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Imidazo[1,2-a]pyridine derivatives
synthesis from lignin b-O-4 segments
via a one-pot multicomponent reaction

Luxian Guo,1,2,4 Yangming Ding,1,4 Hua Wang,1 Yuxuan Liu,1 Qian Qiang,1,2 Qi Luo,1,3 Fei Song,1,3

and Changzhi Li1,2,5,*

SUMMARY

The catalytic conversion of lignin into N-containing chemicals is of great signifi-
cance for the realization of value-added biorefinery concept. In this article, a
one-pot strategy was designed for the transformation of lignin b-O-4 model com-
pounds to imidazo[1,2-a]pyridines in yields up to 95% using 2-aminopyridine as a
nitrogen source. This transformation involves highly coupled cleavage of C-O
bonds, sp3C-H bond oxidative activation, and intramolecular dehydrative
coupling reaction to construction of N-heterobicyclic ring. With this protocol, a
wide range of functionalized imidazo[1,2-a]pyridines sharing the same structure
skeleton as those commercial drug molecules, such as Zolimidine, Alpidem, Sari-
pidem, etc., were synthesized from different lignin b-O-4 model compounds and
one b-O-4 polymer, emphasizing the application feasibility of lignin derivatives in
N-heterobicyclic pharmaceutical synthesis.

INTRODUCTION

With accelerating consumption of fossil resources and the increasing environmental concerns, lignocellu-

losic biomass as a renewable and abundant source of chemicals and fuels has recently attracted substantial

attention.1–5 Lignin, a major component of lignocellulose and a complex plant-derived heteropolymer, is a

unique precursor for aromatic compounds.6–8 However, most lignin in the paper and pulp industry has

been discarded or burnt as a low-value fuel,9 which not only wastes renewable resources, but also poses

different environmental concerns. Lignin valorization has therefore become a major topic in biomass con-

version field and would play an important role in improving the economics of the overall biorefinery asso-

ciated with addressing the problem of environmental impacts. So far, great efforts have been devoted to

selective cleavage of C-O and C-C linkages to obtain phenols,2,10–14 arenes,15 cycloalkanes,16,17 aromatic

aldehydes,18 ketones,19–21 acids,22 and benzoquinones.23 The above mentioned products are limited to C,

H, O-containing compound.

Nitrogen-containing aryl compounds are typically value-added chemicals in the synthesis of biologically

active pharmaceuticals and valuable materials.24–27 Recently, the conversion of lignin and lignin-derived

compounds into N-containing products appears as a direction for lignin valorization.28–30 Li et al. described

an efficient palladium-catalyzed formal cross-coupling of phenols with various amines and anilines to form

aryl amines.31 Wang et al. converted lignin models and preoxidized lignin to isoxazole and aromatic

nitrile.32 Maes et al. depicted a method that coverts lignin-derived 4-propylguaiacol to 3,4-dialkoxyanilines

via a Beckmann rearrangement.33 Han et al. reported Pd-catalyzed coupling of aryl ethers andmorpholines

to 4-cyclohexylmorpholines.34 In our recent paper, we have accomplished the direct conversion of lignin

b-O-4 dimers into benzylamines in the presence of organic amines overPd/C, and the potential of ‘‘lignin

to benzylamines’’ was demonstrated by a two-step process.24 More recently, heterocyclic aromatic com-

pounds, such as pyrimidines,26 functionalized quinolines,25 and quinoxalines27 have been synthesis from

lignin b-O-4 segments via a one-pot multicomponent reaction. Of which, important marine alkaloid mer-

idianin derivatives26 and an important drug compound AG129527 were obtained, showcasing good exam-

ples for the valorization of lignin to pharmaceutical molecules.

Imidazo[1,2-a]pyridine derivatives are essential ingredients for marketed medicines such as anti-ulcer Sor-

aprazan and Zolimidine,35 vasodilator Olperinonr,36 anti-anxiety Alpidem and Saripidem,37 and sleeping
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Zolpidem (Scheme 1A). In addition, the heterobicyclic skeleton of imidazo[1,2-a]pyridine has high fluores-

cence activity, which can be used in the research of genetic fluorescent markers.38 Normally, The traditional

synthesis methods of imidazo[1,2-a]pyridine derivatives are based on the construction of imidazole ring,

which typically uses pyridines and olefins/alkynes as the starting materials via halogenation followed by

in-situ generation of imidazole ring.39,40 In another route, imidazo[1,2-a]pyridines can also be constructed

based on the formation of pyridine ring through halogenation of alkynes coupled with nucleophilic addi-

tion of imidazole41–43 (Scheme 1B). The above methods for the synthesis of imidazo[1,2-a]pyridine deriva-

tives prevailingly rely on fossil-based feedstock and transition metal catalysts. Moreover, a great number of

these progresses require multi-step synthetic routes, complicated ligands which suffer from high process-

ing cost, low overall efficiency, and excessive waste emission. Hence, efficient strategy for the selective con-

version of renewable feedstock such as lignin into such kind of products is highly desirable for cost-effective

biorefinery conception and the sake of sustainable chemical industry.

