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Spatial–temporal dynamics 
and driving factor analysis of urban 
ecological land in Zhuhai city, China
Yunfeng Hu1,2* & Yunzhi Zhang1,2*

Ecological land is a type of land that has considerable ecological value. Understanding the evolution 
of urban ecological land in Zhuhai, China, holds great significance for revealing the evolution of 
ecological land in the Dawan District of southern China. We explored the temporal and spatial 
variation in urban ecological land in Zhuhai using the transformation matrix, equivalent ecological 
land, landscape index and ecological land center of gravity migration methods. Multivariate logistic 
regression was used to analyze the mechanism of ecological land change, and a transition probability 
map of the ecological land in the study area was drawn. The results showed the following. (1) From 
1991 to 2018, the area of ecological land in Zhuhai city continuously decreased, with a reduction in 
area of 274.8 km2, or 32.3%. Sharp changes mainly occurred from 1991 to 2000. (2) The ecological 
land in the study area has gradually become fragmented, and the degree of landscape heterogeneity 
has increased. Affected by the expansion of the outer edge of the city to the southwest and the 
construction of ecological land within the city, the center of gravity of the ecological land has shifted 
to the northeast by 1346 m. (3) The elevation, slope, distance from built-up land and growth rate of 
built-up land are important factors influencing the transformation of ecological land. In the future, 
rivers and shallow coastal waters, tidal flats, and grasslands in the study area have the highest 
probability of transformation. The Jinwan District and Xiangzhou District will face severe ecological 
land protection pressure. The method of spatial–temporal analysis of urban ecological land developed 
in this paper can be applied in similar studies on other cities, and the results obtained for Zhuhai, 
China, have reference value for future urban planning and ecological protection work.

Land is one of the most important resources on Earth1. Over the past 30 years, China has experienced some 
of the most dramatic and significant changes in land use worldwide. Dramatic land changes have been most 
prominent in cities and the areas surrounding cities2,3 in eastern China (e.g., in the Yangtze River Delta and 
Bohai Bay regions) and southern China (e.g., in the Dawan District)4. Urbanization has completely changed the 
regional land types, types of ecological services, service quality and service level, resulting in habitat degrada-
tion, fragmentation, loss of biodiversity and reduced ecosystem service functions5. On a long-term scale, the 
quantitative and high-precision exploration of the spatial–temporal changes in urban ecological land can clarify 
the driving mechanism of urban ecological land change, which is essential for sustainable urban development.

Ecological land refers to land resources that provide natural ecosystem services and maintain regional ecologi-
cal security6; it is a land type with ecological functions, and ecological land change is a component of research 
on land use/cover change7. Urban ecology is defined as the organic combination of different types of landscapes, 
and ecological land is the basis of urban ecological research8. The coordinated optimization of the quantity, 
structure and spatial distribution of land use is key to the rational use of ecological land and the achievement 
of landscape ecological security9. Scholars have studied urban land at different scales and from different per-
spectives, such as the distribution of urban land use10, urban vegetation coverage11, urban blue-green space12, 
and urban impervious surfaces13,14. Regarding the impacts of urban land use/cover change on the surrounding 
environment, scholars have studied the impacts of urban vegetation and water bodies on urban heat islands15,16, 
the impacts of urban blue-green space on the health and welfare of urban residents17, and the impacts of urban 
land change on biodiversity18. Urban ecological land has important functions in maintaining the stability of 
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ecosystems and providing ecosystem services, and such functions play a vital role in coordinating development 
and the environment.

