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Gastric cancer (GC) is one of the most common cancers in the world, and the

incidence of gastric cancer in Asia appears to increase in recent years. Although

there is a lot of improvement in treatment approaches, the prognosis of GC is poor.

So it is urgent to search for a novel and more effective treatment to improve the

survival rate of patients. Both innate immunity and adaptive immunity are important

in cancer. In the innate immune system, pattern recognition receptors (PRRs) activate

immune responses by recognizing pathogen-associated molecular patterns (PAMPs)

and damage-associated molecular patterns (DAMPs). Toll-like receptors (TLRs) are a

class of pattern recognition receptors (PRRs). Many studies have reported that TLRs

are involved in the occurrence, development, and treatment of GC. Therefore, TLRs

are potential targets for immunotherapy to gastric cancer. However, gastric cancer is

a heterogeneous disorder, and TLRs function in GC is complex. TLRs agonists can

be potentially used not only as therapeutic agents to treat gastric cancer but also as

adjuvants in conjunction with other immunotherapies. They might provide a promising

new target for GC treatment. In the review, we sort out the mechanism of TLRs involved

in tumor immunity and summarize the current progress in TLRs-based therapeutic

approaches and other immunotherapies in the treatment of GC.
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INTRODUCTION

Gastric cancer (GC), is the second leading cause of cancer death worldwide according to the
latest WHO statistics in 2018 (Bray et al., 2018). Early gastric cancer can be removed by
EMR (endoscopic mucosal resection) or ESD (endoscopic submucosal dissection), the long-
term prognosis is good at present (Ko et al., 2016). What makes GC difficult to treat is due
to the patients with GC usually without any early symptoms. GC is usually diagnosed in
the late stage when metastasis (Maeda et al., 2015). There are several standard treatments to
treat advanced gastric cancer: surgical resection, chemotherapy, radiotherapy, chemoradiation,
and targeted therapy. But the 5-year survival rate of patients with GC had no significant
improvement. Besides, the patients had some side effects during and after treatment, including
nausea, vomiting, reflux, malnutrition, etc. The quality of life of the patients decreased
significantly. This makes people with gastric cancer suffer both physically and mentally.
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How to improve the survival rate and quality of life of GC patients
is an urgent problem to be solved. GC is a heterogeneous disorder
and some molecular subsets of it exhibit certain characteristics,
suggesting that immunotherapy may be an effective treatment
(Jones and Smyth, 2020). According to The Cancer Genome
Atlas (TCGA) network, GC is classified into the four following
molecular subgroups: Epstein Barr virus (EBV), microsatellite
instability (MSI), chromosomal instability (CIN) and genomic
stable (GS) gastric cancers. In the MSI and EBV subgroups,
programmed death-ligand 1 (PD-Ll) is higher expressed, that
demonstrate the potential of immune checkpoint inhibitors
to treat these GC subtypes (Cancer Genome Atlas Research
Network, 2014).

The diseases treated by immunotherapy are through inducing,
enhancing, or suppressing immune responses. Compared with
currently used drugs, immunomodulatory therapy has fewer
adverse side effects and develop less resistance in the treatment
of microbial diseases (Masihi, 2001). Active immunotherapy uses
the parts of the immune system to enhance tumor immunity
(Jeremy et al., 2016). In tumor immunity, the immune system
suppresses tumor growth by recognizing and removing tumor
cells (Keir et al., 2008). However, tumors can achieve malignant
reproduction by immune escape (Hanahan andWeinberg, 2011).
Tumorigenesis usually involves inflammatory responses, both
innate and acquired immune systems (Akira et al., 2006). It
is shown that activating the innate immune system can offset
tumor-induced immunosuppression partly and may improve the
prognosis of cancer patients (Marcus et al., 2014).

The highly conserved PRRs are a significant component of the
innate immune system. PRRs family includes TLRs, nucleotide
oligomerization domain (NOD)-like receptors (NLRs), a retinoic
acid-inducible gene I (RIG-I) like receptors (RLRs), and C-
type lectin receptors (CLRs) (Castaño-Rodríguez et al., 2014).
Potential natural immune targets include TLRs, RLRs, and
stimulator of interferon genes (STING) (Li et al., 2017).
Furthermore, The activation of TLRs is necessary for inducing
the adaptive immunity. Therefore, the induction of the innate
immune systemmay work in identifying and antagonizing tumor
cells. Although immunotherapy has not become a standard
therapy like surgery or chemoradiotherapy, its role in cancer
treatment could be significant. Especially TLRs-based strategy
has greatly promoted the immunotherapy of lung cancer,
melanoma, and renal cell carcinoma, etc., but the function
of TLRs in gastric cancer immunotherapy has just attracted
more studies. However, there is no previous review on the
immunotherapeutic effect of TLRs in gastric cancer. Thus, we
summarized the research status and mechanism of TLRs in
immunotherapy of gastric cancer.

TLR STRUCTURE AND SIGNALING
PATHWAYS

TLRs are type I transmembrane glycoproteins, whose structure
includes a leucine-rich repetitive sequence in the extracellular
domain, a transmembrane domain, and a conserved Toll/ IL-
1R homologous domain (TIR) in the cytosolic region, as they

are homologous with the signaling domain of IL-1R family
members. Extracellular domain induces homo-dimerization of
intracellular TIR by recognition of ligands (except for TLR1/2
and TLR2/6). Then TLRs recruit TIR domain-containing adaptor
proteins including myeloid differentiation primary response
protein 88 (MyD88) and TIR-domain containing adaptor-
inducing interferon-β (TRIF) that initiate signaling pathways to
activate the transcription factors nuclear factor-kappa B (NF-
κB), interferon regulatory factor (IRFs), or mitogen-activated
protein kinase (MAPK) to regulate the expression of cytokine
and chemokine genes including interleukin-2 (IL-2), IL-6, IL-
12, monocyte chemoattractant protein-1 (MCP-1), and tumor
necrosis factor-α (TNF-α) (Barton and Kagan, 2009), ultimately
involved in establishing a regulatory innate and adaptive immune
response (Goutagny et al., 2012; Kawasaki and Kawai, 2014).