Ketones are important type of substrates for the construction of imidazole skeleton.44–46 Previous litera-

ture47–49 including our own19,50 have shown the possibility from lignin to aromatic ketones. It therefore pro-

vides us a potential choice using lignin b-O-4 segments as a renewable substrate for imidazo[1,2-a]pyridine

production. Enlightened by the above cases, in this work, a one-pot two-step synthesis method of imidazo

[1,2-a]pyridine derivatives from b-O-4 model compounds, by far the most frequent linkage in almost all

types of lignin, using 2-aminopyridine as nitrogen source, commercial available Pd/C as catalyst and iodine

as a promoter was developed (Scheme 1C). Such a strategy involves highly coupled cleavage of C-O bonds,

dehydrative condensation, sp3C-H bond oxidative activation, and intramolecular dehydrative coupling re-

action. Moreover, a b-O-4 polymer that mimicking natural lignin, was successfully converted to imidazo[1,2-

a]pyridine derivative based on this catalytic route.

RESULTS AND DISCUSSION

Our exploration started from the reaction of typical lignin b-O-4 model compound 2-(2-methoxyphenoxy)-1-

phenylethanol 1a with 2-aminopyridine 2a to afford 2-phenylimidazo[1,2-a]pyridine 3a. This transformation is

A

B

C

Scheme 1. Synthetic strategies to imidazo[1,2-a]pyridines

(A) Representative bioactive compounds derived from imidazo[1,2-a]pyridines.

(B) Current petroleum-based synthetic routes to imidazo[1,2-a]pyridines.

(C) The proposed renewable route in this work.
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anticipated to have two major steps, namely cleavage of 1a to afford ketone intermediate acetophenone 5a,

which then reacts with 2a to provide targeted product 3a. As Pd/C is a typical catalyst for C-O bond cleav-

age,49,51,52 it is used in this work for dissembling of 1a. According to Samec et al. research, addition of catalytic

amount of hydrogen source could activate Pd/C catalyst through a low energy barrier pathway.47 Hence,

10 mol% NaBH4 (based on 1a) was employed as hydrogen source to activate Pd/C. Because water is a

good solvent for NaBH4, it was selected as an integral solvent in the reaction. On the other hand, organic sol-

vent is required to dissolve b-O-4 model compound. Therefore, a mixed solvent system containing water and

organic solvent was adopted for this one-pot transformation. Our initial experiment was conducted without

iodine source, it was found that no target product was generated (Table 1, entry 1), instead, C-O bond cleav-

age products 4a and 5a were obtained in excellent yields of 95.3% and 92.6%, respectively. In organic synthe-

sis, molecular iodine has been used extensively in various reactions.53,54 It can act as a mild oxidizing re-

agent,55–57 and has mild Lewis acidic properties.58,59 Molecular iodine has the lowest homolytic

dissociation energy among the nonradioactive halogens (151 kJ/mol). After astatine, iodine has the lowest

electronegativity among the halogens. Therefore it is much easier to generate the monocationic iodine spe-

cies (‘I+’) in situ than monocationic bromine or chlorine derivatives.60 Das et al.61 have reported that iodine

source can promote the C-N bond formation between 2-aminobenzyl alcohol/2-aminobenzamide and

different coupling partners (such as nitriles, aldehydes and ketones) to construct imidazole ring. Enlightened

by this finding, we therefore added iodine in the reaction system, and obtained 40.0% of 3a yield (Table 1, en-

try 8). This encourages us to further screen different iodine sources. As shown in Table 1, this reaction is very

sensitive to iodine species. In detail, iodine anions cannot promote the generation of 3a, the reactions in the

presence of KI and CuI gave similar results to that without iodine source (Table 1, Entries 1–3), whereas it pro-

ceededwell in the presence of I2, KIO3, NaIO3, KIO4 andNaIO4promotors (Table 1, Entries 4–8), indicating that

the promotors containing iodine cations could also catalyze the reaction, albeilt they showed lower activity

than iodine (Table 1, entry 8 vs. entries 4–7), whichmight due that these promotors haveweaker electrophilicity

than I2. Therefore, I2 was employed as a promotor in the subsequent reactions. To further improve the yield of

3a, the solvent system was then screened. Under the same conditions, the solvent mixture containing polar-

aprotic solvents such as CH2Cl2, CH3CN, tetrahydrofuran (THF) and ethyl acetate (EtOAc) gave 3a yield no

more than 40% (Table 1, entries 8–12). Polar-protic solvent tert-amyl alcohol (t-AmOH) also provided 3a yield

of 22%. Specifically, much higher 3a yield (60.5%), with 96.8% yield of phenol 4a (Table 1, entry 13) were ob-

tained in toluene/watermixture (See Tables S1 and S2 for the screening of temperature and different solvents).

