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Abstract 

Until recently tactical analysis in elite soccer were based on observational data using variables which discard most 
contextual information. Analyses of team tactics require however detailed data from various sources including techni-
cal skill, individual physiological performance, and team formations among others to represent the complex pro-
cesses underlying team tactical behavior. Accordingly, little is known about how these different factors influence team 
tactical behavior in elite soccer. In parts, this has also been due to the lack of available data. Increasingly however, 
detailed game logs obtained through next-generation tracking technologies in addition to physiological training data 
collected through novel miniature sensor technologies have become available for research. This leads however to the 
opposite problem where the shear amount of data becomes an obstacle in itself as methodological guidelines as well 
as theoretical modelling of tactical decision making in team sports is lacking. The present paper discusses how big 
data and modern machine learning technologies may help to address these issues and aid in developing a theoretical 
model for tactical decision making in team sports. As experience from medical applications show, significant organi-
zational obstacles regarding data governance and access to technologies must be overcome first. The present work 
discusses these issues with respect to tactical analyses in elite soccer and propose a technological stack which aims to 
introduce big data technologies into elite soccer research. The proposed approach could also serve as a guideline for 
other sports science domains as increasing data size is becoming a wide-spread phenomenon.
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Tactics are a central component for success in mod-
ern elite soccer. Yet until recently, there have been few 
detailed scientific investigations of team tactics. One 
reason in this regard has been the lack of available, rel-
evant data. With the development of advanced tracking 
technologies this situation has changed recently. Instead, 
now the amount of available data is becoming increas-
ingly difficult to manage. In the present article we discuss 
how recent developments of big data technologies from 
industrial data analytics domains address these prob-
lems. Further, the present work provide an overview how 

big data technologies may provide new opportunities to 
study tactical behavior in elite soccer and what future 
challengers lie ahead.

Soccer tactics background
According to the Oxford dictionary, tactics describe “an 
action or strategy carefully planned to achieve a specific 
end”. Regarding competitive soccer, naturally the aim 
the end of the activity is to win the game. Choosing an 
appropriate tactic is therefore crucial for every pre-game 
preparation (Carling et al. 2005b; Kannekens et al. 2011; 
Sampaio and Macas 2012; Yiannakos and Armatas 2006). 
Regarding the definition of tactics Gréhaigne and God-
bout (1995) introduced a distinction between the strategy 
and tactics. Here, the team strategy describes the deci-
sions made before the game with respect to how the team 

Open Access

*Correspondence:  r.rein@dshs‑koeln.de 
Institute of Cognition and Team/Racket Sport Research, German Sport 
University Cologne, Am Sportpark Müngersdorf 6, 50933  
Cologne, Germany

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40064-016-3108-2&domain=pdf


Page 2 of 13Rein and Memmert ﻿SpringerPlus  (2016) 5:1410 

wants to play whereas the tactic is the result of the ongo-
ing interactions between the two opposing teams. This 
approach seems somewhat counter to the basic definition 
of the term tactics provide above. Furthermore, it is not 
clear how these two concepts can be clearly delineated 
from each other as the real-time interactions between 
the players will be conditioned by the a priori strategy. 
Following a classical practitioner’s approaches the tactic 
specifies how a team manages space, time, and individual 
actions to win a game (Fradua et al. 2013; Garganta 2009). 
In this context, space specifies for example were on the 
pitch a certain actions takes places or which area a team 
wants to occupy during the attack and the defense. Time 
in contrast describes variables like frequency of events 
and durations (ball possession) or how quick actions 
are being initiated. For example, a team could decide to 
have a slow buildup during attack initiate in the defense 
third where individual players hold the ball for longer 
times whereas in the attacking third only fast on-touch 
pass sequences are preferred. Finally, individual actions 
specify the type of actions which are being performed, 
for example turnovers, crosses and passes (Garganta 
2009). This classification can be further hierarchically 
organized along the number of participating players into 
individual tactics, group tactics, team tactics, and match 
tactics which is also a scheme commonly referred to by 
soccer practitioners (Bisanz and Gerisch 1980, p.201; 
Carling et al. 2005a). Individual tactics describe all one-
on-one events during offensive and defensive play with 
and without the ball. For example, the way the ball car-
rier is approached by a defender can be considered as 
part of the individual tactic. For example, the defender 
could immediately attack the ball carrier and put him 
under pressured or the defender could use a more passive 
approaches focusing mainly on blocking passing chan-
nels. Group tactics describe the cooperation between 
sub groups within a team for example the defensive block 
during an offside trap. Team tactics describe preferred 
offensive and defense team formations (e.g. 4-4-2) and 
the positioning of the formation on the pitch (Grunz 
et al. 2012). Finally, game tactics describe the team’s play-
ing philosophy such as counter-attack or ball possession 
play. A recent study investigated for example ball posses-
sion regain in the German Bundesliga where the results 
showed that more successful teams were faster to regain 
ball possession after losing possession (Shafizadehkenari 
et  al. 2014; Vogelbein et  al. 2014). In summary, soccer 
tactics describe the microscopic and macroscopic organi-
zational principles of the players on the pitch spanning 
from individual to group decision making processes.

