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Abstract

Motivation: Dataset sizes in computational biology have been increased drastically with the help of improved data col-
lection tools and increasing size of patient cohorts. Previous kernel-based machine learning algorithms proposed for
increased interpretability started to fail with large sample sizes, owing to their lack of scalability. To overcome this prob-
lem, we proposed a fast and efficient multiple kernel learning (MKL) algorithm to be particularly used with large-scale
data that integrates kernel approximation and group Lasso formulations into a conjoint model. Our method extracts sig-
nificant and meaningful information from the genomic data while conjointly learning a model for out-of-sample predic-
tion. It is scalable with increasing sample size by approximating instead of calculating distinct kernel matrices.

Results: To test our computational framework, namely, Multiple Approximate Kernel Learning (MAKL), we demon-
strated our experiments on three cancer datasets and showed that MAKL is capable to outperform the baseline
algorithm while using only a small fraction of the input features. We also reported selection frequencies of approxi-
mated kernel matrices associated with feature subsets (i.e. gene sets/pathways), which helps to see their relevance
for the given classification task. Our fast and interpretable MKL algorithm producing sparse solutions is promising
for computational biology applications considering its scalability and highly correlated structure of genomic data-
sets, and it can be used to discover new biomarkers and new therapeutic guidelines.

Availability and implementation: MAKL is available at https://github.com/begumbektas/makl together with the
scripts that replicate the reported experiments. MAKL is also available as an R package at https://cran.r-project.org/
web/packages/MAKL.

Contact: mehmetgonen@ku.edu.tr

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Cancer is one of the most challenging healthcare problems of our era.
With increasing size of patient cohorts and genomic characterizations
collected from tumour biopsies, machine learning algorithms have
been applied to different tasks in the hope of discovering molecular
mechanisms related to the diagnosis, prognosis and treatment of can-
cer. Together with good predictive performance, building interpret-
able machine learning algorithms plays a crucial role in cancer
research to discover new therapeutic biomarkers and to analyze the
heterogeneity of tumours. Kernel-based machine learning algorithms
have been widely used in computational biology, thanks to their cap-
ability to deal with highly correlated data and interpretability.
However, the problem with these existing algorithms is their lack of
scalability, which started to cause problems especially for single-cell
cancer research, since traditional kernel-based methods are computa-
tionally prohibitive with large sample sizes.

Kernel machines attract a significant amount of attention since
they are able to approximate any function during the learning pro-
cess when the size of the training data is large enough. Kernel

machines are also capable of incorporating prior knowledge into
learning process using the kernel function. However, machine learn-
ing methods that need to calculate a kernel matrix over the dataset
scale poorly with increasing training sample size, since the size of
the kernel matrix is quadratic in the number of training samples.
One of the most widely known kernel-based machine learning
method is the support vector machine algorithm (Boser et al., 1992;
Cortes and Vapnik, 1995; Guyon et al., 1993).

The integration of kernel matrices into a linear model to solve a
non-linear problem called the ‘kernel trick’. A kernel can be described
as a measure of similarity between data points, which corresponds to
a dot product in some implicit feature space (Schölkopf and Smola,
2002). The kernel trick basically enables us to map the input data to a
higher dimensional feature space and then to solve the originally non-
linear problem in this high-dimensional and implicit feature space.

Instead of learning with a single kernel matrix, one may choose
to learn with multiple kernel matrices calculated using different ker-
nel functions on the same data representation, using the same kernel
function on different data partitions or using same/different kernel
functions on different data representations, which is known as
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multiple kernel learning (MKL). Some of the existing MKL algo-
rithms assign equal weights to the input kernels, which may not be
the best way of discovering the underlying dynamics. For instance,
in computational biology, to discover the underlying molecular
mechanisms from genomic data, instead of initially setting the kernel
weights, making the MKL algorithm choose the weights assigned to
each kernel in a data-dependent manner is more convenient.
Additionally, combining kernels in a non-linear or data-dependent
way is stated to seem more promising than linear combination in
fusing information provided by simple linear kernels, whereas linear
methods are stated as being more reasonable in case of combining
complex Gaussian kernels (Gönen and Alpayd, 2011).