Table 1. Conversion of b-O-4 model compound 1a with 2-aminopyridine 2a at different conditions

Entrya Iodine Source Solvent 3a Yield (%) 4a Yield (%) 5a Yield (%)

1 – EtOAc/H2O 0.0 95.3 92.6

2 KI EtOAc/H2O 0.0 94.8 85.1

3 CuI EtOAc/H2O 0.0 95.7 89.7

4 KIO3 EtOAc/H2O 31.5 96.1 trace

5 NaIO3 EtOAc/H2O 23.4 94.7 trace

6 KIO4 EtOAc/H2O 28.8 96.4 trace

7 NaIO4 EtoAc/H2O 26.6 96.0 trace

8 I2 EtOAc/H2O 40.0 95.3 –

9 I2 CH2Cl2/H2O 2.3 45.6 14.3

10 I2 t-AmOH/H2O 10.8 38.1 16.5

11 I2 CH3CN/H2O 22.0 60.1 36.0

12 I2 THF/H2O 33.6 65.0 38.5

13 I2 Toluene/H2O 60.5 96.8 –

aReaction conditions: Step 1: 1a (0.2 mmol), 5 wt% Pd/C (5 mol%), NaBH4 (10 mol%) in water (0.5 mL), toluene (1.5 mL), 140�C, t = 2 h. Step 2: 2a (0.4 mmol), iodine

source (0.35 mmol), 140�C, t = 15 h. Yield was determined by GC-FID using dodecane as an internal standard.
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It should be noted that the yield of 4a was always higher than 3a in all reactions, probably because 4a from

depolymerization of lignin does not participate in downstream transformation, while the formation of 3a re-

quiresmore steps from 1a. To sum up, the above experiments demonstrated the possibility for the conversion

of lignin b-O-4 model compound into imidazo[1,2-a]pyridine derivatives. Yang62 and Kapoor63 disclosed that

both amines and inorganic ammonium additives can promote the reaction.62 Accordingly, several organic

amines and inorganic ammoniums were added in the reaction systemwith the aim to further improve the con-

version efficiency. It is gratifyingly to note thatmost of these additives gave better conversion results except for

ammonium chloride and aniline (Table 2). Amongst all these additives, ammonium bicarbonate (NH4HCO3)

exhibited the greatest acceleration effect, providing 3a in yield of 71.6% (Table 2, entry 4). We speculate

that ammonium bicarbonate additive can promote the cyclization reaction63 of acetophenone and aminopyr-

idine in the presence of I2, by releasing NH3 to capture HI, a byproduct generated from the iodination of Ca in

acetophenone, which will be further discussed in the following mechanism study. After optimizing the molar

ratio of 1a and 2a (Tables S3 and S4), 3a yield up to 89.5% could be achieved (Table 2, entry 8).

To examine the generality of this route, the activity of various lignin b-O-4model compounds was explored.

Substrates 1 with different functional groups on the aryl ring (Table 3) are found as fragments in different

types of lignin.26 Under optimized reaction condition, all b-O-4 model compounds were completely

consumed to afford the corresponding imidazo[1,2-a]pyridines and monophenols, whereas the yields

and selectivity showed some diversity. In detail, when b-O-4 model compounds 1a-1g containing different

methoxy groups reacted with 2a, moderate to good isolated yields (64–89.5%) of imidazo[1,2-a]pyridines

3a-3c, with excellent yields (95–99%) of phenol derivatives 4a-4c were achieved (Table 3, entries 1–7), indi-

cating that the formation of imidazo[1,2-a]pyridine heterobicycles occurred associated with selective C-O

bond breaking and C-N bond construction. Compared with the b-O-4 model compound bearing no func-

tional group, methoxyl substitution on the O-terminal aryl ring had slight negative impact on the product

yield (Table 3, entry 1 versus entries 4–5), whereas methoxyl group on the C-terminus aryl ring exhibited

greater negative influence on the reaction efficiency (74–80%) (Table 3, entry1 vs. entries 6–7). It is also

Table 2. Screening of Amine additives

Entrya Additive 3a Yield (%) 4a Yield (%)

1 – 60.5 96.8

2 NH4Cl 47.3 96.5

3 NH4OAc 62.5 95.9

4 NH4HCO3 71.6 96.3

5 43.5 95.2

6 61.5 94.1

7 68.1 93.4

8b NH4HCO3 89.5 96.8

aUnless otherwise specified, the reaction conditions are: Step 1: 1a (0.2mmol),5 wt% Pd/C (5mol%), NaBH4 (10mol%) in water