To ensure successful execution at all tactical levels, 
a coach has to take into account the status of the team, 
the status of the opposition, as well as external factors 

like playing at home or even the weather (Gréhaigne and 
Godbout 1995; Lago 2009; Mackenzie and Cushion 2013; 
Sarmento et al. 2014) (compare Fig. 1). Therefore, in the 
following tactics refers to both the a priori decisions as 
well as the real-time adaptations during a game. As the 
two competing teams try to out-smart each other, the 
tactics are not constant but should be adapted accord-
ing to the interactions between and within the two teams 
(Balagué and Torrents 2005; Garganta 2009; Grehaigne 
et al. 1997; Gréhaigne and Godbout 2014). For example, a 
player substitution by the opposition team may introduce 
a change in playing tactics which the coach may have to 
respond to be changing his teams’ tactics. Team tactics 
are therefore governed by a complex process resulting 
from a network of inter-dependent parameters (Kempe 
et  al. 2014). Although the scheme presented above fol-
low a hierarchical pattern the flow information in reality 
does go in both directions. Tactics at a higher level condi-
tion the tactics at the lower level and vice versa success of 
individual actions equally conditions success at a higher 
level (Araújo et al. 2006; Sampaio and Macas 2012). Thus, 
tactics can be interpreted as complex structure of com-
posed of a new of interwoven dependencies. Accordingly, 
tactical analysis should reflect this complexity.

Over the years tactical decisions, like preferred playing 
formations or game tactics, have increased in complex-
ity and coaches’ tactical abilities are under constant pub-
lic scrutiny. Until very recently this stood somewhat in 
contrast to the amount of scientific investigations study-
ing tactical decisions in elite soccer (Carling et al. 2005c; 
Garganta 2009; Sampaio and Macas 2012; Sarmento 
et al. 2014). The reason for this somewhat surprising fact 
may have been the lack of accessible and/or reliable data 
required for tactical analysis (Rampinini et al. 2007). The 
present gold standard to assess tactical behavior and team 
performance in general in elite soccer is commonly based 
on individual game observations (Dutt-Mazumder et  al. 
2011; Mackenzie and Cushion 2013). A domain expert 
(coach, scout) observes a game and rates the team tactics 
according to his personal experiences. Although usu-
ally a specific coding manual is used a general consensus 
regarding relevant variables is currently missing (James 
2006; Sarmento et  al. 2014) and data often lack objec-
tivity and reliability (James et al. 2002). Furthermore, as 
game interactions are highly dynamic and contextual cir-
cumstances change continually it is under debate to what 
extent reliable measures are attainable in general (Lames 
and McGarry 2007). In addition, detailed game analy-
ses based on observational approaches are highly time-
consuming which limited their application in the past 
(Carling et al. 2008; James 2006). Consequently, demand 
for more quantitative oriented (automatic) approaches 
to analyze tactical behavior in elite soccer is increasing 
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(Beetz et al. 2005; Carling et al. 2014; Lucey et al. 2013a, 
b; Wang et al. 2015). Thus, whereas the processes under-
lying tactics in elite soccer have increased over the years 
the scientific approaches have not quite evolved with the 
same speed.

In this regard, fine-grained global reporting of game 
event statistics for commercial audiences has seen a tre-
mendous rise in recent years and detailed game data are 
routinely reported (Baca 2008; Baca et al. 2004; Sarmento 
et  al. 2014). The reason for this increased availability of 
game data is largely due to progress made in player track-
ing technologies (Baca 2008; Carling et al. 2008; Castel-
lano et al. 2014; D’Orazio and Leo 2010; Lu et al. 2013). 
Recently FIFA the governing body for international 
competitive soccer decided to allow the usage of wire-
less sensors technologies to track player positions and 
physiological parameters during competitions (di Salvo 
and Modonutti 2009). This will further increase the avail-
ability of detailed performance data from elite soccer. 
Thereby this has been a results of today’s common prac-
tices among professional teams to already collect physi-
ological and tracking data during training and friendly 
matches to manage the training process (Bush et al. 2015; 
Carling et al. 2008; Ehrmann et al. 2016; Goncalves et al. 
2014; Ingebrigtsen et al. 2015). At present, several differ-
ent tracking systems are available in the market including 
vision based systems, Global Positioning Systems (GPS), 
and radio wave based tracking systems (Leser et al. 2011). 