Ten TLRs have been determined expressed in various human
innate immune cells, such as macrophages and dendritic cells.
TLRs may be retained or abnormally expressed in cancer cells
(Goutagny et al., 2012; Braunstein et al., 2018). Several TLRs
have been expressed in human gastric cancer cells. For example,
TLR2 expression was up-regulated in human GC cell SGC7901,
which was associated with Pam3CSK4 stimulation, indicating
that TLR2 might be involved in the proliferation and metastasis
of GC, indicating that TLR2 might serve as a novel therapeutic
target against GC (Yang et al., 2014). TLR4 was highly expressed
in gastric cancer cells related to the aggressiveness of gastric
cancer. The activation of TLR4 by lipopolysaccharide (LPS)
promoted cancer proliferation but did not influence apoptosis
(Yuan et al., 2013). TLR5 activated by flagellin can increase the
proliferation of GC cells. The subsequent antagonism of TLR5
appears to counteract this effect, suggesting that TLR5 signaling
can significantly enhance the proliferation of GC cells (Song et al.,
2011). However, another study found that GC patients with high
TLR5 tissue expression can have a better prognosis, particularly
who has stage II disease or intestinal-type GC (Kasurinen et al.,
2019). Studies have explored that TLR7 expression is low in GC
tissues, and stimulating TLR7 could promote the secretion of
pro-inflammatory cytokines, and inhibit the proliferation of GC
cells (Jiang et al., 2016). Thus, it can be seen that the function of
different TLRs in GC is complex and different.

THE MECHANISM UNDERLYING THE
ROLE OF TLRs IN TUMOR IMMUNITY

TLRs are the family of transmembrane receptors on innate
immune cells such as dendritic cells (DCs) and macrophages.
They can recognize PAMPs and DAMPs of necrotic and
apoptotic cells from a foreign specific microbe, including
antigens from various tumor sources, to initiate an immune
response (Barton and Kagan, 2009; Tartey and Takeuchi, 2014).
The immune system recognizes tumor cells through tumor
antigens. Tumor-specific antigen (TSA) is expressed only in
tumor cells. Tumor-associated antigen (TAA) is expressed in
both tumor and normal cells. Dendritic cells (DCs) belong
to antigen-presenting cells (APCs). TAA/TSA was presented
to CTLs by DCs via the MHC class I pathway (Kurts
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et al., 2010). Antigen presentation triggers CD8+ T cells to
differentiate into cytotoxic T lymphocytes (CTLs) and induces
CTLs proliferation. Subsequently, CTLs are attracted to the
tumor microenvironment. Through T cell receptor (TCR) and
MHC class I-bound antigen, CTLs recognize tumor cells then
kill them (Hanson et al., 2000). Immune checkpoints including
CTLA-4 and PD-1 can suppress the immune attack. CD4+
T cells are activated by DCs via the MHC class II pathway,
differentiating into Th1 and Th2 cells. Th1 cells promote
antitumor immunity by secreting proinflammatory cytokines
(Kalams and Walker, 1998). Regulatory CD4+ T cells (Tregs)
are anti-inflammatory cells suppressing the priming, activation,
and cytotoxicity of other effector immune cells including Th1T
cells, CTLs and etc. (Ward-Hartstonge and Kemp, 2017). TLR
agonists who have anti-tumor effects activate tumor-specific T
cell responses by stimulating antigen-presenting cells (APC),
including dendritic cells (DCs) (Li et al., 2017). T lymphocyte
activity, as the main involved molecules in tumor immune
response, can synergistically act on stimulating molecules and
inhibiting molecules (Pardoll, 2012). In humans, most TLRs
expression is found on DCs and mature macrophages (Hennessy
et al., 2010). There is growing evidence that TLRs can be
expressed or induced on multiple cells, such as T cells and tumor
cells. Along with the anti-tumor effect of TLRs on DCs, new
researches have shown that TLR signals from other cell types
can play a crucial role in tumor growth, promotion or inhibition
(Fukata andAbreu, 2008; So andOuchi, 2010; Kaczanowska et al.,
2013). This also indicates that the role of TLRs in immunotherapy
against GC is very important,might represent a new strategy for
patients with GC (Figure 1).

TLRs IN IMMUNOTHERAPY OF GASTRIC
CANCER

TLRs have been detected in both tumor cells and immune
cells. They recognize different ligands, respectively, such
as lipopolysaccharide (LPS) of bacteria, bacterial flagellin,
unmethylated CpG motif of bacterial, etc. So, the activation of
TLRs on different cells is complex, which may be anti-tumor,
pro-tumor, or dual effects.

TLR2
It has been reported in several literatures that TLR2 is associated
with the occurrence of GC. TLR2 is expressed on the plasma
membrane and recognizes peptidoglycan, a part of the cell wall of
Gram-positive bacteria, thus activating innate immunity. It was
shown that TLR2-activated APCs can promote effector cells to
attack tumor cells (Akazawa et al., 2010; Prajeeth et al., 2010).
The extract of LarixLeptolepis (ELL) may activate TLR2 and
fight cancer. It can also activate bone marrow-derived-dendritic
cells (BMDCs) to promote a tumor-specific signal and tumor-
specific cytotoxic T lymphocytes (CTLs) to fight cancer (Koizumi
et al., 2012). Coley’s toxin (a mixture of inactivated Streptococcus
pyogenes and Serratia marcescens) and BCG (Bacillus Calmette-
Guerin), a TLR2 and TLR4 agonist have been used as a drug for
long-term cancer treatment (Galluzzi et al., 2012). Also, the BCG

cell wall skeleton (BCG-CWS) vaccine has been used as a vaccine
and TLR2 ligand for the prevention of tuberculosis and has been
demonstrated to enhance immune effect strongly through DCs
and is helpful for cancer immunotherapy, including GC (Tsuji
et al., 2000).

However, the underlying mechanism remains unclear
although some information has been uncovered. After BCG and
lymphocyte co-culture, the apoptosis rate, caspase-3 level, LC-3,
and Atg-3 protein level were significantly higher than those in
BCG and lymphocyte group alone. BCG induces lymphocyte to
secrete interferon-γ (IFN-γ). BCG and IFN-γ can also enhance
the level of cleavage of caspase-3, LC-3, and Atg-5. Studies have
shown that BCG may induce apoptosis and autophagy of gastric
cancer cell line MGC-803 by inducing the release of IFN-γ from
peripheral blood lymphocytes (Yao et al., 2018).

Glycoprotein 130 (gp130) binds to IL-6 to form a trimer
and transmit downstream signals (Tebbutt et al., 2002). In
gp130 mutant mice, TLR2 was absent and gastric cancer lesion
shrank (Tye et al., 2012). And the study indicated that the
expression of TLR2 in gastric epithelial cells and/or GC tissues
may be involved.