(0.5 mL), toluene (1.5 mL), 140�C, t = 2 h. Step 2: 2a (0.4 mmol), I2 (0.35 mmol), additive (0.4 mmol), 140�C, t = 15 h. Yield was

determined by GC-FID using dodecane as an internal standard.
b1a (0.2 mmol), 2a (0.8 mmol), NH4HCO3 (0.4 mmol).
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Table 3. Scope of lignin b-O-4 model compounds and aminopyridine for the synthesis of imidazo[1,2-a]pyridines

Entrya Sub.1 Sub.2 3 Yield (%) 4 Yield (%) Entry Sub.1 Sub.2 3 Yield (%) 4 Yield (%)

1 8 1a 4a

96%

2 2a 9 1a 4a

96%

3 2a 10 1a 4a

97%

4 2a 11 1a 4a

96%

5 2a 12 1a 4a

95%

6 2a 13 1a 4a

96%

7 2a 14 1a 4a

95%

aReaction conditions: for step 1: 1a (0.2 mmol), 5 wt% Pd/C (5mol%), NaBH4 (10 mol%) in water (0.5 mL), toluene (1.5 mL), 140�C, t = 2 h. Forstep 2: 2a (0.8 mmol), I2 (0.35 mmol), NH4HCO3 (0.4 mmol), 140�C, t =
15 h. Yield refers to isolated yield.
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found that, the yields of heterocycle products were 89.5%, 86%, 74% and 64%, respectively, when the me-

thoxyl groups of b-O-4 model compounds gradually increased from 0 to 4 (Table 3, entries 1, 4, 2, and 3).

Overall, the more methoxyl groups on the aryl rings, the greater the negative impact on the reaction per-

formance. Notwithstanding, this route leads to the successful cleavage of various b-O-4 model compounds

and to the synthesis of imidazo[1,2-a]pyridines in a one-pot manner with fairly good yields. It is worth noting

that all the prepared imidazo[1,2-a]pyridine molecules share the same structure skeleton as those commer-

cial drug molecules (Scheme 1A), such as Zolimidine,35 Alpidem,61 Saripidem,37 etc. It therefore can be

expected that themselves, or after proper modification,61 could have similar biological activity to above-

mentioned drug molecules.

This reaction system has also proven to be effective for a broad range of aminopyridines. As shown in

Table 3, seven aminopyridines have been successfully employed in the transformation, providing corre-

sponding imidazo[1,2-a]pyridine products 3d-3j in high yields of 87%–95% (Table 3, entries 8–14). Amino-

pyridines possessing either electron-donating group (Table 3, entries 8–12,14) or electron-withdrawing

group (Table 3, entry 13) on pyridine ring can react well with b-O-4 model compound to obtain excellent

yield of imidazo[1,2-a]pyridines. Taking together, this one-pot catalytic system has proven to be effective

not only for a variety of b-O-4 model compounds, but also for a broad range of aminopyridines. Lignin

model compounds and aminopyridines with different functional groups are compatible to afford good

to excellent yields of imidazo[1,2-a]pyridines, which thus offers an interesting opportunity for the valoriza-

tion of lignin major segments to value-added N-heterobicyclic compounds.

To further determine the compatibility of the developed route, a b-O-4 polymer 1h (number-average mo-

lecular weight Mn = 23494, weight-averagemolecular weight Mw = 31680) that mimicking natural lignin was

prepared and was then used as a substrate for the synthesis of imidazo[1,2-a]pyridine derivative. Under the

same treatment condition as that in Table 3, 1h first underwent Pd/C-catalyzed C-O bond cleavage to

afford p-hydroxyacetophenone 5b.

Subsequently, 5b reacted with 2-aminopyridine 2a in the presence of NH4HCO3/I2, and the corresponding

target product 3k was obtained in 68% overall yield (isolated) based on b-O-4 polymer (Scheme 2). Product

3k is very similar in structure to Zolimidine,37 a commercially marketed anti-ulcer drug. Therefore, the above

results further manifest the potential of this route in the synthesis of value-added N-heterobicyclic drug

molecular from lignin b-O-4 polymer.