The main contribution of this study is to extend well-known MKL
idea to large-scale problems using an approximation procedure for ker-
nel matrices. The proposed algorithm was shown to have four import-
ant characteristics: (i) running in a scalable manner on large-scale
genomic data, (ii) getting sparse solutions, (iii) integrating prior infor-
mation during the learning process to increase the interpretability and
(iv) maintaining or even increasing the predictive performance.

2 Materials

In this study, we used three datasets formed using two data sources.
First, we used data from The Cancer Genome Atlas (TCGA) project,
to discover the molecular mechanisms related to early- and late-stage
cancers and 2-year survival of patients. Second, we used single-cell
RNA-Seq data provided by the Broad Institute Single Cell Portal to
understand molecular signatures related to cell malignancy, which
could be beneficial for understanding tumour plasticity and cancer
progression mechanisms.

2.1 TCGA dataset
We gathered genomic data and clinical annotation files of over 10
000 cancer patients from 33 cancer cohorts in the Genomics Data
Commons (GDC) data portal offered by TCGA consortium at
https://portal.gdc.cancer.gov. TCGA shared the RNA-Seq measure-
ments of the tumours from 33 cohorts and pre-processed them with
a unified pipeline. We downloaded HTSeq-FPKM profiles of all pri-
mary tumours from the most recent data freeze (i.e. Data Release
31—October 29, 2021) and finally got 9911 files in total. To obtain
tumour grade levels and survival-related information, we used clin-
ical annotation files of the patients.

For binary classification task of cancer stages, we considered
patients clinically annotated as Stage I as having early-stage cancer;
patients clinically annotated with Stages II, III or IV as having late-
stage cancer. We included cohorts having at least 20 tumours from
both categories. We combined data coming from all cohorts to form
one big dataset of 19 814 features. As a result, the final dataset con-
tains 5547 patients coming from 15 distinct cohorts.

For 2-year survival classification, we considered patients that have
vital_status, days_to_death, days_to_last_followup, days_to_last_-
known_alive information. We combined data from 33 cohorts by
including patients with the required survival information. We included
cohorts having at least 20 patients whose vital_status is dead and at
least 100 patients in total. The resulting dataset contains 5168 patients
coming from 20 distinct cohorts with 19 814 expression features. We
labelled the patient as having �2-year survival (i) if vital_status is alive
and days_to_last_followup or days_to_last_known_alive is �2 years;
(ii) if vital_status is dead and days_to_death is �2 years. On the other
hand, we labelled the patient as having <2-year survival if vital_status
is dead and days_to_death is <2 years.

2.2 Single-cell RNA-Seq dataset
Analysis of single-cell RNA-Seq data holds promise to find new
ways to treat cancer. To reveal the mechanisms related to tumour
plasticity for targeted cancer therapies and to find new biomarkers,
single-cell analysis is in the spotlight. Having this motivation, we
searched for the datasets in the Broad Institute Single Cell Portal at
https://singlecell.broadinstitute.org and found the melanoma

immunotherapy dataset, which is appropriate for our binary classifica-
tion task, provided by Jerby-Arnon et al. (2018) as a part of their
research.

We intersected the gene expression profiles of 7186 cells with
malignancy information coming from 6738 clinical annotation files.
For each cell, there were 23 686 gene expression measurements in
the dataset. If a cell is annotated as B.cell, CAF, Endothelial.cell,
Macrophage, NK, T.CD4, T.CD8 or T.cell, we labelled this cell as
non-malignant. All other cells were labelled as malignant.

2.3 Pathway/gene set collections
We used two pathway/gene set collections from the Molecular
Signatures Database (MSigDB) that are specifically curated for can-
cer research: Hallmark gene set collection (Liberzon et al., 2015)
and Pathway Interaction Database (PID) pathway collection
(Schaefer et al., 2009), as prior information sources to be used for cal-
culation of multiple approximate kernel matrices. The Hallmark gene
set collection contains 50 gene sets (i.e. feature sets) with sizes varying
between 32 and 200, whereas the PID collection include 196 path-
ways (i.e. feature sets) with sizes varying between 10 and 137.

3 Methods

To bypass the computationally expensive kernel matrix calculation
step of MKL, we used approximation matrices instead of exact ker-
nel matrices. After accelerating the kernel matrix computation step,
we combined approximation matrices calculated for each pathway/
gene set. We then fed the resulting combined matrix into group
Lasso formulation, which led to sparsity in pathway/gene set level
and gave interpretable results.