A cancer vaccine is a new approach to treat a tumor, and
a vaccine essentially consists of a tumor-associated antigen
(TAA) and adjuvant. TLR2 ligands are potential adjuvants.
Gijs et al. demonstrated that conjugation of new TLR2-L
Amplivant (TLR2-ligand, a modified Pam3CSK4) to synthetic
long peptides (SLPs) induced dendritic cells(DCs) maturation,
T cell priming, and anti-tumor immunity strongly (Zom et al.,
2018). BPPcysMPEG (TLR2/6 heterodimer agonist) was proved
to be a potent stimulus to generate cytotoxic T lymphocytes
(CTLs) via cross-priming (Prajeeth et al., 2010). Hu et al.
designed and synthesized a conjugated stimulator of interferon
genes (STING) and TLR1/2 agonist, Pam3CSK4-CDGSF, which
can serve as a adjuvant for vaccine construction to augment
antitumor immunotherapy (Hu et al., 2020).

ANXA2m is an O2-regulated protein binding and signaling
through TLR2, acting as an adjuvant by inducing DCs
maturation, enhancing antigen cross-presentation, and inducing
the secretion of proinflammatory cytokines (Andersen et al.,
2016). Wu et al. found that lipo-OVA (Ovalbumin fused with
the TLR2 agonist, the lipid part of the bacteria) showed a
strong anti-tumor effect by activating BMDCs maturation,
promoting cross-presentation of tumor antigen, inducing CTL
responses, increasing the numbers of CD8+ T cells (Wu et al.,
2016). A vaccine comprising bacteria-mimicking tumor cells
(BMTC) and P2CSR11/P2CSK11 (TLR2 ligand) promoted anti-
tumor immunity by stimulating DCs and enhancing antigen
presentation (Akazawa et al., 2018).

Above all, TLR2 and its agonists have been proved in
many studies to attack gastric cancer cells. The next step is
to apply it to clinical trials and verify the efficacy of TLR2-
related immunotherapy.

TLR3
The expression of TLR3 is primarily intracellular. TLR3 was
regarded as a potential therapeutic target for multiple cancers.
Poly(I:C) which is a classical TLR3 agonist was studied for

Frontiers in Cell and Developmental Biology | www.frontiersin.org 3 January 2021 | Volume 8 | Article 611444

https://www.frontiersin.org/journals/cell-and-Developmental-biology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-Developmental-biology#articles


Cui et al. TLRs in Immunotherapy of GC

FIGURE 1 | The mechanism underlying the role of TLRs in tumor immunity. TLRs are expressed on different immune cells and cancer cells. The roles of immune cells

in tumor immunity. As a class of antigen-presenting cells (APCs), dendritic cells (DCs) recognize tumor antigen and present the antigen to CD8+ T cells through the

MHC class I pathway and CD4+ T cells through the MHC class II pathway. After activated by DCs, CD8+ T cells differentiate into cytotoxic T lymphocytes (CTLs) and

CD4+ T cells differentiate into Th1 and Th2 cells. CTLs are recruited to the tumor microenvironment (TME) and recognize tumor cells through T cell receptor (TCR) and

MHC class I-bound antigen, then kill them. Th1 cells secreting proinflammatory cytokines such as IL-2, TNF-α, and IFN-γ to promote immunity. Immune

checkpoints—CTLA-4 and PD-1, can suppress T cell response. NK cells inhibit cancer by directly kill tumor cells and secreting several inflammatory factors. M1

macrophages are pro-inflammatory and M2 Macrophages are anti-inflammatory. Regulatory CD4+ T cells (Tregs) are anti-inflammatory cells suppressing of CTLs, Th1

cells, macrophages, and NK cells. TLRs are expressed both on immune cells and gastric cancer cells. Different TLRs agonists act on different immune and cancer

cells to affect tumor immunity—pro-tumor or anti-tumor. Th1 cells, T helper type 1 cells; Th2 cells, T helper type 2 cells; IL-2, interleukin-2; TNF-α, tumor necrosis

factor-α; IFN-γ, interferon-γ; CTLA-4, The cytotoxic T-lymphocyte-associated antigen-4; PD-1, Programmed cell death protein 1; PD-L1, Programmed death ligand 1

(PD-L1).The agonists and adjuvants of TLRs are shown in Tables 1, 2.

immunotherapy in recent years. Poly(I:C) was reported that the
immune potency of it may be limited by insufficient cellular
penetration. Novel immunotherapy was designed based on
the cancer vaccine. The Poly(I:C)-DOTAP liposome composite
nanoparticles can promote Poly(I:C) into cells and generated
corresponding TLR3 signals in BMDCs. In this way, poly(I:C)
nanoparticles promoted the tumor properties of TLR3 signals
(Wang et al., 2012). The poly(I:C) ligand-receptor complex was
internalized into cells by the specific ligand-binding receptors
on the surface of tumor cells. TLR3, PKR, RIG-1, and MDA5
was activated by the internalized poly(I:C) simultaneously.
The activation of these signaling proteins promotes tumor
cells secreting cytokines by the bystander effect and led to
the rapid death of tumor cells (Levitzki, 2012). Shime et al.
found that TLR3 activated by injection of poly(I:C) to tumor-
implant mice converted tumor-supporting macrophages into

tumor-killing effectors to shrink the tumor (Shime et al., 2012).
Perret et al. demonstrated adding the adjuvant Poly(I:C) to the
vaccine increased ratios of tumor antigen-specific effector T cells:
regulatory T cells that enhanced the infiltration of CD8+ T-cell,
thus promoting anti-tumor immunity. And after treated with
OVA+Poly(I:C) vaccine, the tumor growth of EG7 lymphoma
was controlled and the survival rate of tumor-bearing mice has
enhanced (Perret et al., 2013). Intravaginal (IVAG) instillation of
Poly(I:C) after subcutaneous HPV E6/E7 vaccination promoted
the proliferation of vaccine-specific CD8+ T cells in the genital
mucosa (GM), which may suppress cervical cancer (Domingos-
Pereira et al., 2013).

Polyadenylic–polyuridylic acid [poly(A:U)] is also the agonist
of TLR3 which can promote immune responses. After surgery
for locally advanced gastric cancer, the final results of the 15-
year follow-up of phase III clinical trial with 5-fluorouracil
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TABLE 1 | The agonists of TLRs in the immunotherapy of gastric cancer.