The rapid development of remote sensing (RS) Earth observation technology provides abundant, freely avail-
able, long-term, medium- and high-resolution satellite imagery resources for urban ecological research. These 
images can be used to draw long time series and high-precision urban land spatial distribution maps19,20. Based 
on spatial distribution maps of urban land and various spatial analysis models, the spatial patterns and driv-
ing forces of urban land changes can be explored, and future development patterns can be predicted21. Urban 
ecological land changes are affected by multiple factors, such as the regional environment, socioeconomics and 
human factors22. Aspects of the regional environment, such as the slope, elevation, soil suitability, accessibility by 
road and location of urban centers, and socioeconomic factors, such as population, industry, and gross domestic 
product (GDP), are considered the main drivers23. Model analysis methods, such as correlation analysis, stepwise 
regression analysis, principal component analysis, random forest analysis, and logistic regression analysis, are 
widely used to explain the driving mechanisms of land use/cover change and to identify the key drivers of such 
change24–26. By monitoring ecological land changes and understanding their impact on the quality of ecological 
services, a comprehensive evaluation of land changes can be achieved from the dual perspective of quantity and 
quality. Costanza et al.27 proposed the evaluation method and value coefficient of global ecological service value 
and were the first to realize a quantitative calculation of the value of ecological services. Xie et al.28 improved their 
method based on the characteristics of China’s ecological environment and proposed a more practical ecosys-
tem service value per unit area of land. This method is applicable to different ecosystems in China and has been 
widely used by Chinese scholars29,30. The land unit is a mappable landscape unit, and combining changes in the 
landscape pattern with the quality of ecological services makes it possible to effectively evaluate the impact of land 
changes on ecological processes and functions31. By calculating and analyzing a series of landscape indexes, we 
can quantitatively evaluate the landscape structure, pattern of ecological land and ecological security of an area. 
To evaluate ecological processes at the landscape level and to detect and quantify temporal and spatial changes 
in landscape composition and configuration, researchers have developed a series of indicators, such as patch 
area, shape, aggregation and diversity, for quantitative analysis32,33.

Although the above indicators, models, and methods have been widely used by researchers, to analyze the 
causes, models, processes and consequences of ecological land change, each method alone is not sufficient, 
and the applicability of these methods must also be further determined. A single indicator or a small number 
of indicators cannot provide a complete understanding of a city in terms of quantity, composition, and spatial 
links34,35. Therefore, researchers must integrate existing indicators and methods to gain an overall understanding 
of urban ecological land change and the future direction of a city.

Since the 1980s, Zhuhai, a typical area in China, has experienced rapid urbanization and dramatic land use 
changes36. Under the influence of the dual pressures of population increase and economic growth, the dynamic 
changes in and driving factors of suitable ecological land needed to balance Zhuhai’s economic development and 
ecological protection must be analyzed. Exploring the evolutionary process of urban ecological land in Zhuhai 
holds great significance for revealing the evolutionary law of ecological land in typical urbanization areas in 
southern China (e.g., the Dawan District). Research in this direction can help determine the ecological value of 
land, optimize urban ecological land planning, and provide valuable scientific evidence for future urban land 
planning and policy formulation. To that end, this study selects Zhuhai, China, as a research area. Based on 
satellite RS image resources from 1991 to 2018, we explore the spatial pattern and evolution of urban ecologi-
cal land in Zhuhai using RS mapping, geographic information system (GIS) spatial analysis, landscape index 
analysis, center of gravity migration analysis, and logistic regression analysis. This study attempts to answer the 
following questions:

1.	 How has the ecological land in Zhuhai changed since 1991?
2.	 What are the main factors affecting the change in ecological land in Zhuhai city? What role do these factors play?
3.	 Where should city policymakers focus in the future, and what kind of ecological land conservation should 

be performed?

It is worth mentioning that all maps (Figs. 2, 5, 6 and 7) were drafted by the authors using ArcGIS V10.7 
(https​://www.esri.com) on a personal computer, and all charts (Figs. 1, 3 and 4) were created using MS Excel 
2013 (https​://www.micro​soft.com).

Results
Land use mapping and accuracy assessment.  According to the land use planning map of Zhuhai city, 
the characteristics of the city, the status of human activities and land use, and the types of natural ecosystems, 
we identified and categorized land use into 10 types: woodland, grassland, rainfed cropland, paddy fields, aqua-
culture areas, reservoirs and pit ponds, tidal flats, rivers and shallow water, built-up land and unutilized land 
(Supplemental Materials S1: Land use types and descriptions). The ecological land types include woodland, 
grassland, reservoirs and pit ponds, tidal flats, and rivers and shallow water. Rainfed cropland, paddy fields and 
aquaculture areas were not included as ecological land types because they are agricultural land mainly used for 
agricultural production. These land use types are greatly disturbed by humans, their ecological functions are 
very fragile, and they are affected by economic interests and have low ecological value. Unutilized land provides 
few ecological benefits and may be converted into built-up land in the short term; thus, its ecological benefits 
are unsustainable.