3.1 Multiple approximate kernel learning: fast multiple

approximate kernel learning
In kernel-based methods, the idea of integrating kernel matrices into
a linear model to solve a nonlinear problem is achieved by applying
the ‘kernel trick’. The kernel trick is a result from the fact that any
positive definite function kðxi; xjÞ with xi;xj 2 R

d defines an inner
product and a mapping function Uð�Þ so that the inner product be-
tween mapped data points can be quickly computed as
hUðxiÞ;UðxjÞi ¼ kðxi; xjÞ (Schölkopf and Smola, 2002).

To accelerate the kernel matrix computation step of MKL, we used
a modified version of random Fourier features mentioned by Rahimi
and Recht (2008). Instead of using the implicit mapping by the afore-
mentioned kernel trick, they proposed explicitly mapping the data to a
low-dimensional Euclidean inner product space using a randomized

feature map z : Rd ! R
D, so that the inner product between a pair of

mapped points zðxiÞ and zðxjÞ approximates their kernel evaluation:

kðxi;xjÞ ¼ hUðxiÞ;UðxjÞi � zðxiÞ>zðxjÞ. This calculation of random
features is notable since this new feature map zð�Þ is low-dimensional.
In fact, the dimensionality of randomized feature space D is given as an
input to algorithm, and it can cope with large-scale data well, since in-
stead of calculating kernel matrices which are of size N�N, we now
need to calculate matrices of size N�D, where D� N.

Once the appropriate low-dimensional approximation method
for the kernel matrices is set, another problem arises at how to inte-
grate this approximation matrices into the learning process.

As a popular model selection and shrinkage estimation method,
the Lasso estimator had been proposed by Tibshirani (1996). Then,
the group Lasso has been proposed as an extension to the Lasso al-
gorithm (Antoniadis and Fan, 2001; Bakin, 1999; Cai, 2001; Yuan
and Lin, 2006). The group Lasso is the least-square regression prob-
lem with regularization by a block ‘1-norm. This estimator works
well in case of dealing with grouped data which in fact leads to the
idea of MKL algorithm. Bach (2008) discussed theoretical aspects of
the consistency of the group Lasso and using multiple kernel
matrices.

Despite giving interpretable results, the problem with all ordin-
ary MKL methods is their scalability issue owing to their need to cal-
culate distinct kernel matrices, which scale quadratically with the
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sample size. This issue could be problematic once they are applied to
large-scale datasets in areas such as computational biology, com-
puter vision etc.

3.1.1 Random features for kernel approximation

Owing to high computational complexity of using kernel trick in
large-scale datasets, the questions of finding faster methods arises.
Instead of computing the kernel matrices, to accelerate the learning
process, there is a need to find a low-dimensional approximation for
kernel matrix calculation. For this purpose, we approximate the ker-
nel matrices using a modified version of random feature mapping
originally has been introduced by Rahimi and Recht (2008). This
approximation method is a natural result from a classical harmonic
analysis as presented below.

Theorem 1.A continuous kernel kðxi; xjÞ ¼ jðxi � xjÞ on R
d is positive

definite if and only if jðhÞ is the Fourier transform of a non-negative

measure (Rudin, 1994).

Briefly, as a result of Bochner’s theorem, we are ensured that for
any properly scaled shift-invariant kernel kð�; �Þ, its Fourier trans-
form is a proper probability distribution and zðxiÞ>zðxjÞ is an un-
biased estimate of kðxi;xjÞ in case the random samples are drawn
from the Fourier transform pð�Þ. The Fourier transform pð�Þ for a
given kernel jð�Þ is:

pðxÞ ¼ 1

2p

ð
e�jx>hjðhÞdh: (1)

To calculate similarity between pairs of gene expression profiles,
we used the Gaussian kernel on feature sets in Algorithm 1, which is a
modified version of the random feature mapping algorithm proposed
by Rahimi and Recht (2008). We approximated a given Gaussian ker-
nel matrix by getting a low-dimensional approximation matrix Z as
the output from this algorithm, where we used the sinð�Þ function in
addition to the cosð�Þ function to guarantee that ZZ> produces a ker-
nel matrix with ones on the diagonal. Due to this modification, we
also changed the normalizing constant from

ffiffiffiffiffiffiffiffiffiffi
2=D

p
to

ffiffiffiffiffiffiffiffiffiffi
1=D

p
.