TLR TLR agonist/inhibitor Signal Effect Reference

TLR2 ELL Activate BMDCs and CTLs Anti-cancer Koizumi et al., 2012

TLR2/TLR4 Coley toxin

BCG

Induce apotosis and autophagy of gastric cancer cell line

MGC-803 (a human gastric cancer cell line)

Anti-cancer Galluzzi et al., 2012; Yao et al.,

2018

TLR3 PolyA:U Combined with 5-fluorouracil, Adriamycin Anti-advanced cancer Jeung et al., 2008

Poly (I:C) Overstimulate the immune system Cause autoimmune

and chronic

inflammatory diseases

Anders et al., 2005; Lang et al.,

2005; Jiang et al., 2008; Zhao

et al., 2012; Hafner et al., 2013

TLR4 LPS promote an suitable environment for the continued

proliferation of cancer cells and helping to evade cancer

cells from immune surveillance

Pro-cancer Huang et al., 2005; Tang and

Zhu, 2012; Fu et al., 2013; Wang

et al., 2013

TLR5 Flagellin Activate NF-kB Anti-cancer Soto et al., 2003; Sfondrini et al.,

2006; Rhee et al., 2008; Cai

et al., 2011; Burdelya et al.,

2012; Garaude et al., 2012

TLR7 Imiquimod promote the secretion of TNF-α and IL-6, and inhibited

cell proliferation in SGC-7901 cells (a human gastric

cancer cell line)

Anti-cancer Jiang et al., 2016

TLR9 Chloroquine(non-specific

TLR9 inhibitor)

inhibit the invasion of gastric adenocarcinoma cell line

AGS induced by h. pylori DNA.

Anti-cancer Kauppila et al., 2013

ELL, the extract of larixleptolepis; Coleytoxin, a mixture of inactivated Streptococcus pyogenes and marcescens Serratia; BCG, Bacillus Calmette-Guerrin; poly A:U, Polyadenylic–

polyuridylicacid; Chloroquine is a non-specific TLR9 inhibitor, others are all agonists of TLRs.

TABLE 2 | The adjuvants of TLRs in the immunotherapy of gastric cancer.

TLR Vaccine Signal Effect Reference

TLR2 BCG-CWS Provide immune enhancement through dendritic

cells

Anti-gastric cancer Tsuji et al., 2000

TLR2-L Amplivant Induce DCs maturation,T cell priming Anti-cancer Zom et al., 2018

BPPcysMPEG Generate CTLs via cross-priming Anti-cancer Prajeeth et al., 2010

ANXA2m Induce DCs maturation Anti-cancer Andersen et al., 2016

lipo-OVA Activate BMDCs maturation Anti-cancer Wu et al., 2016

TLR3 Poly (I:C) -DOTAP liposome

complex nanoparticles

enhance the cellular penetration of poly (I:C) and

produce corresponding TLR3 signals in BMDCs.

Anti-cancer Wang et al., 2012

ARNAX Targeting TLR3 in DCs, enhancing DC-priming and

CTL proliferation

Anti-cancer Seya et al., 2019

TLR7 T7-MB Combined with 5-Fu Anti-gastric cancer Wang et al., 2018

TLR9 A nanoscale vaccine Simulates epitope of gastric cancer specific antigen

MG7 and adjuvant CpGODN1645

Anti-cancer Shi et al., 2005

BCG-CWS, BCG cell wall skeleton; TLR2-L Amplivant, a modified Pam3CSK4, TLR2-ligand; BPPcysMPEG, TLR2/6 heterodimer agonist; ANXA2m, an O2-regulated protein binding

and signaling through TLR2; lipo-OVA, ovalbumin fused with a bacterial lipid moiety TLR2 agonist; T7-MB, T7 and MG7-Ag conjugated; T7, TLR7 agonist; MG7-Ag, Monoclonal gastric

cancer 7 antigen.

and adriamycin vs. 5-fluorouracil, Adriamycin, and poly(A:U)
showed that immunochemotherapy had a survival advantage
over chemotherapy alone. But this treatment regimen hasn’t
become standard therapy for GC patients, which may be due
to the lack of platinum drugs in the regimen despite its positive
effects (Jeung et al., 2008).

However, poly(I:C) has the opposite effect on cancer. The
immune system is overstimulated by poly(I:C), leading to
autoimmune and chronic inflammatory diseases. Therefore, we
strongly recommend the use of poly(I:C) with alow dose and
local injection of particle preparation (Anders et al., 2005; Lang
et al., 2005; Jiang et al., 2008; Zhao et al., 2012; Hafner et al.,

2013). To overcome the effect, a safe adjuvant, called ARNAX, has
been developed which targets for TLR3 in dendritic cells (DCs).
Compared to poly(I:C), ARNAX hardly induces the production
of proinflammatory cytokines, so it does not result in systemic
cytokinemia. The combined use of ARNAX/TAA and anti-PD-
L1 Ab can induce the resistance of anti-PD-1 (Takeda et al., 2017).
It can enhance anti-tumor immunity by promoting DC-priming
and CTL proliferation (Seya et al., 2019).

As an adjuvant, TLR3 agonist is a double-edged sword in
gastric cancer. However, it still needs a long time to further
perfect the research in vivo and in vitro before it can be used
clinically for gastric cancer.
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TLR4
TLR4 is expressed in both tumor and immune cells. The
influence of TLR4 on cancer is two-sided, depending on where
it is expressed.

Several studies have demonstrated that the expression of
TLR4 is increased in various cancer cells and tissues, including
gastrointestinal cancers, hepatic cancer, pancreatic cancer, and
ovarian cancer (Mai et al., 2013). In gastric cancer, TLR4 is
the recognition receptor of helicobacter pylori LPS on gastric
epithelial cells (Kawahara et al., 2001; Maeda et al., 2001; Su et al.,
2003; Basak et al., 2005). The pro-cancer mechanisms of TLR4
expressing on cancer cells include promoting an environment
suitable for the continued proliferation of cancer cells and
helping to evade cancer cells from immune surveillance (Huang
et al., 2005; Tang and Zhu, 2012; Fu et al., 2013; Wang et al.,
2013). For example, LPS-stimulated MC26 (colon cancer) cells
supernatants significantly inhibited the function of T cell and NK
cell. And in the supernatants, the levels of nitric oxide and IL-6
were higher than controls. So, the production of factors induced
by TLR4 signaling is a way to tumor evasion from immune
surveillance (Huang et al., 2005). LPS first forms complexes with
LPS binding proteins (LBP) and then interacts with monocyte
differentiation antigen CD14 and myeloid differentiation protein
2 (MD-2) in turn (Thomas et al., 2002). The complex and TLR4
synergistically induce the MyD88-dependent signaling pathways
that lead to transcription factors, which promote inflammation
and cancer (Takeda et al., 2003).