Although data quality and reliability used to be a prob-
lem, in recent years the systems have matured to such an 
extent that the data is now of sufficient quality to satisfy 
scientific standards. Several recent overviews addressing 
the advantages and disadvantages between the differ-
ent available systems are available in the literature (Bar-
ris and Button 2008; Buchheit et  al. 2014; Carling et  al. 
2008; Castellano et al. 2014; D’Orazio and Leo 2010; Har-
ley et al. 2011; Valter et al. 2006). Thus modern tracking 
data allows the analysis of technical, tactical and physical 
demands in elite soccer.

In general, a trend seems to emerge where analyses of 
soccer games in public media outlets are also becom-
ing increasingly data aware. One example in this regard 
is the increasing number of free internet blogs reporting 
detailed game analyses. Using observational techniques 
from TV game broadcasts data as well as publicly avail-
able internet soccer databases these blogs provide novel 
approaches to data driven performance analysis in soc-
cer much in the same spirits as the sabermetrics commu-
nity has for American baseball during the late 90’s (Lewis 
2004). Recently, investigations have emerged which 
used sentiment analysis from twitter feeds to identify 
for example high impact events during games (Buntain 
2014; Yu and Wang 2015) and to predict game outcomes 
(Godin et al. 2014). In this regard, quantified-self initia-
tives may also provide future opportunities to generate 
valuable data for scientific investigations (Appelboom 
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Fig. 1  Overview of factors influencing tactics in soccer
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et al. 2014; Shull et al. 2014). In summary, lack of reliable 
data to perform tactical analysis in elite soccer is becom-
ing less of a problem and novel data sources are continu-
ally being discovered and developed.

Analysis of soccer tactics
Traditionally, one area which has produced a wealth of 
studies investigating soccer performance is with respect 
to the physiological demands in competitive soccer (Car-
ling et al. 2008; Mohr et al. 2005). However, until recently 
few connections between physiological demands and 
tactical behavior in elite soccer have been made (Bloom-
field et al. 2007; Drust et al. 2007; Moura et al. 2012). As 
was made clear in the introduction, the success for a tac-
tics depends on the abilities of the individual players to 
actually implement the required actions. Obviously this 
requires that the players fulfill the necessary physiologi-
cal requirements, for example, when playing a ball pos-
session type of play (da Mota et al. 2016). Rampinini et al. 
(2007) investigated the total running distances and the 
time spent different running speed categories (standing 
to sprinting). The results showed a significant influence 
of the level of the opponents and the playing position 
(compare also Goncalves et  al. 2014). Bush et  al. (2015) 
investigated the changes in physiological performance 
variables in the English Premier League across several 
seasons and results indicated significant increases in 
passing event rates associated with changes in team tac-
tics (Bush et  al. 2015). Carling (2011) investigated the 
influence of opposition formations on physiological and 
skill-related performance variables and found for exam-
ple increased running distances when playing against a 
4-2-3-1 formation compared to a 4-4-2 formation (Car-
ling 2011). Sampaio et  al. (2014) investigated the influ-
ence of time unbalance and game pace on physiological 
demands during a 5-a-side small sided game were one 
player was dropped in either side to create an inferior-
ity or an superiority condition. The results suggested an 
effect of team unbalance on the time spent in different 
hear rate zones suggesting that the inferior team had to 
work harder (Sampaio et  al. 2014). In summary, these 
results indicate that tactical behavior and physiological 
variables are linked but more in-depth analyses are miss-
ing. Accordingly, at present it is unclear how to combine 
information about player’s physiology from training and 
competition with team tactics (Castellano et  al. 2014) 
and no connections between individual technical perfor-
mance and team tactics have been made so far (Hughes 
and Bartlett 2002).

Traditionally, tactics analyses relied on notational 
analysis approaches based on average statistics and tal-
lies (Hughes and Bartlett 2002). Indicators include for 
example passing variables (Hughes and Franks 2005; Liu 

et al. 2015), ball possession (Collet 2013; Lago 2009), ball 
recovery (Vogelbein et al. 2014), or playing style (Tenga 
et  al. 2010a, b). The main limitation of the traditional 
notational approach is that almost all contextual infor-
mation is discarded, these measures have shown weak 
explanatory power with limited adoption by practition-
ers (Glazier 2015; Hughes and Bartlett 2002; Macken-
zie and Cushion 2013; Nevill et al. 2008; Sarmento et al. 
2014; Tenga et al. 2010a, b). To circumvent this problem 
increasingly multi-variate approaches are being used to 
retain contextual information (Fernandez-Navarro et  al. 
2016; Kempe et  al. 2014). Almeida et  al. (2016) inves-
tigated the effect of different scoring modes on ball-
recovery type and location, playing configuration and 
defensive state in youth players. The results showed that 
more ball recoveries were made when a central goal was 
used and that most recoveries were a result of set-play 
in the defensive third of the pitch. Younger players also 
produced more elongated shapes in the playing direc-
tion whereas the older teams produced more flattened 
shapes with larger spread in the direction orthogonal to 
the playing direction (Almeida et  al. 2016). Tenga et  al. 
(2010a, b) investigated the effects of a ten different vari-
ables on score-box possession based on video data from 
163 matches from the Norwegian men’s professional 
league in 2004. The results showed that the odds ratio 
for producing a score-box possession increased when the 
attacking team had a long possession, started their attack 
from the final third, or used penetrative passes against a 
balanced defense. However, counterattack, possession 
starting in the final third, long possession, long pass, and 
penetrative passes showed increased odds ratios against 
an imbalanced defense. Recently, Fernandez-Navarro 
et  al. (2016) used 19 performance indicators to identify 
different playing styles. The results showed that several 
factors like possession directness which correlated with 
ball possession, sideway passes, and passes from the 
defensive third into the attacking third were important to 
identify playing styles (Fernandez-Navarro et al. 2016).