The Gaussian kernel was previously reported in the literature as
being reliable to be used with high-dimensional genomic data
(Costello et al., 2014; Gönen et al., 2017). We used the same ap-
proach to discover highly nonlinear dependency between the RNA-
Seq data and the corresponding clinical annotations.

The Gaussian kernel is:

kGðxi; xjÞ ¼ expð�ðxi � xjÞ>ðxi � xjÞ=ð2r2ÞÞ;

where r is the kernel width parameter. The Fourier transform of the
Gaussian kernel is:

pðxÞ ¼
ffiffiffiffiffiffi
2p
p

re�jjxjj
2
2r2=2:

It is worth noting here that the Fourier transform of a Gaussian
function has also Gaussian distribution. Additionally, the kernel
width parameter r in time space corresponds to r�1 in Fourier space.

3.1.2 Fast integration with group Lasso

To be used in an MKL setting, we integrated the kernel approxima-
tions into the group Lasso formulation. After partitioned the input
data according to feature sets, we computed distinct kernel matrix
approximations for each feature set. Then, we concatenated the ap-
proximation matrices and used the concatenated matrix as an input
to the group Lasso formulation.

The group Lasso minimizes the following objective function with
respect to model parameters b0;b1 2 R

d1 ;b2 2 R
d2 ; . . . ; bP 2 R

dP :

XN
i¼1

‘ðyi;b0 þ
XP

p¼1

x>ipbpÞ þ k
XP

p¼1

ffiffiffiffiffi
dp

q
jjbpjj2; (2)

where ‘ð�; �Þ denotes the loss function according to problem type

(e.g. square loss for regression problems, logistic loss for binary clas-
sification problems), yi is the output for ith data point (i.e. response
value for regression problems, class label for binary classification
problems), k is a positive regularization coefficient, dp refers to the
size of feature set p and jj � jj2 is the Euclidean norm. This optimiza-
tion problem is convex with respect to the weights bp associated
with feature sets. The fact that the Euclidean norm of a vector is
zero only if all vector entries are zero, the group Lasso formulation
leads to sparse solutions at group level, which facilitates the feature
set selection process.

Overall, our algorithm for MKL using any kernel approximation
method is described in Algorithm 2 with details. Figure 1 displays an
overview of our proposed algorithm that combines Algorithms 1 and 2.

4 Results

To test our algorithm, we performed computational experiments for
three binary classification tasks. To better compare the outcomes of
the experiments, we benchmarked all algorithms over 100 independ-
ent replications. As the predictive performance metric for these bin-
ary classification tasks, we used AUROC, whose larger values
correspond to a better classification performance.

Algorithm 1 Fast computation of kernel approximation ma-

trix using random Fourier features

Input: A matrix X 2 R
N�d, a positive definite shift-invariant

kernel, dimension D (D� N) to calculate random Fourier fea-

tures, subset size S (S� N) to calculate the distance matrix.

Output: Low-dimensional kernel approximation matrix

Z 2 R
N�2D.

Draw S random rows from X.

Compute the Euclidean distance matrix S 2 R
S�S.

Calculate the kernel width parameter r as the mean of the

distance matrix S.

Draw D i.i.d. random samples d1; d2; . . . ; dD 2 R
d from pð�Þ

using (1).

Draw D i.i.d. random samples b1;b2; . . . ;bD 2 R from the

uniform distribution on [0, 2p].

Compute Z as:

Z ¼
ffiffiffiffi
1

D

r
½cosðd>1 Xþ b1Þ cosðd>2 Xþ b2Þ . . . cosðd>DXþ bDÞ

sinðd>1 Xþ b1Þ sinðd>2 Xþ b2Þ . . . sinðd>DXþ bDÞ�:

Algorithm 2 Fast integration of approximated kernels into

group Lasso

Input: Training matrix X 2 R
N�d, P feature sets F 1;F 2; . . . ;FP,

binary output vector y of length N.