Several immune modulators targeting TLR4 have been
reported. By binding to and forming a chelate complex with
LPS, the TLR4 regulators (antagonists and inhibitors) antagonize
the interaction of LPS with CD14 and MD2. TLR4 inhibitors
suppress NF-κB signaling, thus reducing inflammation-induced
carcinogenesis. For instance, in preclinical models, there is
evidence that TLR4 inhibitors can effectively inhibit the
development of colon cancer (Kuo et al., 2016) and breast cancer
(Yang et al., 2014). It is also suggested as a treatment method
for liver cancer (Toffanin et al., 2012). The TLR4 antagonist
Ibudilast (AV4II) inhibits the secretion of pro-inflammatory
cytokines in neuroinflammation (Ledeboer et al., 2006). This
suggests that TLR4 could even be widely used as a primary target
for suppressing inflammation-related cancers.

At the same time, activated-TLR4 expressed on immune cells
is essential to anti-cancer immunity. Compared with wild-type
mice, TLR4-deficient mice grew more tumors after oral tube
feeding with carcinogenic polyaromatic aromatic hydrocarbons
(PAHs) (Naseemuddin et al., 2012). TLR4 agonists induce
maturation of dendritic cells (DCs), promoting the immune
response of cancer-antigen specific cytotoxic T cells (Fang et al.,
2014), which ultimately kill cancer cells. Mainly based on the
mechanism, TLR4 agonists have immunomodulatory effects as
adjuvants in vaccines, chronic viral infection therapy, and cancer
therapy. Jang et al. identified 60S acidic ribosomal protein
P2 (RPLP2) by pull-down assay using human cancer derived
proteins that binds to TLR4. Recombinant RPLP2 induced
maturation and activation of DCs in vitro. This DC-based vaccine
has been shown to improve both tumor prevention and tumor

treatment in vivo (Jang et al., 2020). Monophosphoryllipids
A (MPLA) with low toxicity, a modified lipopolysaccharide
derivative, retains most of the immune-stimulating activity. It
is an immunomodulatory agent that stimulates T cell priming
by activating the TRIF-associated TLR4 signaling pathway, not
MyD88 (Casella and Mitchell, 2008). MPLA has been approved
as part of the hepatitis B and human papillomavirus vaccines
(Krieg, 2007), but whether it can have the same effect in gastric
cancer remains to be seen. OK-432(Picibanil), an anticancer
agent, was reported acting at least partly via TLR4-MD2 signaling
pathway and inducing maturation of DCs (Ryoma et al., 2004).
In a case report, a squamous cell carcinoma patient was treated
with intratumoral injection of OK-432, then the tumor size
diminished and no metastasis occurred during a follow-up of
5 years (Akeda et al., 2012). Studies have shown that OK-
432 adjuvant immunochemotherapy may have marginal and
significant efficacy in stage III or IV patients after radical
gastrectomy of gastric cancer (Oba et al., 2016).

As the most classical TLR in gastric cancer caused by
helicobacter pylori, TLR4 has great value in immunotherapy of
gastric cancer. From the current background, TLR4 stimulation
is a double-edged sword, so more researches should be done
on gastric cancer patients, and then search for the balance of
anti-tumor and pro-tumor in the future.

TLR5
Many studies have suggested that TLR5 is an effective target for
antitumor immunotherapy. Bacterial flagellin, a TLR5 agonist,
has been demonstrated strong anti-cancer effect in lots of
animal models (Soto et al., 2003; Sfondrini et al., 2006; Rhee
et al., 2008; Cai et al., 2011; Burdelya et al., 2012; Garaude
et al., 2012). The anti-cancer effects of TLR5 agonists stem
from the dependence on TLR5 to activate NF-κB. Flagellin is
a potent catalyst for NF-κB signaling that mediates natural and
acquired anti-tumor immune responses. Nucleoside diphosphate
kinase 3(NME3) can enhance flagellin signaling. The expression
of NME3 is highly associated with the expression of TLR5
in GC. High NME3 expression reduces the overall survival
rate of gastric cancer. In summary, NME3 may strengthen
cancer immunotherapy as an unrecognized pro-inflammatory
cytokine in TLR5 downstream signaling (Flentie et al., 2018). An
adenovirus-based tumor-specific delivery vector, called Mobilan,
drives the expression of the TLR5 signaling cassette, which is
composed of salmonella flagellin and humanTLR5, which is
similar in structure to the clinical-stage TLR5 agonist entolimod.
The injection of Mobilan was injected into the primary tumors of
transgenic adenocarcinoma mice susceptible to prostate cancer
(TRAMP), resulting in a powerful induction of a couple of
genes involved in inflammation and mobilization of natural
immune cells, to suppress tumor progression (Mett et al., 2018).
The high expression of TLR5 in the tissues may determine
the better prognosis of patients with GC, especially those with
intestinal-type and stage II advanced GC (Kasurinen et al.,
2019). Conversely, TLR5 agonist was reported that can induce an
inflammatory response and inhibited some tumor progression.
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Therefore, the mechanism of TLR5 in immunotherapy of GC
deserves further study.