To understand the whole reaction scheme in depth, and to clarify the roles of different functional groups in

b-O-4 aryl ethers, several comparative experiments were carried out to determine the possible reaction inter-

mediates. For the first step, viz. the depolymerization of C-O bonds in b-O-4 model compounds, substrate 1i

without substituted functional group in side chain cannot initiate any reaction over Pd/C in the presence of

NaBH4 at 140
�C, which is in sharp contrast to the reaction of 1a (Scheme 3, Reaction 1 versus Table 3, entry 1),

implying that the hydroxyl group at Ca position should play a key role. Substrate 1j, in which the Ca position is

blocked by a methyl group, also did not react under the same condition (Scheme 3 and Reaction 2), suggest-

ing the hydrogen at Ca position is involved in the reaction. The same result was obtained on compound 1k

(Scheme 3 and Reaction 3), which contains a methoxyl group in the Ca position, indicating that the proton

of hydroxyl group at the Ca position also plays an important role in the reaction. The above three experiments

show that both the proton of hydroxyl group and the hydrogen at Ca position are involved in C-O bond

breaking. According to the above cases and literature,47 a plausible reaction pathway for the cleavage of

C-O bonds of b-O-4 model compounds (taking 1a as an example) is proposed: the reaction begins with

the dehydrogenation of 1a to produce intermediate 2-phenoxy-1-phenylethanone 6 and Pd/C-adsorbed

hydrogen.47 This hydrogen participates in the subsequent cleavage of C-O bonds via an intramolecular hydro-

genolysis step to generate another intermediate acetophenone 5a, with phenol 4a as a final product. The

Scheme 2. Conversion of lignin b-O-4 polymer to imidazo[1,2-a]pyridine derivative 3k
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following time course experiment using 1a as the substrate gives direct evidenceon theproposedpathway. As

shown in Scheme 4A, at the very beginning of the reaction (10 min), the conversion of 1a only provided 6, and

the yield of 6 increased fast at the initial stage but then quickly decreased after 20 min. In parallel, 5a and 4a

appeared after 10 min and the corresponding yields increased very slow at the initial stage (from 0 to 20 min)

with increasing of the reaction time. Of interest, after 20 min, with the consuming of 1a, the yield of 6 showed a

decline trend whereas the yields of both 4a and 5a increased faster than before. Apparently, 2-phenoxy-1-

phenylethanone 6 would be a plausible intermediate for the generation of 4a and 5a.

For the second step, to produce imidazo[1,2-a]pyridine compounds, we also carried out several compar-

ative experiments to catch the possible reaction intermediates. First, treatment of acetophenone 5a alone

under otherwise identical conditions yielded 68.2% of 2-iodo-1-phenylethanone 5c within 5 h (Scheme 3

and Reaction 4), indicating that the reaction of 5a with iodine to form 5c may be one step of the reaction.

This assumption was confirmed by the reaction using 5c and 2a as the substrates, which afforded 95.7% of

3a, a slightly higher yield than that in Table 2, entry 8 using 1a as the substrate. According to the above

facts, a plausible reaction pathway for the conversion of 5a to 3a is proposed: the reaction begins with

the electrophilic substitution of a-H on acetophenone by I2 to produce intermediate 5c. This intermediate

then reacts with 2-aminopyridine 2a via a cascade cyclization-dehydration step to generate 3a as a final

product. Aforementioned experiments in Table 2 have demonstrated the acceleration effect of

NH4HCO3 on the whole transformation. Two comparative experiments in Scheme 3 Reactions 4 and 6)

further showed that NH4HCO3 additive can promote the formation of intermediate 5c, namely the electro-

philic substitution of acetophenone by I2, because the reaction in Reaction 6 without NH4HCO3 gave lower

Scheme 4. Time course reactions

(A) Time course profile of compound 1a conversion overPd/C.

(B) Time course profile of compound 5a conversion.

Scheme 3. Control experiments
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yield of 5c (56.8%) than Reaction 4 (68.2%) under the same conditions. The time course profile of 5a con-

version (Scheme 4B) showed that 5a was almost quantitatively converted to 3a in the end, and 5c yield ap-

peared a volcanic trend with the increase of time, indicating it is an intermediate during the transformation.

Noting that only a very low yield of 5c was observed, one can expect 5c is rapidly converted into 3a once it is

generated. Therefore, 5c formation might be a rate-determining step in the reaction.

Based on all above results, the possible mechanism of the whole transformation is proposed in Scheme 5.

The dehydrogenation of 1a overPd/C forms intermediate 6 and [Pd-H] species,47 then the in-situ generated

[Pd-H] species participates the cleavage of the C-O bond of intermediate 6 to afford 5a and 4a. After add-

ing I2 in the reaction mixture, intermediate 5a reacts with I2 via sp3C-H bond oxidative activation to form

another intermediate 2-iodo-1-phenylethanone 5c and HI. In this step, NH4HCO3 can promote the reaction

via neutralization of HI through releasing NH3. Once 5c is generated, a fast intermolecular nucleophilic sub-

stitution of 5c by 2-aminopyridine 2a occurs to obtain compound 7, which then releases intermediate 8 and

HI via an intramolecular electron transfer. NH4HCO3further consumes HI and intermediate 8 undergoes an

intramolecular cyclization to afford 9, which finally is dehydrated to targeted product 3a.