Output: Classification area under the receiver operating char-

acteristics curve (AUROC) value, ‘2-norm of the weights

assigned to F p denoted as gp for all p 2 P.

Split the training matrix into P partitions.

Compute low-dimensional approximation matrices

Z1;Z2; . . . ;ZP.

Concatenate distinct approximation matrices Z1;Z2; . . . ;ZP

to obtain one single matrix Z 2 R
N�2DP.

Solve the group Lasso formulation using Z as the input matrix.

Calculate ‘2-norm using the weights of each F p and denote

the corresponding norm calculated for F p as gp for all p 2 P.

If gp is non-zero, count F p selected for the classification task.
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Owing to the serious scalability issues presented at earlier sections,
we did not choose standard MKL algorithms for baseline comparison.
We chose extreme gradient boosting (XGBoost; Chen and Guestrin,
2016) as the baseline algorithm to compare against our Multiple
Approximate Kernel Learning (MAKL) algorithm. Extreme gradient
boosting is an ensemble of weak prediction models and, by its nature,
its predictive performance is generally better compared with the ran-
dom forest algorithm. It is also known as being scalable.

For all experiments, we split the corresponding dataset into two
parts, in a way that 80% of the samples were included into the training
set and the remaining 20% of the samples were included into the test
set. We normalized each feature in the training set to have zero mean
and unit SD. For the test set, we normalized each feature with the
mean and SD calculated on the original training set. We performed
4-fold inner cross-validation on the training set for hyper-parameter
tuning. We used two aforementioned pathway/gene set collections.

For XGBoost algorithm that we used as the baseline algorithm,
the hyper-parameter, maximum depth of a tree, was chosen using
4-fold inner cross-validation on the training set with a maximum
number of iterations of 1000 and learning rate of 0.2. Since, in this art-
icle, we cover binary classification tasks, we used ‘binary: logistic’ op-
tion as the objective function argument to the algorithm. For XGBoost
experiments, we used XGBoost R package (Chen and He, 2019).

The hyper-parameter related to the regularization, k, for MAKL
was chosen using four-fold cross-validation on the training set. The
k parameter set used for cross-validation was f0:9; 0:8; 0:7; 0:6g to
get fast and sparse solutions, since parameter values closer to 1 leads
to sparse solutions.

The dimensionality parameter D (i.e. the number of random fea-
tures used to approximate distinct kernel matrices) was given as an
input to the MAKL algorithm. We ran experiments using different
D values, f100;150; 200;250g to perform sensitivity analysis on
MAKL. For MAKL experiments, we used grplasso R package with
default parameters (Meier, 2020).

4.1 Early- and late-stage cancer classification
For this binary classification task, we performed sensitivity analysis
for the AUROC values using different D values for MAKL with

Hallmark gene sets (i.e. different numbers of randomly chosen
Fourier samples). We compared MAKL algorithm against the base-
line algorithms, XGBoost (Subset) and XGBoost (Full). XGBoost
(Subset) denotes the algorithm is trained using the genes from the
Hallmark gene set collection, whereas XGBoost (Full) denotes the
algorithm is trained using all available 19 814 genes.

Figure 2 shows how the classification performance changes with
respect to the number of feature sets (i.e. pathway/gene sets) used. It
also shows that MAKL with Hallmark gene set collection outper-
forms XGBoost (Subset) using only a small fraction of the available
features. Considering the mean number of pathways used for classi-
fication, MAKL outperforms the baseline algorithm XGBoost
(Subset) using only 18.54% (i.e. 9.27 out of 50) of the total feature
sets (i.e. gene sets) with D¼150. It also outperformed XGBoost
(Full) while using only 12.47% of the all available 19 814 genes on
the average. Additionally, Supplementary Figure S1 displays the
early- and late-stage cancer classification sensitivity analysis for the
AUROC values using different D values for MAKL with PID path-
way collection and compares MAKL against the baseline algo-
rithms, namely, XGBoost (Subset) and XGBoost (Full).

4.2 Two-year survival classification
For 2-year survival classification task, MAKL with PID pathway
collection was able to outperform the baseline algorithms XGBoost
(Subset) using only 5.96% (i.e. 11.69 out of 196) of the total feature
sets (i.e. pathways) with D¼150. It also outperformed XGBoost
(Full) while using only 4.15% of all available 19 814 genes on the
average.