TLR7
TLR7 is expressed on the endosomal membrane (Takeda and
Akira, 2015). TLR7 was found low expressed in GC tissues
(Jiang et al., 2016). Activating TLR7 can strengthen anti-cancer
immunity. Ma et.al developed a bi-functional vector containing
a Bcl-2-silencing shRNA and a TLR7-stimulating ssRNA, which
promoted apoptosis and inhibited cell growth in MFC cells (a
mouse gastric cancer cell line) (Minaga et al., 2017). UC-1V150
which is a TLR7 agonist binds to phospholipids to increase levels
of pro-inflammatory cytokines (Wu et al., 2007). A typical TLR7
agonist-imiquimod who has a non-nucleoside imidazolquinoline
structure, can be used in immunotherapy of superficial basal cell
carcinoma (Papadavid et al., 2007). Imiquimod can induce the
expression of TLR7 protein, promote inflammatory cytokines
secreting, and inhibited cell proliferation in one of the human
gastric cancer cell lines (Jiang et al., 2016). It is also being studied
as an adjuvant to anti-tumor vaccines. However, imiquimod lacks
the chemical groups that are associated with proteins or peptides.
Another TLR7 agonist (T7) has a free carboxyl group that can be
attached to amino peptides (Chan et al., 2009). Small molecule
T7 was covalently attached to gastric cancer antigen to construct
a series of vaccines. After being introduced into animal models,
the vaccines could generate immunogenic stimulation and tumor
inhibition (Wang et al., 2015). Tumor-associated antigen (TAA)
is a target of anti-cancer immunotherapy (Zhang et al., 2006).
The monoclonal gastric cancer 7 antigen (MG7-Ag), a TAA in
GC, has higher specificity and selectivity compared with existing
antigens. T7 and MG7-Ag were conjugated together to construct
a new gastric cancer vaccine T7–MB. The inhibition effect of 5-
Fu and T7–MB on tumor size and volume by treatment regimen
was higher than that of 5-Fu or T7–MB alone (Wang et al., 2018).
Overall, either used alone or used as an adjuvant, TLR7 agonist
has been shown as an anti-tumor agent in immunotherapy of
gastric cancer currently.

TLR9
TLR9 is expressed in many cancer tissues and cell lines, including
gastric, hepatocellular, prostate, and colorectal cancers (Damiano
et al., 2007; Brignole et al., 2010; So and Ouchi, 2010). TLR9 can
play the role of both anti-tumor and pro-tumor. For example,
in hepatocellular carcinoma cell lines, the activation of TLR-
9 inhibits apoptosis by IL-8, IL-1, IL-6 up-regulation, thereby
increasing proliferation and inflammation. In neuroblastoma
cells, the activation of TLR-9 results in increased cystatin-
dependent apoptotic cell death (Brignole et al., 2010).

TLR-9 can enhance anti-tumor immunity by recognizing
Oligodeoxynucleotide(ODN) containing cytosine–guanine
dinucleotide (CpG), which is a potential therapeutic agent.
Immunosuppressive cells characteristically exist in the immune
microenvironment, one of which is Myeloid suppressor cells
(MDSC). A large number of MDSCs cluster near the tumor and
inhibit the activity of T cells and NK cells. Several reports showed
that the agonist CpG ODN of TLR9 can kill tumors by reducing
the immunosuppressive activity of monocyte MDSC11-12. At

the same time, CpG ODN can be used as a powerful adjuvant to
many antigens. CpG ODN promotes the Th1 response (Weiner,
2000; Mccluskie et al., 2002), and when used in combination
with the immunogen, enhances immune responses (Yamamoto
et al., 2000). It directly activates monocytes/macrophages, DCs,
etc., and inducts pro-inflammatory cytokines (Wagner et al.,
2000; Gramzinski et al., 2001; Liu et al., 2003). Especially when
CpG ODN is tightly bound to the antigen, the activity will be
improved. Xu et al. first conducted polyethyleneimine-CpG
nanocomplex (CpG@PEI) as an in situ vaccine for melanoma in
vivo therapy (Xu et al., 2020). Shi et al. constructed a nanoscale
vaccine that simulates epitope of gastric cancer-specific antigen
MG7 and adjuvant CpGODN1645, may have important
significance for tumor treatment (Shi et al., 2005).

Kauppila et al. found that Helicobacter pylori DNA can
promote the invasion of gastric adenocarcinoma cell line AGS,
while chloroquine (non-specific TLR9 inhibitor) can inhibit the
invasion induced by Helicobacter pylori DNA (Kauppila et al.,
2013). Qin et al. found that in human gastric cancer cells,
H. pylori DNA can up-regulate TLR9 expression, promoting
cell proliferation, migration, and invasion. In a word, TLR9 is
involved in the occurrence and development of gastric cancer
(Qin et al., 2019).

A TLR9 agonist can be used as an adjuvant in immunotherapy
to make the checkpoint inhibitors more effective. Fumi et al.
confirmed that intratumoral administration of 1V270 (TLR7
agonist) or SD-101(TLR9 agonist) and blocking PD-1 can
suppress the development of primary tumors and prevent tumor
metastasis in the head and neck squamous cell carcinoma
(HNSCC) model. This treatment is more effective than any drug
alone (Sato-Kaneko et al., 2017). Reilley et al. demonstrated that
intratumoral administration of ODN1826 (TLR9 agonist) can
synergistically block ctLA-4 and promote the rejection of bilateral
implantation of B16 ovalbumin (B16-OVA) melanoma (Reilley
et al., 2019).

Above all, we can see that no matter whether the function of
TLR9 is pro- or anti-cancer, it is important in the immunotherapy
of cancer. How to use its function to treat gastric cancer deserves
further study.

CURRENT IMMUNOTHERAPIES FOR
GASTRIC CANCER

According to TCGA network classification, gastric cancer is
divided into four molecular subtypes: Epstein-Barr virus (EBV),
microsatellite instability (MSI), genomically stable (GS), and
chromosomal instability (CIN)gastric cancers (Sohn et al.,
2017). PD-L1 is more likely expressed on the EBV and MSI
subtype (Ma et al., 2016).

At present, trastuzumab targeting HER2 has become
the standard therapeutics for advanced gastric cancer
as a molecular targeted therapy (Abrahao-Machado and
Scapulatempo-Neto, 2016), but the prognosis of patients is
still poor. Therefore, immunotherapy for gastric cancer has
emerged recently.
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Immune Checkpoint Inhibitors
The immune system eliminating cancer cells depends on
the cancer-immune cycle, including recognition, stimulation,
recruitment, amplification, and final memory to inhibit cell
growth. T lymphocytes work together to stimulate and inhibit
molecules, which act as immune checkpoints. Through immune
checkpoint pathways, T cell suppression signals are released
allowing tumors to evade immune surveillance and destruction,
thus achieving malignant proliferation (Hanahan and Weinberg,
2011; Pardoll, 2012). Programmed death receptor-1 (PD-1) is
mainly expressed on the surface of activated T cells and B
cells, and is the receptor involved in cell death. Programmed
death receptor-ligand 1 (PD-L1) is binding to PD-1, expressed in
antigen-presenting cells(APC), such as macrophages, DCs, and
cancer cells. Prolonged TCR stimulation induces the secretion
of interferon-γ (IFN-γ) to increased PD-L1 in cancer cells
(Buchbinder and Desai, 2016). PD-L1 binding to PD-1 decreases
the function and cytotoxicity of effector T cell. The interaction
of CD28 on T cells with B7-1/2 on APCs is essential for T
cell activation. Cytotoxic T lymphocyte-associated antigen 4
(CTLA-4) has a much higher binding affinity with B7, but not
promoting T cell activation (Leach et al., 1996). So the molecule
has a non-overlapping inhibitory effect against tumor immunity
and participates in the early stage of an immune response of
lymphoid organs (Abrahao-Machado and Scapulatempo-Neto,
2016). When immune checkpoint inhibitors are combined with
PD-1, PD-L1, and CTLA-4, the function of T lymphocytes can’t
be suppressed, and the immune response is activated against
cancer (Coutzac et al., 2019).

