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Background: Thalamic volume measures have been linked to obsessive-compulsive

disorder (OCD) in children and adolescents. However, it is unclear if alterations in thalamic

volumes occur before or after symptom onset and if there is a relation to the presence of

sub-clinical obsessive-compulsive symptoms (OCS). Here, we explore the relationship

between OCS and the rate of thalamic volume change in a cohort of children and youth

at high risk to develop a mental disorder. A secondary aim was to determine if there is

a relationship between OCS and the individual’s OCD polygenic risk score (OCD-PRS)

and between the rate of thalamic volume change and the OCD-PRS.

Methods: The sample included 378 children enrolled in the longitudinal Brazilian

High-Risk Cohort for Mental Conditions. Participants were assessed for OCS and the

symmetrized percent change (SPC) of thalamic volume across two time-points separated

by 3 years, along with the OCD-PRS. Zero-altered negative binomial models were used

to analyze the relationship between OCS and thalamic SPC. Multiple linear regressions

were used to examine the relationship between thalamic SPC and OCD-PRS.

Results: A significant relationship between OCS and the right thalamus SPC (p= 0.042)

was found. There was no significant relationship between changes in thalamic volume

SPC and OCD-PRS.
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Conclusions: The findings suggest that changes in the right thalamic volume over the

course of 3 years in children may be associated to OCS. Future studies are needed

to confirm these results and further characterize the specific nature of OCS symptoms

associated with thalamic volumes.

Keywords: obsessive-compulsive disorder, MRI, thalamus, obsessive-compulsive symptoms, polygenic risk

score, OCD-PRS, neuroimaging

INTRODUCTION

Obsessive-compulsive disorder (OCD) is a common, chronic
and potentially disabling condition (1). Obsessive-compulsive
symptoms (OCS) are linked to OCD both by epidemiological
and genetic studies, and have been associated with distress and
impairment at the subclinical level (2, 3). Subclinical OCS in
childhood increase the risk of full-blown OCD in adulthood (4).
A recent study found a lifetime prevalence of OCS in children and
adolescents from 11 to 21 years-old of 38.2% and the prevalence
of OCD of 3% (5). The OCS prevalence varies from 8.7 to 38.2%,
depending on the population and methodology used (2, 4–7).
Only a minority of individuals with OCS in the community fulfill
diagnostic criteria for OCD, and, indeed, the prevalence of OCD
is much lower (2–3%) than OCS when both are assessed in the
same sample (4, 5).

Cortico-striato-thalamo-cortical circuitry (CSTC) has been
consistently implicated in the pathobiology of OCD both from
animalmodels and neuroimaging studies (8, 9). It is hypothesized
that alterations in CTSC circuits involved in sensorimotor,
cognitive, affective, and motivational processes contribute to the
pathophysiology of OCD (8, 10). It is likely that the same circuit
is involved in OCS for individuals with subclinical OCD (11, 12).
The thalamus, as part of this circuitry, is a region that has
been repeatedly examined in both human and animal studies.
There have been consistent findings of structural alterations
in the thalamus of OCD patients in both adults and children.
While four earlier meta-analyses and one mega-analysis showed
no difference in thalamic volume between OCD patients and
healthy controls (HC) (13–17), these studies combined adults
and children and more recent work suggests that there may in
fact be an association. A worldwide mega andmeta-analysis from
the ENIGMA-OCDWorking Group reported increased thalamic
volumes in unmedicated children with OCD, but no differences
were seen in adult patients (18). A recent study found increased
thalamic volumes in children from the community with probable
OCD (19). An additional meta-analysis combining both children
and adults reported that increased thalamic volumes were
associated with OCD (20).