One approach which is increasingly being used to 
study team tactics is the team centroid method (Folgado 
et  al. 2014; Frencken et  al. 2011, 2012; Yue et  al. 2008). 
Here the behavior of the team centroid, the geometric 
center of the positions of all players from a team, is used 
to analyze the behavior of the whole team. Results from 
this line of research indicate a strong coupling between 
team centroids during game play (Frencken et al. 2011), 
changes of inter-centroid distances due to pitch size 
variations (Duarte et  al. 2012a, b; Frencken et  al. 2013), 
and key game events like goal shots are accompanied 
by increased inter-team coupling variability (Frencken 
et  al. 2012). More recently, investigation of centroid 
behavior has been further extended by calculating the 
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Approximate Entropy (ApEn) (Pincus and Goldberger 
1994), a non-linear time-series measurement techniques, 
to quantify the regularity in time-series data (Aguiar 
et  al. 2015; Goncalves et  al. 2014; Sampaio and Macas 
2012). Results using ApEn analysis suggest increased 
centroid behavior regularity after tactical training in nov-
ice players (Duarte et  al. 2012a, b; Sampaio and Macas 
2012). Goncalves et al. (2014) investigated the coordina-
tion during on 11-a-side game between and within the 
defenders, mid-fielders, and attacker subgroups using 
ApEn. The results showed that players movements were 
more regular with respect to the centroid of their respec-
tive groups compared to the other groups. Sampaio et al. 
(2014) further showed that during an inferiority situation 
during a 5-a-side small sided game the regularity of the 
distance to the team centroid increased. Goncalves et al. 
(2016) investigated the influence of numerical imbal-
ances between attacking and defending team in small 
sided games in professional and amateur players. Player 
numbers varied between 4 versus 3, 4 versus 5, and 4 
versus 7. The results showed that in experts an increase 
in the number of opponents increased the regularity in 
team behavior with respect to the opponents. Although 
the application of ApEn is becoming more prominent, it 
still remains to be shown what this measure really repre-
sents as the regularity behavior of team centroids in itself 
represent a highly abstract description of team behavior. 
Nevertheless, team centroid measures increasingly are 
being used to capture team behavior and many interest-
ing applications have been reported in the literature in 
recent years.

Another more recent group of approach to study team 
tactics focuses on the control of space. On such approach 
uses for example the team surface area as calculated from 
the convex hull which encloses all players from one team 
(Frencken et  al. 2011; Moura et  al. 2012, 2013). Results 
from this line of research indicates that greater sur-
face areas are covered by the attacking compared to the 
defensive teams (Frencken et al. 2011; Moura et al. 2012). 
Similar, more experienced players also cover a greater 
area compared to less experienced players (Duarte et al. 
2012a, b; Olthof et al. 2015). Fradua et al. (2013) investi-
gated the individual player area during 11-a-side matches 
by calculating the largest rectangle enclosing all field 
players divided by the number of players. The results 
showed that individual playing areas become smaller 
when the ball moved into the central pitch area. Another 
approach uses Voronoi-diagrams to investigate space 
control (Nakanishi et al. 2008). Here the controlled space 
is determined using the location and distances between 
individual players to determine the controlled space. 
Results using Voronoi-diagrams show similar results 
compared to the team surface area approach (Fonseca 

et  al. 2012; Fujimura and Sugihara 2005; Gudmundsson 
and Wolle 2014; Kim 2004; Taki and Hasegawa 2000) 
Finally, another approach is based on the determination 
of numerical superiority in a particular pitch area (Silva 
et  al. 2014). Together these results indicate that space 
control is a central aspect of soccer tactics and further 
highlight the interactive nature underlying soccer games 
(Duarte et al. 2013; Garganta 2009; Grehaigne et al. 1997; 
Tenga et al. 2010a, b).

