting one or more of these early steps
during CCV formation. Alternatively, dAux mutations
may indirectly inhibit Notch ligand internalization by
causing an excessive formation of non-functional clath-
rin-dependent structures, thereby decreasing the cytosolic
clathrin pool. Indeed, in dAux mutant cells, those large
clathrin-positive structures did not appear to contain an
elevated level of Dl. Consistent with this, it was recently
shown that over-expression of Chc could restore the dAux-
associated defects [27].

Conclusion
Our genetic analysis of strong dAux alleles clearly strength-
ens the notion that ligand endocytosis plays a critical role
in Notch signaling. Furthermore, the deletion analysis
suggests that the recruitment of Hsc70 to clathrin is a key
event for dAux to facilitate Notch signaling. More impor-
tantly, we showed that Dl accumulates at the cell surface
in dAux mutant cells. This suggests that the linking of dAux
to the Notch pathway does not exclude the model in
which ligand endocytosis activates Notch by physically
dissociating the receptor.

Methods
Drosophila genetics
All fly crosses were carried out at 25°C in standard labo-
ratory conditions unless otherwise specified. To facilitate
the analysis of dAux phenotypes in clones, 5-5Z3515, an
FRT-containing P-element insertion from the DrosoDel
project (Cambridge, UK), was used to isolate additional
dAux alleles. This strategy was chosen because 1) the con-
ventional FRT site for the third chromosome right arm
[82] is more distal from the centromere then the dAux
locus, therefore not applicable for generating dAux mutant
clones, and 2) crossovers between FRT5-5Z3515 and dAux
would have been astronomically rare, as the P element
insertion in 5-5Z3515 is only 20 kb closer to the centro-
mere than the dAux locus.

The screens for additional dAux alleles on FRT5-5Z3515

chromosomes were performed as previously described
[26]. Briefly, w; FRT5-5Z3515 males were mutagenized with
25 mM ethyl methane sulfonate (Sigma), and mass mated
with w/w; TM3, Sb/TM6B, Hu virgins. Progeny were then
individually mated with dAuxI670K, p [w+]/TM6B, Hu flies,
and those that failed to complement dAuxI670K were recov-
ered and maintained over TM6B or TM3 balancers. To
determine the mutations in dAux alleles, coding regions
were amplified from genomic DNA extracted from
homozygous mutant embryos by PCR. Multiple inde-
pendent PCR products were analyzed by direct sequenc-
ing.

Molecular Biology
The mRFP-tagged dAux deletions were constructed using
PCR and standard cloning techniques. The dAux dele-
tions, dAux∆K, dAuxCJ and dAux∆J, correspond to amino
acids 339–1165, 762–1165 and 1–998 respectively.
dAux∆C lacks the amino acids 768–1049. In all dAux con-
structs, mRFP or EGFP was appended in-frame at the C-
terminus. The sequence and construction detail will be
provided upon request. All the constructs were verified by
sequencing, and multiple transgenic flies carrying the con-
structs were generated by P-element-mediated transfor-
mation [83].

Immunohistochemistry
Immuno-staining of eye and wing imaginal discs was per-
formed as previously described [84]. Rat α-Elav 7E8A10
(DSHB, Iowa), mouse α-Atonal [52], guinea pig α-Sense-
less [55], mouse α-Cut 2B10 (DSHB, Iowa), α-E(spl)
mAB323 [60], mouse α-Dl C594.9B (DSHB, Iowa),
mouse α-Notch C17.9C6 (DSHB, Iowa), and rat α-DER
[66] were used at 1:100, 1:3000, 1:1000, 1:100, 1:2,
1:100, 1:100, and 1:50 dilutions, respectively. Fluores-
cently conjugated secondary antibodies (Molecular
Probes) were used according to the manufacturer's
instructions. Fluorescent microscopy was performed
using the Olympus BX61 microscope equipped with the
Olympus DSU confocal system and processed with Pho-
toshop (Adobe) and Volocity (Improvision).

For surface Dl labeling, mosaic eye discs were dissected
and fixed in 4% paraformaldehyde. The peripodial mem-
branes were partially removed, and the discs were then
stained with mouse α-Dl C594.9B and washed with PBS
in the absence of any detergent. The stained eye discs were
examined using a BioRad MRC1024 laser confocal micro-
scope (Nikon OPTIPHOT-2) and the images were proc-
essed with Adobe Photoshop.

Western analysis and fly extract preparation
To prepare fly extracts, flies expressing mRFP-tagged dAux
derivatives were homogenized in 2× SDS-loading buffer
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containing 0.2 mM DTT (10 flies/100µl), boiled immedi-
ately for 5 minutes and separated by SDS-PAGE using
10% acrylamide gel. The gel was transferred to nitrocellu-
lose membrane and probed with α-DsRed rabbit polyclo-
nal antibody (Clontech) at 1:1000 dilution, followed by
HRP-conjugated goat anti-rabbit secondary antibody
(Jackson Lab). The immunodetection was performed
using ECL substrate (Amersham Biosciences).
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