An anti-PD-1 antibody binds to PD-1 to prevent the
combination of PD-1 and PD-L1. Blocking the PD-1 pathway
inhibits the negative immune regulation of the PD-1 pathway
on T cells, then the anti-tumor response is stimulated (Ribas
et al., 2015; Nghiem et al., 2016; Bellmunt et al., 2017; Eggermont
et al., 2018; Fuchs et al., 2018; Gandhi et al., 2018; Zhu et al.,
2018; Chung et al., 2019). Pembrolizumab is a high-affinity
anti-PD-1 humanized monoclonal antibody targeting the PD-
1 receptor and is already approved for treating GC. A phase 1
study of patients with advanced PD-1 positive GC has shown
that pembrolizumab had good antitumor activity and controlled
toxicity, which needs further verification in phase 2 and 3 trials
(Muro et al., 2016).

Nivolumab, a humanized monoclonal immunoglobulin G4
antibody, is also a PD-1 receptor blocking antibody. It has
been approved as a treatment for advanced gastric cancer in
Japan. In a phase III randomized study, the ONO-4538-12
(ATTRACTION-2) trial, patients receiving chemotherapy for
unresectable late-stage gastric esophageal cancer were divided
into the nivolumab 3 mg/kg group and the placebo group (Kang
et al., 2017). Nivolumab improved the median overall survival
rate. Of patients treated with nivolumab, the recurrence rate was
12% and the tumor reduction rate was 40%. Nivolumab can
improve the survival of patients regardless of whether there is
PD-L1 expression (Boku et al., 2017). Therefore, regardless of
the state of PD-L1, nivolumab is effective for chemotherapeutic
gastric cancer.

Anti-PD-L1 antibodies reverse the anti-inflammatory effect of
PD-1/PD-L1 pathway and contribute to the anticancer response
by binding to PD-L1. Comparative study of Avelumab (anti-
PD-L1 antibody) and chemotherapy in the treatment of gastric
cancer/gastroesophageal junction cancer showed that the clinical
activity of avelumab is not superior to chemotherapy, but
avelumab is safer than chemotherapy (Bang et al., 2018).

Durvalumab (the anti–PD-L1 antibody) and tremelimumab
(the anti–CTLA-4 antibody) can enhance T cells response to
the tumor by blocking the immune checkpoint together, thus
generating anti-tumor activity. A Phase Ib/II study in patients
with advanced GC showed durvalumab and tremelimumab
have a manageable safety profile in the second-line and third-
line treatment, with encouraging survival rate compared to
durvalumab alone (Kelly et al., 2020).

Ipilimumab is a monoclonal antibody binding to CTLA-
4, which can enhance T cells activation and promote tumor
immunity. A report compared ipilimumab monotherapy with
best supportive care in GC patients who have stabilized
during first-line chemotherapy. Compared with the latter, the
progression-free survival of the former wasn’t improved. In
ipilimumab group, themedian overall survival rate is∼1 year and
ipilimumab has good safety. So, the drugs combined with other
therapies for advanced GC is worth for futherstudies (Bang et al.,
2017).

It can be seen that not all patients can benefit from immune
checkpoint inhibitor therapy alone. As many patients with
GC are CIN and GS, the immune signal expresses lowly, and
the response to immunotherapy may be weak, but the safety
is an advantage compared with traditional radiotherapy and
chemotherapy. The combination of immunotherapy inhibitors
has been used more and more to improve the response of
immunotherapy and has achieved remarkable results.

Checkpoint Blockade Immunotherapy
Checkpoint blocking immunotherapy revolutionizes cancer
treatment and improves patient survival and quality of
life. However, the effects of this immunotherapy are highly
heterogeneous between patients (Chuang et al., 2020). Response
rates of patients to checkpoint blockade range from 15 to 30% in
most solid tumors (Das and Johnson, 2019). It is urgent to find
effective adjuvant treatments to improve the efficacy of immune
checkpoint inhibitors. Tumors with low numbers of tumor-
infiltrating T cells tend to respond poorly to immune checkpoint
blockade therapy (Tsukamoto et al., 2019). As mentioned earlier,
TLRs play an important role in immune response. So TLRs
agonists may be potential adjuvants for treating overcome
checkpoint blockade resistance, to increase efficacy of checkpoint
blockade therapy.

It has been shown that the infiltration of CD8+ T cells in
tumor site is essential to anti-tumor effect of PD-1 blockade
therapy (Tumeh et al., 2014). Many studies have confirmed that
TLRs agonists can increase the level of CD8+ T cells or activate
CD8+ T cells.

Pam3CSK4, a TLR1/2 ligand, increased Fcγ receptor
IV expression on macrophages. The macrophage mediated
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FIGURE 2 | How TLR agonist promotes the efficacy of checkpoint blockade therapy. CTLA-4 is expressed on the surface of CD8+ T cell, combining with B7 on

dendritic cells (DCs), to regulate T cell responses. CTLA-4 pathway can be blocked by anti-CTLA-4 antibodies. TLR agonist activates TLR on DC. Activated TLRs

pathway can induce proliferation or activation of CD8+ T cells, M1 macrophages and NK-cells, and depletion of M2 macrophages and Tregs. CD8+ T cells, M1

(Continued)
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FIGURE 2 | macrophages and NK-cells recognize and kill tumor cells in TME. PD-1 is expressed on CD8+ T cell. PD-L1 is expressed on tumor cell. The combination

of PD-1 with PD-L1 inhibits the anti-tumor effect of T cells, that can be blocked by anti-PD-1 or anti-PD-L1 antibodies. TLR agonist and

anti-CTLA-4/anti-PD-1/anti-PD-L1 antibodies play a synergistic role in anti-tumor immunotherapy. TLR, toll-like receptor; TCR, T cell receptor; CTLA-4, The cytotoxic