Given this literature, the thalamic volume has emerged as
a potential candidate for an endophenotype for OCD and
potentially OCS; however, this still needs further investigation.
An endophenotype is a biological or psychological trait that is
in the causal chain between genetic susceptibility and disease
expression. Specific criteria have been proposed to define
endophenotypes, such that the trait needs to be: associated
with illness, heritable, primarily state independent, co-segregate

within families, and found in unaffected family members at a
higher rate than in the general population (21). Although the
thalamus has been implicated in the neurobiology of OCD, it
is still unknown if the thalamic alterations are related to the
genetic risk for OCD, if they precede or develop after symptom’s
expression or if they develop after the full syndrome is present.
Prospective cohorts are ideal to clarify these issues and add
to the understanding of thalamic volume as an endophenotype
for OCS. There is evidence that during brain development, the
thalamus follows a curvilinear trajectory of volume change (22).
The trajectory peaks at 13.8 years in females and at 17.4 years in
males (23). Previous studies assessing thalamic volume on OCD
or OCS have been limited to cross-sectional samples. To date,
there is little evidence if the alteration in thalamic volumes seen in
OCD and OCS are due to different trajectories that occur during
childhood and adolescence or due to higher baseline volumes. It
is possible that children at risk for OCD have an altered thalamic
trajectory leading to the increased thalamic volume reported in
unmedicated children with OCD (18). As most studies, such as
the ones included in the ENIGMA mega and meta-analysis (18),
are cross-sectional, the higher volumes could be related with
steeper slopes leading to higher thalamic volume.

It is widely known that genetics play an important role in
mental disorders. Although heritability for OCD is not very high
(∼0.47), it still indicates that genetic factors contribute to the
etiology of this disorder (24). The heritability of OCS is reported
to be 0.40, indicating that it also has a genetic basis (25, 26).
Polygenic risk scores (PRS) have emerged as a potentially valuable
tool for assessing genetic risk and can be useful for testing
the relationship between genetic risk and endophenotypes. For
common polygenic conditions like Alzheimer disease, coronary
artery disease and type 2 diabetes mellitus, the PRS are
being studied as a useful tool for prioritization of preventive
interventions and screening, prediction of age of disease onset,
benefit from lifestyle modifications and changes in clinical
decision-making (27). PRS are computed from genome wide
association studies (GWAS). PRS is a weighted sum of the
number of risk alleles carried by an individual, in which the
risk alleles and their weights are defined by the loci and their
measured effects as found by GWAS (27). Genetic overlap
between OCD and OCS is suggested by the fact that PRS based
on OCD GWAS data significantly predicted OCS (3, 26).

A prospective longitudinal study enriched for children at
risk for developing OCD is an ideal approach for studying the
development, genetic risk, and neurobiology of the disorder.
There are many studies comparing the neurobiology of OCD
and healthy controls, but prospective longitudinal studies on the
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development of OCD are rare. The Brazilian High-Risk Cohort
for Mental Conditions is an ongoing study that has prospective
data on genetics, neuroimaging, and psychopathology. Data
from the cohort was used here to study the OCS phenotype
prospectively in a community-based sample.

We hypothesized that youth with subclinical OCS from a
community sample and youth with genetic risk for developing
OCD would have an altered rate of thalamic volume change,
with slower decrease or faster increase of thalamic volume. More
specifically, we hypothesized that thalamic volume symmetrized
percent change (SPC) would be related to the presence and
intensity of OCS in children in the follow-up. A second
hypothesis was that OCS would be related to OCD-PRS. A third
hypothesis was that the thalamic volume SPC would be related
to OCD-PRS.

METHODS

Participants
A subsample of the participants from the Brazilian High-Risk
Cohort for Mental Conditions was included in this analysis
(28). The study was submitted and approved by the Ethical
Committee of the University of São Paulo. All parents signed
informed consent and children provided verbal assent. Details
about the cohort can be found elsewhere (28). In 2010,
children from 6 to 14 years old from 57 schools in the cities
of São Paulo and Porto Alegre were enrolled in the study
based on their risk for mental disorders. A subsample of 750
children completed a scanning protocol. After quality control
assessment, the final subsample for the current report consisted
of 732 children. The baseline evaluation included a structured
household interview with a biological parent, acquisition of
T1-weighted brain magnetic resonance imaging (MRI) in two
centers using a 1.5T General Electric Scanner and blood samples
collection. After 3 years, parents were once again interviewed,
and children were interviewed for psychiatric symptoms by
certified psychologists. After the psychopathological assessment,
participants were invited to complete another scanning session.
Retention at follow-up was 90% for the psychopathological
measures. In total, 378 children were included in the analysis in
the present study as they were scanned in both waves of the data
collection and had viable data for analysis. The primary reason
some children could not undergo scanning at the second time
point was due to fMRI contraindications (e.g., wearing braces),
with issues such as refusal or loss to follow-up only explaining a
minority of the missing wave 2 imaging data.