In conclusion, we have developed a route for the effective synthesis of imidazo[1,2-a]pyridines from lignin

b-O-4 model compounds via a one-pot multicomponent transformation in the presence of pyridine, I2
and Pd/C. The developed method shows versatility in production of various imidazo[1,2-a]pyridine deriv-

atives by varying b-O-4 model compounds and the substituted aminopyridines. The feasibility for the

production of imidazo[1,2-a]pyridine derivatives from lignin-related polymer has also been demon-

strated. A highly coupled cascade pathway, including cleavage of C-O bonds, sp3C-H bond oxidative

activation and dehydration aromatization reaction has been established. The methodology described

here makes it possible to build a bridge between renewable lignin and heterobicyclic aromatic com-

pounds, thus providing a petroleum-independent choice for value-added fine chemicals and pharmaceu-

tical molecules.

Limitations of the study

Unless otherwise specified, there are no limitations in this study.
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B Procedure for conversion of lignin-related polymer to 3k
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Scheme 5. The plausible mechanism of the transformation of 1a to 3a
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KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by

the lead contact, Changzhi Li (licz@dicp.ac.cn).

Materials availability

This study did not generate new unique reagents.

All reagents were purchased from commercial sources (Mackun, Aladdin, Sigma-Aldrich) and used without

purification unless otherwise mentioned. Lignin model compounds 1a-1g were synthesized according to

the literature.19 2-Phenoxyphenylethane was extracted according to the literature.2 2-methoxy-1-

phenoxy-1-phenylethane was extracted according to the literature.47 2,3 A lignin-related polymer was syn-

thesized according to the literature.47 The products were purified by column chromatography over silica

gel (200–400 size). Thin layer chromatography (TLC) analyses were conducted with glass-backed silica

gel plates and visualized by UV light (254 nm). Flash column chromatography was performed using Qing-

dao Haiyang silica gel (200–300mesh) with freshly distilled solvents. Gas chromatography (GC) analysis was

performed on an Agilent 7890B gas chromatograph with a HP-5 MS column (quartz capillary column,

30 m 3 0.25 mm 3 0.25 mm). GC-MS analysis was carried out on a SHIMADZU GC-MS QP2020 NX with

a HP-5 MS column (quartz capillary column, 30 m 3 0.25 mm 3 0.25 mm). NMR spectra were recorded

on a Bruker 400 MHz or Bruker 700 MHz NMR spectrometer with TMS as the internal standard. Multiplicities

are given as: s (singlet), d (doublet), t (triplet), q (quartet), brs (broad singlet), dd (doublets of doublet), dt

(doublets of triplet), td (triplets of doublet) or m (multiplet).

Data and code availability

d This study does not generate new unique reagent.

d This paper does not report original code.

d Any additional information required to reanalyze the data reported in this paper can be obtained from

the lead contact upon request.

METHOD DETAILS

Typical procedure for the Imidazo[1,2-a]pyridine synthesis from lignin b-O-4 model

compound

Lignin model compound (0.2 mmol), Pd/C (22 mg, 0.01 mmol), magnetic stir bar, and Toluene (1.5 mL) were

placed in the pressure tube (10 mL), next to the mixture freshly prepared NaBH4 water solution (0.5 mL,

0.092M) was added. The mixture was sealed and heated to 140�C (oil bath temperature) for 2h. After the

reaction, the solution was cooled to room temperature, Aminopyridine (4 equiv.), I2 (89 mg, 0.35 mmol)

and NH4HCO3(31.6 mg, 0.4 mmol) was added to the mixture. The mixture was sealed and heated to

140�C (oil bath temperature) for 15h. After the reaction, the solution was cooled to room temperature.

The reaction mixture was quenched with NaS2O3 and extracted with ethyl acetate (3 3 15 mL) and dried

REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, Peptides, and Recombinant Proteins

Pd/C Cat. No. 75992 Sigma-Aldrich

Iodine CAS: 12190-71-5 Mackun

2-phenylimidazo[1,2-a]pyridine CAS: 4249-72-3 Mackun

NH4HCO3 CAS: 1066-33-7 Aladdin

NaBH4 CAS: 1066-33-7 Aladdin

2-aminopyridine CAS: 504-29-0 Mackun
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over anhydrous Na2SO4. The organic phase was analyzed by GC to determine the yield of imidazo[1,2-a]

pyridines. Then the solvent was evaporated under reduced pressure, and the crude products were purified

by column chromatography using petroleum ether/ethyl acetate (8:1) to obtain the desired products.

Procedure for cleavage of a lignin-related polymer

A lignin-related polymer was synthesized according to the literature.47 Procedure for cleavage of the poly-

mer: the lignin related polymer 1h (27.4 mg), Pd/C (22 mg), magnetic stir bar, and toluene (1.5 mL) were

placed in the pressure tube (10 mL), then freshly prepared NaBH4 water solution (0.5 mL, 0.092 M) was

added. The mixture was then heated at 140�C for 2 h. After cooling the reaction mixture to room temper-

ature, 1 mL dodecane EtOAc solution (10.8 mg/mL), and 5 mL EtOAc were added in the recation. Gas chro-

matography was employed to determine the yield of 5b using dodecane as internal standard.