Figure 3 shows sensitivity analysis for the AUROC values using
four different D values for MAKL with PID pathway collection (i.e.
different numbers of randomly chosen Fourier samples), and com-
pares them against the baseline algorithms, XGBoost (Subset) and
XGBoost (Full). XGBoost (Subset) denotes the algorithm is trained
using the genes from the PID pathway collection, and XGBoost
(Full) denotes the algorithm is trained using all available 19 814
genes. Additionally, Supplementary Figure S2 shows the sensitivity
analysis for the AUROC values using four different D values of
MAKL with Hallmark gene sets and compares the results with the

Fig. 1. Our proposed MAKL algorithm that integrates kernel approximation and group Lasso formulations into a conjoint model. It takes the input matrix X 2 R
N�d , a binary out-

come vector y of length N, and a pathway/gene set collection consisting of P pathways/gene sets, as its inputs. It then computes distinct kernel approximation matrices for each path-

way/gene set, denoted as Z1;Z2; . . . ;ZP; and finally combine all kernel approximation matrices to get Z 2 R
N�2DP, to be used in the group Lasso formulation. During learning

process, it determines the weights associated with each pathway/gene set, denoted as g1; . . . ; gP. It is scalable since it integrates a low-dimensional kernel matrix approximation instead

of usual kernel matrix computation; it is interpretable since it performs feature selection and sorts pathway/gene sets according to their relevance by comparing their ‘2-norms
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https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac241#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac241#supplementary-data


baseline algorithms, XGBoost (Subset) and XGBoost (Full).

XGBoost (Subset) denotes the algorithm is trained using the genes
from the Hallmark gene set collection, and XGBoost (Full) denotes
the algorithm is trained using all available 19 814 genes.

4.3 Single-cell melanoma immunotherapy dataset
As mentioned earlier, our algorithm is capable of extracting mean-
ingful information while learning a predictive model. The weights

associated with each pathway/gene set resulting from MAKL show

the relevance of each pathway in the given classification task.
Owing to the computational pre-processing and labelling techniques
used in single-cell dataset that we used (i.e. the labelling is not done
manually and by observation like in patient labelling), we concen-
trated on the pathways/gene sets that play crucial role in cell malig-
nancy classification task, rather than the classification performance.
We demonstrated that the pathways/gene sets that our algorithm
MAKL found important for this classification task are relevant in
terms of finding new immunotherapy techniques, new ways to dis-
cover tumour heterogeneity since the pathways/gene sets extracted

Fig. 2. Sensitivity analysis on the early- and late-stage cancer classification performance of MAKL using four different D values (i.e. different numbers of randomly chosen

Fourier samples), and their comparison to the baseline algorithms, XGBoost (Subset) and XGBoost (Full). The figure depicts the AUROC values resulted from 100 replications.

As feature sets, the Hallmark gene set collection is used. XGBoost (Subset) denotes that the algorithm is trained using the genes from the Hallmark gene set collection and

XGBoost (Full) denotes that the algorithm is trained using all available 19 814 genes. Note that the results reported for XGBoost (Subset) and XGBoost (Full) are not affected

from the values in the x-axis, and they are reported as dashed lines for easy comparison

Fig. 3. Sensitivity analysis on the 2-year survival classification performance of MAKL using four different D values (i.e. different numbers of randomly chosen Fourier samples),

and their comparison to the baseline algorithms, XGBoost (Subset) and XGBoost (Full). The figure depicts the AUROC values resulted from 100 replications. As feature sets,

the PID pathway collection is used. XGBoost (Subset) denotes that the algorithm is trained using the genes from the PID pathway collection, and XGBoost (Full) denotes that

the algorithm is trained using all available 19 814 genes. Note that the results reported for XGBoost (Subset) and XGBoost (Full) are not affected from the values in the x-axis,

and they are reported as dashed lines for easy comparison
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from our algorithm are in line with the most recent melanoma treat-
ment trials, which are supported with the literature findings as
detailed below.