Obsessive-Compulsive Symptoms
Psychiatric diagnosis was assessed using the Brazilian Portuguese
version (29) of the Development and Well-Being Assessment
(DAWBA) (30). This structured interview was administered
to biological parents by trained lay interviewers on baseline
and follow-up and to children by certified psychologists on
follow-up. The interview information was then scored by
trained psychiatrists who were supervised by a senior child
psychiatrist to generate DSM-IV diagnosis. There were only a
few participants of the cohort that developed sufficient OCS

to meet the DSM-IV criteria for OCD. From the 378 children,
only 1 child was diagnosed with OCD at baseline and 5
at follow-up. A dimensional score for OCS was computed
using answers from the youth at follow-up using the 9 items
from section F of the DAWBA (Supplementary Material).
Each item is scored from 0 (no), 1 (a little) to 2 (a
lot). A total score was calculated by summing the 9 items,
resulting in a total OCS score from 0 (no symptoms) to 18
(maximum symptoms).

OCS score was built based on the DAWBA assessment of
youth at follow-up because that was the only measurement
of self-reported symptoms. The OCS score was used as the
dependent variable in the hurdle models. A score for baseline
OCS was computed to be used as a control variable. The baseline
OCS score was computed using the same approach as the OCS
score but only included information from the guardian.

An additional analysis was performed using the
obsessive-compulsive (OC) factor score recently published
by our group (31). Briefly, OC factor score combining
information from parents and children on the follow-up
was built under the Bartlett’s method. The OC factor score
included information from three sources: the DAWBA
assessment of youth, DAWBA assessment with information
from parents and Child Behavior Checklist (CBCL)
information from parents. In that study, a baseline OC
factor score was computed based on information only from
parents combining DAWBA and CBCL. These previously
reported OC factor scores were used in the mixed effects
model considering that they may represent the same
latent variable.

Neuroimaging
Identical imaging protocols were used in both sites with 1.5-T
MRI scanners (GE Signa HDX and GE Signa HD; GE, USA).
At follow-up, children were rescanned in the same scanner as
baseline at each site. T1-weighted scans (three-dimensional fast
spoiled gradient sequence) used the following parameters: 160
axial slices for whole brain coverage, TR= 10.9ms, TE= 4.2ms,
thickness = 1.2mm, flip angle = 15◦; matrix size = 256, FOV
= 24 cm, and NEX = 1. Imaging acquisitions were repeated
whenever participants moved during the procedure in order to
ensure that optimal quality was obtained.

The T1-weighted scans were processed using FreeSurfer
version 6.0. The longitudinal processing stream of Freesurfer
was used to reduce variability and avoid over-regularization
(32). The thalamus was selected as the region of interest
and thalamic volume was computed using the automated
subcortical segmentation stream of Freesurfer (33). For assessing
the longitudinal change in thalamic volume, the Symmetrized
Percent Change (SPC) rate computed in FreeSurfer was used. The
SPC is computed using the formula: SPC = 100 ∗ rate/average.
Rate corresponds to the difference in volume per time unit, so rate
= (volume 2 – volume 1)/(time 2 – time 1). Average corresponds
to the average volume: average = 0.5 ∗ (volume 1 + volume 2).
The SPC could be negative, zero, or positive.
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Polygenic Risk Score
From the subsample of 378 children who had both time-
points of brain imaging, 364 were genotyped. Genomic DNA
was isolated from saliva (Oragene) using prepIT-L2P reagent
(DNAgenotek). Genotyping was performed using the Global
Screening Array (Illumina). Single-nucleotide polymorphisms
(SNPs) with a minor allele frequency <1%, locus missingness
>10%, or Hardy-Weinberg equilibrium significance <0.000001
were excluded, as were individuals with genotype missingness
>10% and an estimation of identity by descent >0.12.