Procedure for conversion of lignin-related polymer to 3k

The lignin related polymer (27.4 mg), Pd/C (22 mg), magnetic stir bar, and toluene (1.5 mL) were placed in

the pressure tube (10 mL), next to the mixture freshly prepared NaBH4 water solution (0.5 mL, 0.092M) was

added. The mixture was then heated at 140�C for 2 h. After that, the solution was cooled to room temper-

ature, 2a (75.2 mg), I2 (89 mg) and NH4HCO3(31.6 mg) was added in. The mixture was sealed and heated to

140�C for another 15 h. After reaction, the solution was cooled to room temperature. The reaction mixture

was quenched with NaS2O3 and extracted with ethyl acetate (33 15mL) and dried over anhydrous Na2SO4.

Then the solvent was evaporated under reduced pressure, and the crude products were purified by column

chromatography using petroleum ether/ethyl acetate to obtain the desired product 3k in isolated yield

of 68%.

Characterization data for the products

2-phenylimidazo[1,2-a]pyridine (3a)

White solid; 1H NMR (CDCl3, 400 MHz) d (ppm) 8.10 (d, 1H, J = 6.8 Hz), 7.95 (d, 2H, J = 7.6 Hz), 7.85 (s, 1H),

7.64 (d, 1H, J = 8.8 Hz), 7.43 (t, 2H, J = 7.6 Hz), 7.33 (t, 1H, J = 7.6 Hz), 7.17 (t, 1H, J = 8.0 Hz), 6.77 (t, 1H, J =

6.8 Hz). 13CNMR (CDCl3, 100MHz) d (ppm) 145.8, 145.5, 133.5, 129.9, 128.7, 128.4, 128.0, 126.0, 125.6, 124.8,

117.4, 112.5, 108.1.

2-(4-methoxyphenyl)imidazo[1,2-a]pyridine (3b)

Dark yellow solid; 1H NMR (CDCl3, 400 MHz) d (ppm) 8.07 (m, 1H), 7.87 (dd, 2H, J1= 8.4 Hz, J2 = 1.2 Hz), 7.74

(d, 1H, J = 4.4 Hz), 7.60 (d, 1H, J = 9.2 Hz), 7.13 (m, 1H), 6.96 (dd, 1H, J1 = 8.4 Hz, J2 = 1.2 Hz), 6.74 (m, 1H),

3.84 (s, 3H). 13C NMR (CDCl3, 100 MHz) d (ppm) 159.5, 145.6, 145.5, 127.2, 126.3, 125.4, 124.5, 117.2, 114.1,

112.2, 107.2, 55.3.

2-(3,4-Dimethoxyphenyl)imidazo[1,2-a]pyridine (3c)

Yellow solid; 1H NMR (CDCl3, 400MHz) d (ppm) 7.84 (s, 1H), 7.74-7,72 (m, 1H), 7.61-7.54 (m, 1H), 7.48 (dd, J =

8.3, 1.6 Hz, 1H), 7.23 (t, J = 8.1 Hz, 2H), 6.96 (d, J = 8.3 Hz, 1H), 6.84 (t, J = 8.1 Hz, 1H), 4.03 (s, 3H), 3.95 (s, 3H);
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3C NMR (CDCl3, 100 MHz) d (ppm) 150.8, 149.0, 145.4, 144.2, 126.6, 125.0, 123.3, 118.6, 116.2, 112.5, 111.6,

110.0, 109.9, 56.0, 55.9.

8-methyl-2-phenylimidazo[1,2-a]pyridine (3d)

Yellow solid; 1H NMR (CDCl3, 400 MHz) d (ppm) 7.97 (m, 3H), 7.82 (s, 1H), 7.44 (td, 2H, J1 = 7.6 Hz, J2 =

1.6 Hz), 7.32 (m, 1H), 6.93 (dt, 1H, J1 = 6.8 Hz, J2 = 0.8 Hz), 6.66 (t, 1H, J = 6.8 Hz), 2.67 (s, 3H). 13C NMR

(CDCl3, 100 MHz) d (ppm) 146.2, 145.1, 134.0, 128.6, 127.7, 127.5, 126.1, 123.3, 123.2, 112.3, 108.5, 17.1.