https://www.esri.com
https://www.microsoft.com
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After the preprocessing and splicing of multiperiod satellite RS images, we completed object-based multi-
scale automatic segmentation and land use classification of the images using eCognition Developer software. 
Specifically, the Estimation of Scale Parameters (ESP) tool was first used to obtain the local variance parameter, 
which reflects the internal homogeneity of the segmentation object; then, the rate of change (ROC) of the local 
variance (LV) parameter was calculated37,38. When the ROC reaches its peak, the corresponding segmentation 
scale can be used as the optimal segmentation scale37. At the optimal segmentation scale, classification is based 
on the object unit using the nearest neighbor method of eCognition Developer. The nearest neighbor method is 
a commonly used supervised classification method that is simple and easy to understand, and it is suitable for 
multiclassification problems39.

Finally, based on the preliminary results data of the four stages automatically classified by eCognition Devel-
oper, obvious errors and omissions in the data of the preliminary results were revised and improved through 
manual visual interpretation. The final revised result data were used for the subsequent analysis of the land 
pattern and its changes.

This study first drew land use maps for four years: 1991, 2000, 2010, and 2018. We extracted no less than 200 
regions of interest (ROIs) in each study year and compared high-resolution Google Earth images to perform 
a land mapping accuracy assessment. To ensure that the accuracy of each land type was reliably estimated, we 
confirmed that each land type had at least 10 ROIs when laying out the ROI area. Table 1 shows the land use 
classification accuracy for the 1991–2018 period. The overall accuracy of the land mapping for 1991, 2000, 2010, 
and 2018 was 93.4%, 94.1%, 91.1%, and 94.5%, respectively, and the Kappa coefficients were 0.925, 0.933, 0.890, 
and 0.938, respectively, meeting the research requirements.

Spatial patterns and dynamics of ecological land.  From 1991 to 2018, the ecological land in Zhuhai 
was dominated by woodland and rivers and shallow water, and the overall area of ecological land continuously 
decreased (Fig. 1). In 1991, the total area of ecological land was 849.4 km2, accounting for 53.7% of Zhuhai’s 
urban area. In 2018, the area was reduced to 574.6 km2, accounting for only 36.3% of Zhuhai’s urban area.

In 28 years, the amount of ecological land decreased by 32.3%, of which woodland decreased by 24.2% (129.6 
km2), tidal flats decreased by 67.2% (19.3 km2), and rivers and shallow water decreased by as much as 51.8% 
(132.3 km2). The reduction in rivers and shallow water represented the bulk of the reduction in ecological land 
area (48.1%). In contrast, the area of reservoirs and pit ponds grew slightly while maintaining a steady state, 
increasing by 1.1 km2. Compared with 1991, the grassland area grew slightly, increasing by 5.3 km2, mainly due 
to the construction of golf courses and parks. Clearly, there is an order of magnitude difference between the 
increase and decrease in ecological land.

From the temporal perspective (Fig. 2), the change in ecological land mainly occurred in the 1991–2000 
period. During this period, the reduction in ecological land was the largest (212.3 km2), mainly distributed in 
the contiguous area of woodland and built-up land in the central and western areas of the Doumen District and 
in the coastal areas of the Jinwan District and Xiangzhou District. At the same time, there was a small increase 
in ecological land, mainly due to the restoration and regulation of tidal flats and reservoirs and pit ponds.

Table 1.   Classification accuracy of land use types in Zhuhai city.

Year 1991 2000 2010 2018

Overall accuracy (%) 93.40 94.07 91.10 94.53

Kappa coefficient (KA) 0.9250 0.9330 0.8995 0.9378

Figure 1.   The net change in ecological land in Zhuhai city, 1991–2018. The area of woodland is the largest, 
followed by the area of rivers and shallow water. The proportions of woodland and grassland in the total area 
of ecological land increased by 7.6% and 1.3%, respectively. Rivers and shallow water and tidal flats showed 
downward trends, decreasing by 8.7% and 1.8%, respectively. Reservoirs and pit ponds increased slightly and 
showed dynamic changes.
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Since 2000, ecological environmental protection and construction work have gradually been taken more 
seriously, and the State Council of China promulgated the "National Ecological Environmental Protection Pro-
gram". Local governments at all levels have gradually strengthened their awareness of ecological environmental 
protection. The occupation of ecological land by urban development has rapidly decreased, while the area of new 