OCD polygenic risk scores (OCD-PRS) were calculated with
the PRSice V2 software package (34), using as a training sample
the summary statistics of the meta-analysis from the two OCD
consortia, totalizing 2,688 cases (35–37). For the main analyses,
p-threshold of 0.476 was selected, which contained 97,413
independent SNPs in the training and target samples. This p-
threshold was pointed by PRSice V2 as the most correlated with
OCS in our sample.

Statistical Analysis
The variable OCS was zero inflated, with ∼44% of the sample
endorsing no symptoms of OCD in the DAWBA at follow-up
(Figure 1). Given that, and considering that the OCS variable was
skewed and over dispersed (the variance is almost 4 times the
mean), we selected a model to deal with zero inflated data. A zero
altered negative binomial model (ZANB)—also known as hurdle
model or two-part model—was used (38). The Negative Binomial
model was selected over Poisson because the latter assumes the
variance is equal to the mean with equi-dispersion. After running
the two models and comparing them with the likelihood ratio
test of nested models (implemented in “r” package “lmtest”),
there was significant evidence for a better fit of the Negative
Binomial model compared to Poisson regression model (df =
1, χ

2
= 137.2, p < 0.0001). The hurdle model considers that

the entire group of participants is at risk for the event under
study and that all zeros are generated from a single process
(39). Hurdle models consist of two parts. In the first part (zero-
hurdle), the data are considered as zeros vs. non-zeros and a
binomial model is used to model the probability that a zero
value is observed (40). In the second part (count), the non-zero
observations are modeled with a truncated negative binomial
model. Two ZANBmodels were built: one for the left and one for
the right thalamus. The models included the OCS as dependent
variable, thalamic SPC as the independent variable and age at
follow-up, sex, any psychiatric comorbidity (excluding OCD),
and site as covariates. The same variables were included in the
zero-hurdle and count components of the models. To control for
baseline OCS, a model was built with the same variables listed
above, but including OCS at baseline as an independent variable
(Supplementary Table 1). Another ZANB model was built to
access the relationship between OCS and OCD-PRS, including
age at follow-up, sex, any psychiatric comorbidity (excluding
OCD), site and 10 first principal components from genetic data
as covariates.

For the analysis of the relationship between thalamic volume
SPC and OCD-PRS multiple linear regression was used. The
regressions included the thalamic SPC as the dependent variable,

FIGURE 1 | Distribution of obsessive-compulsive symptoms (OCS) at

follow-up.

OCD-PRS as the independent variable and age at follow-up,
sex, site, and 10 first principal components from genetic data
as covariates.

A mixed effects model was used to assess total thalamic
volume change in relation to OC factor scores reported
previously (31). The mixed model was run with the participant
entered as random factor and thalamic volume as dependent
variable. The OC factor score was the independent variable
and included the assessment at baseline and follow-up as
described in the “obsessive-compulsive symptoms” section. Age,
an interaction term between OC factor score and age, sex,
any psychiatric comorbidity (excluding OCD), total intracranial
volume and site were included as covariates.

To study the relationship between thalamic volume change
and OCD-PRS, a mixed effects model was built with participant
entered as random factor, thalamic volume as dependent variable
and OCD-PRS as independent variable. Age, sex, site, total
intracranial volume and 10 first principal components from
genetic data were included as covariates.

The statistical analysis was performed using R. Version 4.0.1.
The function “hurdle” from the R package “pscl” was used to
build the ZANB models. The function “lm” was used for the
linear model. The function “lmer” from the R package “lme4” was
used to build the mixed effects models.

RESULTS

Sample Characteristics
The sample for the neuroimaging evaluation consisted of 378
children who underwent two scans in a 3-year interval. Themean
age at baseline was 10.48, at follow-up it was 14.24 and 42% were
females (Table 1). From the 378 children, 364 had viable blood
samples and took part in the genetics evaluation. The mean age
for the 364 children was 10.49 at baseline, 14.25 at follow-up and
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TABLE 1 | Demographic and clinical characteristics.