Another emerging analysis approach to study team 
tactics studies investigates team passing behavior using 
network approaches (Watts and Strogatz 1998). The 
basic rationale of this approach is to model the players of 
a team as nodes and the passes occurring between them 
as weighted vertices where the number of passes between 
two players determine the weights (Duarte et  al. 2012a, 
b; Passos et  al. 2011). This representation of team pass-
ing behavior allows to easily identify key players within 
in a team as they display more connection to other ver-
tices accompanied by greater vertex weights (Gama et al. 
2014; Passos et al. 2011). Recent network analyses which 
included next to the player information also pass posi-
tion information were able to predict game outcomes 
and the final ranking of the top teams using a K-Nearest 
Neighbor classifier (Cintia et  al. 2015). Similar, Wang 
et al. (2015) used Bayesian latent model approach applied 
to passing network and passing position information 
from 241 games from the Spanish First (2013–2014). The 
obtained model was able to automatically identify dif-
ferent tactical patterns across teams. By combining the 
obtained tactical information with attacking success the 
authors were further able to show which specific tactical 
patterns were more efficient across teams. By investigat-
ing the contributions by the individual players to each 
tactical pattern the authors were further able to deter-
mine individual contributions by the players to each tac-
tical pattern (Wang et  al. 2015). Together these results 
suggest that players interactions mediated through pass-
ing behavior in combination with spatial information 
provides an interesting new approaches to analyze tacti-
cal behavior in elite soccer thereby providing much more 
information compared to traditional notational analysis 
approaches.

Increasingly tactical decision making in elite soccer is 
also investigated using machine learning (ML) algorithms 
based on game position data (Bialkowski et al. 2014a, b; 
Fernando et al. 2015; Xinyu et al. 2013). Machine learn-
ing algorithms allow to identify specific data patterns in 
large datasets by building an a priori unknown model 
from the data (Haykin 2009; Jordan and Mitchell 2015; 
Waljee and Higgins 2010). Although this approach has 
been discussed in sports research for some time (Bartlett 
2004; Borrie et al. 2002; Nevill et al. 2008) only recently 
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successful applications become more prevalent (Bart-
lett 2004; Lucey et al. 2013a, b). For example, application 
of an expectation maximization algorithm with posi-
tion data from an entire English Premier League season 
allowed the automatic identification of team formations 
(Bialkowski et  al. 2014a, b; Lucey et  al. 2013a, b). The 
results further showed that teams used more defen-
sive formations during away games (Bialkowski et  al. 
2014a, b). The authors used a two-step algorithm where 
the formations were identified only after each player 
was assigned a specific role. This approach allowed the 
authors to circumvent the problem that the player’ roles 
are not constant throughout the game but change accord-
ing to the context which precludes the possibility to sim-
ply use the id of each individual player to identify team 
formations (Bialkowski et  al. 2014a; Lucey et  al. 2013a, 
b). Knauf et al. (2016) used a spatio-temporal kernel algo-
rithm to cluster trajectories which allowed automatic 
differentiated game initiation and scoring opportunities 
from position data. Pairwise similarities between trajec-
tories during attacking phases were compared using a 
specific metric and subsequently a clustering algorithms 
grouped the trajectories into clusters. Again, one of the 
underlying features of the algorithm used by the authors 
is that the comparison between trajectories is invari-
ant to permutations between players (Knauf et al. 2016). 
Using spatial tracking data, Kihwan et al. (2010) applied 
a temporal kernel method to predict the location of the 
ball on the pitch. By calculating a flow-field from the run-
ning directions of the players the authors were able to 
determine convergence points of flow-field which pre-
dicted future positions of the ball with good agreement 
(Kihwan et al. 2010). Hirano and Tsumoto (2005) used a 
multiscale comparison technique with combined event 
data type and event location data to automatically iden-
tify reoccurring attacking sequences leading to a goal. 
The multiscale comparison technique allowed to com-
pare event sequences of varying length with each other. 
For example, in the spatial-kernel method this problem 
has been resolved by time-normalizing the data (Knauf 
et  al. 2016). Similar, Fernando et  al. (2015) were able to 
differentiate attacking plays across teams using cluster 
analysis of game sequences (compare also Xinyu et  al. 
2013). Recently, Montoliu et al. (2015) applied a Bag-of-
Words algorithm to coding soccer game video snippets 
followed by a Random Forest classifier to identify game 
play patterns. The authors divided the pitch into ten areas 
and calculated the optical flow representing the mov-
ing direction of players during short video sequences 
extracted from two complete soccer game recording. 
Thus, the application relied on the pre-segmentation of 
the raw video data by experts (Montoliu et al. 2015).