Supplementary Table S1 displays the selection frequencies of 50
gene sets in the Hallmark gene set collection for over 100 replica-
tions, using four different regularization parameters (i.e. k multi-
pliers). If norm of weights associated with a feature set, resulting
from MAKL is positive, we considered the corresponding feature set
(i.e. pathway/gene set) as selected. Supplementary Table S2 displays
the selection frequencies of 196 pathways in the PID pathway collec-
tion for 100 replications, using four different regularization parame-
ters (i.e. k multipliers). According to the average selection
frequencies over 100 replications, the most selected pathway by
MAKL with PID pathway collection was CXCR4 pathway. This re-
sult is relevant since targeting of CXCR4 pathway is under consider-
ation in melanoma treatment trials. Supplementary Table S2 also
shows that, even using four pathways, MAKL is capable of finding
this relevant pathway for cell malignancy classification. In other
words, our algorithm can find the relevant feature sets towards a
classification task using a small fraction of all the feature sets (e.g.
2.26 out of 196).

It is stated in literature that targeting melanoma by CXCR4 in-
hibition may be a good way to destroy the tumour cells and that
CXCR4 regulates tumour immunity (Yang et al., 2018).
Additionally, the chemokine receptor CXCR4 is stated to be associ-
ated with cancer growth, invasion and metastasis and identified as
an independent predictor of poor prognosis in primary melanoma
(Scala et al., 2006). The three most frequently chosen pathways
resulted from MAKL with PID pathway collection over 100 independ-
ent replications are CXCR4, SYNDECAN_4 and CASPASE, respective-
ly. Likewise, the three most frequently chosen pathways resulted from
MAKL with Hallmark gene set collection over 100 independent replica-
tions are ALLOGRAFT_REJECTION, INTERFERON_ALPHA_
RESPONSE and KRAS_SIGNALING_UP, respectively. Further related
details are given in Supplementary Tables S1 and S2.

5 Conclusions

In this article, we introduced a scalable MAKL, which is designed
specifically for large-scale genomic datasets. Our approach can com-
bine any low-dimensional kernel approximation with a group Lasso
formulation. We used a modified version of the random feature
mapping as kernel approximation algorithm in our experiments (see
Algorithms 1 and 2 for details). MAKL is fast and appropriate for
large-scale genomic data such as single-cell sequencing data having
large sample-size with many features. Our method can integrate
prior information in the form of gene sets/pathways into the learning
process to increase the interpretability without sacrificing the pre-
dictive accuracy.

To benchmark our algorithm, we used three datasets constructed
from two data sources. As prior information sources, we used
Hallmark and PID pathway/gene set collections particularly curated
for cancer research. We processed genomic data from TCGA project
to form the early- and late-stage cancer dataset together with 2-year
cancer survival dataset. We also used single-cell RNA-Seq data pro-
vided by the Broad Institute Single Cell Portal to understand the mo-
lecular underpinnings of cell malignancy. Our algorithm MAKL was
capable of outperforming the baseline algorithms based on
XGBoost using only a small fraction of the pathway/gene sets avail-
able (see Figs 2 and 3, Supplementary Figs S1 and S2); thus, it pro-
vided sparse solutions. It also provided selection frequencies
associated with the pathway/gene sets used as prior information
sources for the corresponding classification task (Supplementary
Tables S1 and S2), which can be used to understand the biological
mechanisms towards the applied classification problem. Regarding
scalability, MAKL was trained (while simultaneously extracting the
significant information from it, unlike the baseline algorithms)
<30 s on the average for the three problems we discussed while the
baseline algorithms XGBoost (Subset) and XGBoost (Full) perform
the same classification task between 1 and 4 min on the average, re-
spectively. This scalability property, unlike the standard MKL

algorithms, makes it possible for MAKL to be used with large-scale
data, such as single-cell genomic datasets. As a result, this character-
istic could lead to discovery of new biomarkers for tumour plasticity
and of new techniques for immunotherapy and targeted cancer
therapies.

An interesting direction for future studies may be building a
multi-class extension of MAKL to be used with multi-class prob-
lems. Also, integration of low-dimensional kernel approximation
into other machine learning models is exciting considering the
increasing need for fast data processing and interpretability. Our ap-
proach is promising in domains including but not limited to compu-
tational biology and computer vision thanks to its scalability,
flexibility and also its ability to deal with highly correlated features.
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