Frequency

(percentage) or mean

(SD) or median (IQR)

Gender female n (%) 158 (42)

IQ mean (SD) 103.93 (17.26)

Age baseline mean (SD) 10.48 (1.83)

Age follow-up mean (SD) 14.24 (1.84)

Socioeconomic status baseline mean (SD) 21.59 (4.38)

Socioeconomic status follow-up mean (SD) 21.55 (4.38)

Any psychiatric disorder baselinea n (%) 114 (30)

Any psychiatric disorder follow-upa n (%) 106 (28)

OCD baselinea n (%) 1 (0.3)

OCD follow-upa n (%) 5 (1.3)

OCS median (IQR) 1 (0–3)

aBased on the Development and Well-Being Assessment (DAWBA) questionnaire.

SD, standard deviation; IQR, interquartile range; IQ, intelligence coefficient; OCD,

Obsessive-compulsive disorder.

42% were females. The distribution of OCS was right-skewed and
zero-inflated (Figure 1). There was around 44% of zeros.

Thalamic Volume SPC and OCS
A significant positive relationship between right SPC and OCS
(p = 0.042) was found in the zero-hurdle part of the model
(Table 2). There was no significant relationship between right
SPC and OCS in the count part of the model (Table 2). The zero-
hurdle part of the model gives the probability of a non-zero count
(40). The results indicate that right thalamus change was related
to having at least one OCS reported (Figure 2). The thalamic
variation was not related to the amount of OCS as the count
part was not significant. There was no significant relationship
between left SPC and OCS in both the zero-hurdle and the count
parts of the model (Table 2). The analysis was repeated including
OCS reported by parents at baseline as a control variable and
the relationship between right SPC andOCS remained significant
(Supplementary Table 1). Models including an interaction term
between both Thalamic SPC and age were tested. In those
models there was no significant association between the variables
(Supplementary Table 2).

OCD-PRS and OCS
There was no significant relationship between OCD-PRS and
OCS in both the zero-hurdle and the count parts of the model
(Supplementary Table 3).

Thalamic Volume SPC and OCD-PRS
There was no significant relationship between right or left
thalamic SPC and OCD-PRS (Supplementary Table 4).

Mixed Effects Model for Total Thalamic
Volume
There was no significant relationship between thalamic
volume and OC factor scores, assessed longitudinally
(Supplementary Table 5).

TABLE 2 | Zero-altered negative binomial (ZANB) models examining the

relationship between OCS and thalamic SPC.

Right thalamus Left thalamus

Count model B p-value Count model B p-value

Right thalamic SPC 1.020 0.469 Left thalamic SPC −0.575 0.700

Sex −0.064 0.744 Sex −0.133 0.523

Age −0.061 0.255 Age −0.076 0.159

Site 0.275 0.147 Site 0.296 0.123

Comorbidity 0.177 0.392 Comorbidity 0.174 0.402

Zero-hurdle model B p-value Zero-hurdle model B p-value

Right thalamic SPC 3.161 0.042* Left thalamic SPC 2.791 0.085

Sex 0.161 0.461 Sex 0.174 0.434

Age 0.021 0.728 Age 0.021 0.726

Site 0.394 0.064 Site 0.356 0.098

Comorbidity 0.314 0.195 Comorbidity 0.300 0.213

SPC, Symmetrized Percent Change; OCS, obsessive-compulsive symptoms. *p < 0.05.

There was no significant relationship between
thalamic volume and OCD-PRS in the mixed model
(Supplementary Table 6).

DISCUSSION

Changes in right thalamic volume after 3 years were related to
the presence of OCS at follow-up in children from a community
sample. This result was only significant in the zero-hurdle part of
the model. No relationship was observed between changes in left
thalamic volume andOCS or between both right and left thalamic
volume change and OCD-PRS. The Thalamic SPC measures
change, ranging from negative to positive values (Figure 2). A
thalamic volume decrease (thalamic volume in the follow-up
is smaller than baseline), will yield a negative SPC. On the
other hand, participants with an increase in thalamic volume
in the period will have a positive SPC. Our results indicate that
participants with at least one OCS had a slower decrease in right
thalamic volume.