T-lymphocyte-associated antigen-4; PD-1, Programmed cell death protein 1; PD-L1, Programmed death ligand 1; TME,Tumor microenvironment.

depletion of Tregs. Through the mechanism, Pam3CSK4 can
increase efficacy of anti-CTLA-4 antibody (Chuang et al., 2020).
A unique structural domain (UNE-C1) was identified as a
novel TLR2/6 ligand that can activate dendritic cells to produce
a powerful humoral and cellular immune response in vivo.
UNE-C1 also showed synergistic effects in vivo with tumor
antigens and checkpoint inhibitors in different cancer models
(Cho et al., 2020). ARNAX, a TLR3 agonist, promoted full
priming and proliferation of CTLs and enhanced CD8+ T cell
infifiltration into the tumor site through TLR3-TIR domain-
containing adaptor molecule-1 (TICAM-1)-IRF3-IFN-β axis in
DCs. Therapy using ARNAX/TAA can overcome anti-PD-L1
resistance (Takeda et al., 2017). OVA/TLR4mAb can enhance the
anti-tumor effect of anti-PD-1 mAb by activating OVA-specific
CD8+ T-cells (Tsukamoto et al., 2019). CIRP is a TLR4 ligand.
SIIN-CIRP up-regulated the expression of PD-L1 on DC, but at
the same time enhanced T cell response. It was finally confirmed
that the combination of the SIIN-CIRP vaccine with antibodies
against PD-1 can inhibit tumor growth (Villanueva et al., 2018).

Combining anti-PD-1 with CMP-001 (a TLR-9 agonist) to
treat head and neck squamous cell carcinoma (HNSCC) had
a better effect and prolonged the survival time of mouse,
compared with anti-PD-1 alone. And CMP-001+anti-PD-1
induced anti-tumor response depends on activation of CD8+ T
cells (Cheng et al., 2020). In addition to depending on CD8+
cells, there are other mechanisms that promote the efficacy of
checkpoint blockade therapy. CpG is a TLR9 ligand. It can
down-regulate PD-1 expresssion on CD8+ T cells by inducing
the production of IL-12 from dendritic cells (Yin et al., 2016).
Thomas et al. confirmed the combination of CpG with CTLA-
4 or PD-1 blockade not only increased the levels of circulating
tumor-specific CD8+ T cells, but also reduced the number of
Tregs at the tumor site (Mangsbo et al., 2010). Lefitolimod,
also a TLR9 agonist, can induce the secretion of IFN-α by
qDC. IFN-α increased the number of CD8+ T cells and anti-
tumoral M1 macrophages, activated NK-cells and decreased pro-
tumoral M2 macrophages inside the TME. In colon carcinoma
CT26 model, the combined treatment with lefitolimod and
anti-PD-L1 inhibited tumor growth and prolonged survival of
the mice (Kapp et al., 2019). Radiation can directly induce
upregulation of PD-L1 on tumor cells, and also act as an
adaptive resistance mechanism for T cells to release IFNγ in
tumor microenvironment. There is a hypothesis that the addition
of targeted immunosuppressive PD-1/PD-L1 checkpoint to the
radiation /TLR regimen may enhance the antitumor immune
response (Walshaw et al., 2020).

In conclusion, TLRs agonists can promote efficacy of
checkpoint blockade therapy by inducing or activating
CD8+ T cells, M1 macrophages and NK-cells, decreasing
M2 macrophages and Tregs, and down-regulating PD-1

expresssion on CD8+ T cells. TLRs agonists are potential
adjuvants for checkpoint blockade therapy (Figure 2).

Tumor Antigen Vaccine
Tumor-associated antigen (TAAs) can activate the immune
response. By generating an immune response, cancer vaccines
transform tumor-specific T cells into effector T cells. Therapeutic
vaccines can enhance autoimmunity, leading to a stronger anti-
tumor immune response. In order to induce tumor-specific T
cells, peptides produced by TAAs must be provided to T cells
by antigen-specific presenting cells to play an immune role
and destroy tumor cells. The peptides derived from TAAs are
presented to the T cells by APCs to play an immune role and
destroy tumor cells (Steinman, 1991). Specific immune response
in GC can be activated by protein and peptide targets. These
studies are based on TAA peptide extracted from HER2/neu and
MAGE. TAA peptide induces cytotoxic T cells to fight cancers,
restricted to MHC class I (Tanaka et al., 1997; Kono et al.,
1998). Typical HER2/neu overexpression in gastric cancer and
dendritic cells immunizing HER2/neu peptide pulses can lead
to tumor regression. The MAGE-3 peptide/chitosan-deoxycholic
acid inoculation nanoparticles have been successfully used to
stimulate an anti-tumor immune response and inhibit the
growth of tumors in mice with GC (Yang et al., 2010). The
potential of combining tumor antigen vaccines with conventional
chemotherapy to strengthen the anti-cancer response has been
the focus of current research.

TLR agonists have been reported that they can contribute
to anti-tumor immunity as adjuvants in conjunction with other
immunotherapies. It seems that combination therapy is more
effective in immunotherapy.

CONCLUSION

The immunotherapy of gastric cancer is a hot topic in recent
years. TLRs are expressed not only in natural immune cells but
also in non-immune cells, like tumor cells. TLRs play a crucial
role in innate immunity. Many studies show that TLRs have
complex functions in tumor immunity including pro-tumor and
anti-tumor. There is considerable evidence that TLRs play an
important role in the occurrence and development of GC, can
recognize the composition of Helicobacter pylori, a major cause
for GC. TLRs are increasingly being used as immunotherapeutic
targets for cancer and infectious diseases. TLR ligands show their
anti-tumor activity not only as therapeutic agents directly but
also as adjuvants in conjunction with tumor-associated antigen
(TAA) or immune checkpoint inhibitors. TLRs agonists are
potential adjuvants for checkpoint blockade therapy. Although
TLR-based immunotherapy is imperfect and has not been widely
used in the clinic yet, elucidating themechanism of TLR signaling

Frontiers in Cell and Developmental Biology | www.frontiersin.org 10 January 2021 | Volume 8 | Article 611444

https://www.frontiersin.org/journals/cell-and-Developmental-biology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-Developmental-biology#articles


Cui et al. TLRs in Immunotherapy of GC

in anti-tumor response and its interaction with other signaling
pathways is meaningful. TLRs may provide a promising novel
strategy for gastric cancer treatment.
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