8-Methoxy-2-phenylimidazo[1,2-a]pyridine (3e)

Yellow viscous liquid; 1H NMR (CDCl3, 400 MHz) d (ppm) 4.01 (s, 3H), 6.41 (d, J = 7.5 Hz, 1H), 6.64 (t, J =

7 Hz,1H), 7.30 (t, J = 7 Hz, 1H), 7.40 (t, J = 8 Hz, 2H), 7.71 (d, J = 6.5 Hz,1H), 7.80 (s, 1H), 8.00 (d, J =

7.5 Hz, 2H). 13C NMR (CDCl3, 100 MHz) d (ppm) 54.7, 99.6, 108.1, 111.2, 117.4, 125.1, 126.7, 127.5, 132.5,

139.0, 143.8, 147.9.

7-methyl-2-phenylimidazo[1,2-a]pyridine (3f)

Light yellow solid; 1H NMR (CDCl3, 400 MHz) d (ppm) 7.98 (d, 1H, J = 6.8 Hz), 7.94 (m, 2H), 7.77 (s, 1H), 7.42

(m, 3H), 7.32 (m, 1H), 6.60 (dd, 1H, J1 = 6.8 Hz, J2 = 1.2 Hz), 2.39 (s, 3H). 13C NMR (CDCl3, 100 MHz) d (ppm)

146.0, 145.3, 135.7, 133.7, 128.7, 127.8, 125.9, 124.7, 115.8, 115.1, 107.5, 21.4.

7-Methoxy-2-phenylimidazo[1,2-a]pyridine (3g)

White solid;.1H NMR (CDCl3, 400 MHz) d (ppm) 7.93�7.88 (m, 3H), 7.67 (s, 1H), 7.42 (t, J = 7.8 Hz, 2H),7.30 (t,

J = 7.4 Hz, 1H), 6.90 (d, J = 2.4 Hz, 1H), 6.48 (dd, J =7.4, 2.5 Hz, 1H), 3.85 (s, 3H). 13C NMR (CDCl3, 100 MHz)

d (ppm) 157.9, 147.1, 145.5, 133.9, 128.6, 127.6, 125.9, 125.7, 107.4,106.8, 94.7, 55.4.

6-methyl-2-phenylimidazo[1,2-a]pyridine (3h)

White solid; 1H NMR (CDCl3, 400 MHz) d (ppm) 7.93 (m, 2H), 7.85 (m, 1H), 7.74 (d, 1H, J = 0.4 Hz), 7.52 (d, 1H,

J = 9.6 Hz), 7.42 (m, 2H), 7.30 (m, 1H), 7.00 (dd, 1H, J1 = 9.6 Hz, J2 = 2.0 Hz), 2.29 (s, 3H). 13C NMR (CDCl3,

100 MHz) d (ppm) 145.3, 144.6, 133.8, 128.6, 127.8, 127.7, 125.9, 123.3, 122.0, 116.7, 107.8, 18.0.
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6-chloro-2-phenylimidazo[1,2-a]pyridine (3i)

White solid; 1H NMR (CDCl3, 400 MHz) d (ppm) 8.12 (d, 1H, J = 1.2 Hz), 7.92 (m, 2H), 7.79 (s, 1H), 7.56 (d, 1H,

J = 9.6 Hz), 7.43 (t, 2H, J = 7.6 Hz), 7.34 (m, 1H), 7.11 (dd, 1H, J1 = 9.6 Hz, J2 = 1.6 Hz). 13C NMR (CDCl3,

100 MHz) d (ppm) 146.7, 144.0, 133.2, 128.7, 128.2, 126.0, 123.3, 120.5, 117.8, 108.4.

5-methyl-2-phenylimidazo[1,2-a]pyridine (3j)

Clear liquid; 1H NMR (CDCl3, 400 MHz) d (ppm) 7.98 (d, J = 7.7 Hz, 2H), 7.73 (s, 1H), 7.54 (d, J = 9.1 Hz, 1H),

7.42 (t, J = 7.6 Hz, 2H), 7.34 – 7.29 (m, 1H), 7.13 (dd, J = 9.1, 6.8 Hz, 1H), 6.60 (d, J = 6.8 Hz, 1H), 2.60 (s, 3H). 13C

NMR (CDCl3, 100 MHz) d (ppm) 145.7, 134.3, 133.9, 128.7, 127.9, 126.0, 124.9, 114.9, 111.7, 105.3, 18.8.

4-(imidazo[1,2-a]pyridin-2-yl)phenol (3k)

Brown solid; 1H NMR (d6-DMSO, 400 MHz) d (ppm) 9.65 (s, 1H), 8.48 (d, 1H, J = 6.4Hz), 8.21 (s, 1H), 7.78 (d,

2H, J = 8.8 Hz), 7.53 (d, 1H, J = 8.8 Hz), 7.20 (m, 1H), 6.85 (m, 3H). 13C NMR (d6-DMSO, 100 MHz) d (ppm)

157.4, 144.9, 144.6, 127.0, 126.7, 124.9, 124.5, 116.3, 115.5, 112.0, 107.6.
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