Previous studies, as the recent worldwide mega and meta-
analysis from the ENIGMA-OCD Working Group and one
meta-analysis, found increased thalamic volume in individuals
with OCD (18, 20). It is possible that a slower decrease in
right thalamic volume found in our sample could lead to
increased average thalamic volume found in previous studies.
It can be hypothesized that individuals from the community
with subclinical OCS might have a slower decrease in thalamic
volume suggesting that thalamic trajectory alterations might be
found even without the full syndrome. However, five meta-
analyses found no differences in thalamic volume comparing
individuals with OCD and HC (13–17). Our analysis of thalamic
volume was limited by the fact that self-reported OCS was only
assessed on follow-up. The analysis including other informants
by using the OC factor score did not support an altered
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FIGURE 2 | Boxplot of Right Thalamic SPC in participants with and without

obsessive-compulsive symptoms at follow-up. SPC, Symmetrized Percent

Change.

thalamic volume related to symptoms in our sample. Of note,
there are important differences in the samples from the prior
studies included in previous meta-analyses and the sample of
participants included in this study. The sample in the present
study is community based and the prevalence of OCD was very
low.Moreover, it is not known at this time howmany participants
will develop full-blown OCD later in young adulthood. Despite
not fulfilling the diagnostic criteria and having relatively low
levels of symptom severity, subclinical OCS have been associated
with psychiatric comorbidities and impaired functioning in
the literature (5, 41, 42). A recent neuropsychological study
of children and adolescents with OCS that were first-degree
relatives of an individual with OCD identified impairments
in spatial working memory and a trend in significance for
impairment in motor and processing speed (43). Here we found
that the presence of OCS may be directly associated with right
thalamic volumes change, and the thalamus is a key element
of the cortico-striato-thalamo-cortical (CSTC) circuits that are
implicated in the pathophysiology of OCD (44). The thalamus
selectively filters information for further processing in other areas
of the brain, functioning as a relay station and a gatekeeper
(45). It has a role in the processing of information related to
many cognitive processes, including motor processes, cognition,
emotion, learning, pain, attention, and consciousness (45).

The polygenic risk score (PRS) has been related to the genetic
risk for developing OCD. We expected to find an association
between OCS and OCD-PRS and between thalamic volume
change and OCD-PRS, but no relationship was detected. One
hypothesis for that finding is the small sample size of OCD
GWAS studies. Therefore, future summary statistics may be
more informative. GWAS for chronic clinical conditions like
coronary artery disease and type 2 diabetes include >100,000
of individuals (46, 47). Even for some psychiatric disorders
like Alzheimer’s disease and major depressive disorder there are

around 100,000 individuals in the GWAS (48, 49). For OCD,
there are only two GWAS studies published totalizing 2,688 cases
(35–37). The small sample size of GWAS for OCD underpower
the ability of OCD-PRS to explain the OCD phenotype.
Moreover, OCD GWAS are based mostly on European ancestry
samples and our sample is ethnically diverse as the Brazilian
population has a multi-ethnic and admixed background. It has
been previously shown that the performance of PRS in non-
European populations is generally poorer than the performance
in European ancestry samples, particularly for African ancestry
samples (50). Despite considering ancestry by using 10 principal
components, we must consider that the training and target
samples used to build PRS are from different populations, and,
hence, this could still have had an important impact (51).

Results should be interpreted in light of several limitations.
Only participants with complete assessment in baseline and
follow-up were included, as we were interested in the rate of
change of thalamic volume. This decreased the available sample
for this study. Another limitation was the small number of
participants that met DSM-IV criteria for OCD in the sample.
Differently from previous OCD studies, the phenotype here is
based only on the presence of OCS. Small changes in symptom
dimensions are likely to be related to small effect sizes, hence,
there is a clear need to increase the sample size to achieve
adequate statistical power.

This is the first study that assessed longitudinal changes during

thalamic development in youth with OCS. In this study, thalamic

alterations reported in OCD patients were found in youth with

OCS. It can be hypothesized that thalamic alterations may be a

trait related to the OCS phenotype and independent of disease
state, supporting the idea of an endophenotype. However, the
hypothesis that individuals with genetic risk for OCD would
also show thalamic alterations was not confirmed. Thus, thalamic

alterations may not be related to increased genetic risk for OCD.

However, alterations in thalamic development may be a marker
of OCS even before the full syndrome develops.
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