Figure 2.   Ecological land gains and losses in Zhuhai city, 1991–2018. (a,c,e) show an increase in ecological 
land; (b,d,f) show a decrease in ecological land. The decrease in ecological land is obviously higher than the 
increase, and there is an increase in the degree of patch fragmentation. The reduced patches are mostly marginal 
woodland and river and shallow water areas. The boundaries of the map come from the Zhuhai Natural 
Resources Bureau. The drawing of the map was completed with the support of ArcGIS 10.7 software.
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ecological land formed by ecological protection and ecological restoration has gradually and steadily increased. 
From 2000 to 2010, the ecological land in Zhuhai decreased by 130.1 km2 and increased by 53.6 km2, with a net 
reduction of 76.5 km2. From 2010 to 2018, the decrease and increase in ecological land were similar, and the net 
reduction in area was only 18.6 km2; thus, the spatial distribution and quantity of ecological land in Zhuhai city 
was approximately stable (Fig. 3).

In the 28-year monitoring period of this paper, the reduction in ecological land in the first 10 years 
(1991–2000) was 0.99 times that in the subsequent 18 years (2000–2018). The total amount of ecological land 
added in the subsequent 18 years (2000–2018) was 3.5 times that of the first 10 years (1991–2000).

Landscape characteristics.  At the landscape level (Table 2), the edge density (ED) of ecological land in 
the study area is significantly lower than that of nonecological land. The ED exhibited a pattern of first increas-
ing, then decreasing, and subsequently slightly increasing (with values of 33.6 in 1991, 37.7 in 2000, 31.8 in 2010, 
and 34.7 in 2018). The patch density (PD), landscape shape index (LSI), and largest patch index (LPI) had the 
same trend as that of the ED. These changes indicate that over time, the landscape of ecological land began to 
experience an increase in fragmentation and a decrease in regularity and continuity; then, the landscape was 
reintegrated into a more regular and continuous pattern.

In addition, from 1991 to 2018, the contagion index (CONTAG) of all land in Zhuhai city fluctuated slightly 
at approximately 55%, and the degree of landscape pattern aggregation did not change much. However, the 
CONTAG of ecological land was approximately 70%, which was significantly higher than that of nonecological 
land; this result indicates that the CONTAG and connectivity of ecological land were higher than those of non-
ecological land. Shannon’s diversity index (SHDI) and Shannon’s evenness index (SHEI) did not change much 
in the time series, indicating that the landscape diversity of Zhuhai city has basically been stable over the past 
28 years. However, compared with 1991, the SHDI and SHEI decreased slightly, indicating that the ecological 
landscape diversity and uniformity decreased in the study area, while the landscape heterogeneity increased.

At the class level (Table 3), the PD and the area-weighted mean contiguity index (CONTIG_AM) of woodland 
remained basically unchanged, the LSI increased from 19.99 to 21.7, and the LPI decreased from 9.6 to 3.9. These 

Figure 3.   Losses and gains in ecological land area in Zhuhai city, 1991–2018. Green indicates an increase 
in ecological land, and red indicates a decrease in ecological land. From 1991 to 2000, the net reduction in 
ecological land was 177.9 km2. From 2000 to 2010, the net reduction in ecological land was 76.5 km2. From 2010 
to 2018, the net reduction in ecological land was 18.6 km2.

Table 2.   Changes in landscape-level indexes in Zhuhai city, 1991–2018. At the landscape level, ED is the edge 
density, PD is the patch density, LSI is the landscape shape index, LPI is the largest patch index, CONTAG is 
the contagion index, SHDI is Shannon’s diversity index, and SHEI is Shannon’s evenness index.