A second group of ML approaches featuring prominent 
in the soccer literature uses neural network modeling 
(compare Dutt-Mazumder et  al. 2011 for a comprehen-
sive overview). Here, in particular Kohonen Feature Maps 
(KFM) have been used to study tactical patterns (Barton 
et al. 2006; Bauer and Schöllhorn 1997; Dutt-Mazumder 
et al. 2011; Kohonen 1990, 2001; Lees and Barton 2003). 
For example, Grunz et  al. (2012) used a Hierarchically 
Dynamically Controlled Network KFM (Perl 2002, 2004; 
Perl and Weber 2004) to automatically identify team for-
mations (Grunz et al. 2012; Kempe et al. 2015; Memmert 
and Perl 2009). In summary, numerous machine learning 
studies of have used soccer data to study tactical deci-
sion making with little guidance for non-experts. Com-
mon to these approaches is that mostly a certain facet 
of team tactics, predominantly team formations, was 
investigated. Accordingly, information how to combine 
the information across tactical domains (Fig. 1) is lacking 
currently (Garganta 2009; Glazier 2015). For example it 
is not clear how group formations interact with the indi-
vidual technical and tactical skills of players. As it is clear 
that different tactical positions within a team have dif-
ferent physiological demands there has been no research 
addressing how this information can be used in combi-
nation with tactical formations used by the attacking and 
defensive teams (Carling et al. 2008). Furthermore, with 
respect to the tactics hierarchy introduced in the intro-
duction (compare also Fig.  1) the presented approaches 
work at the team tactics level. Accordingly, how team 
formations influence group tactics of subgroups and indi-
vidual tactics has not been investigated so far. An inter-
esting side-note of the presented studies is the fact that 
most ML soccer analyses are performed by computer sci-
entist research group with little apparent involvement by 
sports scientists.

This short overview shows that although many inter-
esting analyses are available what is lacking is a concep-
tual connection between them. Accordingly, it appears 
that the main obstacle to study team tactics stems from 
the lack of a theoretical model (Garganta 2009; Gla-
zier 2015; Mackenzie and Cushion 2013). One model 
which has been repeatedly proposed in the literature 
is based on a Dynamic system theoretical framework 
(Duarte et  al. 2012a, b; Duarte et  al. 2013; Garganta 
2009; McGarry et  al. 2002; Reed and Hughes 2006; Ric 
et  al. 2016). However, although this approach merits 
great potential, at present already the basic definition 
of a relevant phase space is lacking. In the dynamic sys-
tems theoretical approaches, the phase space constitutes 
a key concept which describes a theoretical abstractions 
describing mathematically a space where the system 
resides in and which enable to capture the dynamics of 
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the system in a meaningful manner (Nevill et  al. 2008; 
Vogel 1999). Current suggestions regarding appropriate 
phase space variables in team game vary widely (Duarte 
et  al. 2012a, b; Gréhaigne 2011; Grehaigne et  al. 1997; 
Gréhaigne and Godbout 2014; Lames and McGarry 
2007). In this regard, a common approach for exam-
ple is to use the relative phase as a measure to capture 
coordination phenomena between players (Duarte et al. 
2013; Goncalves et al. 2014; Sampaio and Macas 2012). 
Relative phase approaches stem from the domain of 
physical dynamical systems were oscillators typically 
constitute the building blocks of the systems (Pikovsky 
et  al. 2003). Accordingly, the question of whether an 
oscillator assumption is justified to model team games is 
an open question at present. Modeling efforts of soccer 
games as a dynamic system which go beyond a purely 
phenomenological description are therefore not avail-
able at present.

The lack of a higher-order description about soc-
cer team dynamics also prevents the current analytical 
approaches from making a real impact with practition-
ers (Carling et al. 2008; Lames and McGarry 2007; Nev-
ill et al. 2008). One of the challenges for tactical match 
analysis in elite soccer will be to work towards an 
explanatory theoretical model which is able to inte-
grate information from various domains including 
tactics, physiology, and motor skills (Garganta 2009; 
Sarmento et  al. 2014) (compare Fig.  1). In this regard, 
new approaches in Artificial Intelligence (AI) research 
(Bishop 2013; Gibney 2016; Jones 2014; LeCun et  al. 
2015) may provide promising avenues towards the 
development of a theoretical model of tactical deci-
sion making in elite soccer. In particular, so-called deep 
learning networks are becoming increasingly powerful 
in modeling domains previously considered compu-
tational intractable (Hinton and Salakhutdinov 2006; 
LeCun et al. 2015; Xue-wen and Xiaotong 2014). How-
ever, these approaches rely on large training datasets 
to determine network parameters (Jones 2014; Xue-
wen and Xiaotong 2014), which at present have not 
been used in tactical analyses in soccer. In this regard, 
recent machine learning models using neural networks 
have been extended such to allow to incorporate a pri-
ori information into the models (Bishop 2013). This 
might be of great relevance to develop novel approach 
to model team tactical behaviors as for example insights 
gained from the studies summarized above might be 
used to constrain network modeling efforts and at the 
same time allowing the connection between physiologi-
cal, tactical and skill related information. Accordingly, 
modern algorithm from AI might prove highly useful 
for tactical analysis in elite soccer and fulfill previous 
proposals (Dutt-Mazumder et al. 2011).

Big data and soccer tactics
A potential solution with respect to model building and 
the combination various data sources might present 
itself through the recent rise of big data technologies 
which has been already suggested as shaping the future 
of performance analysis in elite soccer (Cassimally 2012; 
Kasabian 2014; Lohr 2012; Medeiros 2014; Norton 2014). 
As the phenomenon of big data is relatively recent first 
a definition of the relevant concepts will be provided. 
Surprisingly, no universally agreed definition of big data 
is available and big data is rather described by its char-
acteristics (Baro et al. 2015; Noor et al. 2015; Romanillos 
et al. 2016). Accordingly, big data is characterized using 
the so-called three V’s: (1) Volume, (2) Variety and (3) 
Velocity (Noor et al. 2015; Xue-wen and Xiaotong 2014). 
Volume describes the magnitude of the data, Variety 
refers to the heterogeneity of data, and Velocity charac-
terizes the data production rate (Noor et al. 2015). With 
respect to tactical analytics in soccer these concept can 
be mapped in the following way: (1) Volume refers to the 
size of datasets in soccer. For example, a current dataset 
for positional data typically encoded using Extensible 
Markup Language (XML) ranges between 86 and 300 
megabytes (mb). Thus, storing position, event and video 
data from a single complete Bundesliga season results in 
400 gigabytes of tracking data. Accordingly the data vol-
ume increases with the addition of other sources includ-
ing for example physiological or event data. By itself this 
is far from the petabyte data sizes commonly associated 
with big data (Pääkkönen and Pakkala 2015), yet the main 
problem is to provide structured access to the data. Com-
mon solutions using Excel sheets do not scale well with 
these data. Big data technologies in contrast provide spe-
cific solutions for storing such data sets and make them 
accessible through specific user interfaces and applica-
tion programming interfaces (API). (2) Variety refers to 
different data formats and data sources. Variety can be 
further distinguished into: (a) structured, (b) semi-struc-
tured, and (c) unstructured data. Structured data has a 
clearly predefined schema describing the data. Structured 
data allows simple navigation and searching through the 
data where a relational database system is the canonical 
example. In contrast, unstructured data lacks a definite 
schema with video data and text messages being typi-
cal examples. Accordingly, semi-structured data falls in 
between these two extremes and consists of data which 
lacks a pre-defined structure but may has a variable 
schema which is often part of the data itself (Sint et  al. 
2009). Current XML data types used for tracking data are 
examples in this regard (IPTC 2001). Thus, in soccer data 
variety refers to position, video, fitness, training, skill 
performance, and notational meta-data next to health 
records and crowd data from blogs. As data access and 
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data processing patterns vary across data types, big data 
technologies provide specific solutions to combine the 
information distributed across such datasets. (3) Velocity 
describes the speed with which novel data is being gener-
ated. In soccer, the velocity varies widely between real-
time streams from physiological and positional data to 
delayed data from notational analysis during training and 
competition. Big data technologies specifically address 
how to process and store high velocity data. In summary, 
all three key concepts characterizing big data are highly 
relevant with respect to tactical analysis in elite soccer 
and big data technological stacks provide specific solu-
tions to address each of these areas.

A candidate big data soccer technological stack for soc-
cer tactics analyses should be organized along several 
levels (compare Fig. 2). First, the necessary infrastructure 
to collect the data is required spanning physiological and 

tracking data in addition to video and observational data. 
Second, a storage system is required allowing efficient 
data storage and access. Finally, a processing pipeline has 
to be established to extract relevant information from the 
data and to subsequently merge the information to build 
an explanatory and/or predictive model (Coutts 2014). 
For all these processing levels reporting and visualization 
capabilities are needed to monitor the different process-
ing steps and communicate the results. Unfortunately, 
there is no one-to-one mapping between these different 
components and available technologies. However an in-
depth discussion of specific technological solutions is 
beyond the scope of the present article and more special-
ized literature is referred to (Noor et al. 2015; Pääkkönen 
and Pakkala 2015; Sitto and Presser 2015).

Yet, what immediately becomes clear from Fig. 2 is that 
a significant amount of expertise is needed in order to 

Visualization and Reporting

Structured data

Semi-structured data

Unstructured data

ML System

Crowd data

Scouting data

Coaching data

Physiological data

Tracking data

Psychological data

Big data 
storage solution

Tactics-model

Space ActionsTime

Fig. 2  Big data technological stack for tactical analysis in elite soccer
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establish such a system. One area which is facing simi-
lar challenges in this respect is the medical health sec-
tor (Noor et al. 2015; Toga et al. 2015; Zhang et al. 2015). 
In the medical area a so-called personalized (stratified) 
medicine is increasingly seen is a key are of research to 
improve current practices (Hood et  al. 2015; Kostkova 
et al. 2016; Zhang et al. 2015). Thereby, for personalized 
medicine to become realizable big data technologies 
are needed. One key problem in this area is how data is 
stored and shared across institutions. At present health 
data is collected and held by government, commer-
cial and public research institutions. This leads to sever 
limitations with respect to access and data sharing pos-
sibilities across these entities due to privacy and security 
issues (Costa 2014; Kong and Xiao 2015; Kostkova et al. 
2016; Toga and Dinov 2015). This also applies to soccer 
data where data is collected by commercial institutions, 
private clubs, and public research institutions. Accord-
ingly, privacy issues have to be addressed as for exam-
ple detailed profiles about individual players might have 
significant career implications and professional soccer 
teams may be reluctant to share data and possibly forfeit 
competitive advantages. Thus, data governance issues 
must be resolved before big data approaches may become 
viable for soccer research potentially. In the medical 
sector varies solutions are being investigated includ-
ing standardized open privacy protection mechanisms 
which encrypts individual data items (Kong and Xiao 
2015). Nevertheless, even when access is made avail-
able, researchers face the problem that data processing is 
highly complex and not manageable using common pro-
cessing pipelines. Experiences from the biomedical sec-
tors shows that in particular smaller research groups lack 
the required expertise and funding to build the required 
processing and analysis infrastructures (Bishop 2013; 
Goecks et  al. 2010; Lynch 2008; Marx 2013; Noor et  al. 
2015; Sitto and Presser 2015). At present, it is also not 
clear how to ensure that technologies and procedures are 
made available to researchers lacking the required com-
puter science expertise to build data pipelines of their 
own. This is already a problem with respect to many of 
the ML techniques described above.

As computational approaches increasingly become 
more complex reproducibility issue will also become 
more important as the development of novel algorith-
mic approach will become the focus of future publica-
tion results (Mesirov 2010). In this regard, efforts from 
biomedical research like the Galaxy project (Goecks 
et al. 2010) may provide a model solution for future big 
data technologies in sports sciences. The Galaxy project 
is developed through a collaborative effort across sev-
eral universities and provides a web-based solution to 
perform genomic research using big data technologies 

(Goecks et  al. 2010; Levine and Hullett 2002; Ohmann 
et  al. 2015). The project aims to provide a standardized 
way for researchers to access complex processing algo-
rithms which makes it possible for non-expert users to 
apply cutting edge analysis technologies to their data 
(Goecks et  al. 2010). The system includes a sophisti-
cated documentation solution which allows the storage 
and presentation of analysis results and documents at 
the same time the complete processing pipeline ensur-
ing reproducibility of the research results (Goecks et al. 
2010). The framework was build to be extensible and 
allows the inclusion of additional procedures through 
public repositories efforts (Blankenberg et al. 2014). This 
approach may be a model for sports sciences to address 
not only big data approaches for soccer tactics but more 
general analysis and data processing problems in other 
domains as well. Inevitable this will lead to increased col-
laborative efforts between sports and computer scien-
tists as the sports science community at present lacks the 
required computational background.

Conclusion
 In conclusion, exciting times are emerging for team 
sports performance analysis as more and more data is 
going to become available allowing more refined inves-
tigations. The adaption of big data technologies for soc-
cer research may therefore provide solutions to some of 
the key issues outline above. Thus, by providing novel 
methods to analyze the data and a more comprehensive 
theoretical model and understanding of tactical team 
performance in elite soccer may be within reach. This 
implies however, that future soccer research will have to 
embrace a stronger multi-disciplinary approach. Perfor-
mance analysts, exercise scientists, biomechanists as well 
as practitioners will have to work together to make sense 
of these complex data sets. As has been pointed out, most 
of the machine learning approaches presented were per-
formed by computer science research groups. Accord-
ingly, future collaborations between computer and 
sports scientists may hold the key to apply these complex 
approaches in a more relevant manner. In turn, relying 
increasingly on more complex data analysis techniques 
will also pose new challenges for future sports scientists. 
Therefore, university curricula will have be augmented 
to ensure that future students receive the required back-
ground training to be able to not only use these tech-
niques but to have at least some understanding of their 
theoretical and computational underpinnings. The intro-
duction of big data technologies will also require a dis-
cussions within the research community of how to share 
data and techniques across research teams. To make the 
new insights relevant for practice a tight interchange with 
practitioners is required. Finally, taking a broader view 



Page 10 of 13Rein and Memmert ﻿SpringerPlus  (2016) 5:1410 

on the issue of big data and sports science the proposed 
model for tactical analyses in elite soccer might also 
prove beneficial for other sports science domains where 
data sizes are bound to increase as well and accordingly 
similar problems will surface.
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