Class Year ED (m/hm2) PD (pcs/100 hm2) LSI (%) LPI (%) CONTAG (%) SHDI SHEI

Ecological land

1991 7.0 0.58 29.2 17.8 70.0 0.90 0.56

2000 7.1 1.0 34.9 10.7 69.5 0.92 0.57

2010 4.9 0.74 32.5 9.9 71.3 0.88 0.54

2018 5.2 0.89 32.8 10.8 71.7 0.86 0.53

Nonecological land

1991 33.7 1.2 44.4 19.3 50.8 1.34 0.83

2000 31.1 1.1 46.7 10.0 55.0 1.22 0.76

2010 23.2 0.63 39.3 11.2 52.1 1.35 0.84

2018 27.5 0.68 42.6 7.0 53.1 1.29 0.80

All land

1991 33.6 0.86 37.5 9.6 55.2 1.79 0.78

2000 37.7 1.1 41.5 5.8 55.1 1.77 0.77

2010 31.8 0.67 35.6 7.0 54.4 1.83 0.80

2018 34.7 0.76 38.6 4.5 54.9 1.79 0.78
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changes were caused by the following processes: the expansion of built-up land, the preferential occupation of 
marginal forestland by built-up land, the reduction in the dominance of the landscape type, and the increas-
ing complexity of the original geometry. However, woodland mainly exists in a continuous form, and these 
encroachment behaviors have little effect on the number, spatial connectivity or proximity of woodland patches.

The PD and LSI of grassland showed downward trends, while the LPI and CONTIG_AM showed upward 
trends. This result is closely related to the increase in grassland in the study area. The increased grassland 
caused the number of patches to increase slightly, improving the superiority of the landscape. The construction 
of artificial grassland is more regular in the shape of grass patches, and the connectivity is enhanced between 
landscape units.

In addition, the PD, LSI and LPI of tidal flats showed downward trends, indicating that the development and 
utilization of tidal flat reclamation were strengthened, the number decreased, and the shape tended to be regular. 
The landscape characteristics of reservoirs and pit ponds and rivers and shallow water were basically the same: the 
LSI showed an upward trend, indicating that the patches were seriously disturbed by human activities, the large 
patches experienced continuous fragmentation, and the landscape type shapes were complicated. In contrast, the 
LPI showed a downward trend, indicating that activities such as sea filling led to a continuous decrease in sea area.

Ecological quality evaluation.  Ecological quality is used to characterize the conditions of the ecosystem; 
the ecosystem is disturbed by human activities and land use change, and the ability to provide services is also 
affected40. The value of ecosystem services is an important comprehensive indicator reflecting ecological qual-
ity, and the ecological service value of ecological land is higher than that of nonecological land41. Based on the 
ecosystem service value coefficient proposed by Xie et al.28, we normalized the coefficient value to 0–1 and used 
the equivalent area and the average equivalent area, which were used to evaluate the ecological service quality 
of ecological land.

The transformation matrix of ecological land and nonecological land shows the following (Table 4): the prob-
ability of ecological land being transformed into nonecological land in the periods 1991–2000, 2000–2010 and 
2010–2018 was 25.0%, 19.4% and 14.3%, respectively. The contributions of ecological land to nonecological land 
were 23.3%, 13.2% and 8.4%, respectively. The transformation of ecological land to nonecological land showed 
a weakening trend after 2000, and the ecological quality showed improvement.

From 1991 to 2018, the equivalent area of ecological land continued to decrease, but the downward trend 
gradually stabilized after 2000 (Fig. 4). In 1991, the equivalent area of regional ecological land was 849.4 km2, 
and in 2000, it was 673.2 km2, indicating a significant decrease in the equivalent area, with a reduction of 20.7%. 
In 2010, the equivalent area of ecological land further dropped to 600.2 km2, a reduction of 10.8%, although the 
decrease was significantly smaller than that in the previous period. In 2018, the equivalent area was 574.6 km2, 
representing a reduction of only 4.3%.

As shown in Fig. 4, the average equivalent area of ecological land showed a continuous upward trend. Specifi-
cally, the average equivalent area was 1.14 in 1991, 1.22 in 2000, 1.24 in 2010, and 1.25 in 2018. This result shows 
that although the ecological land area decreased, the quality of the ecological land gradually improved. In reality, 

Table 3.   Changes in class-level indexes in Zhuhai city, 1991–2018. At the class level, PD is the patch density, 
LSI is the landscape shape index, LPI is the largest patch index, and CONTIG_AM is the area-weighted mean 
contiguity index.

Land use type

PD (pcs/100 hm2) LSI (%) LPI (%) CONTIG_AM

1991 year 2018 year 1991 year 2018 year 1991 year 2018 year 1991 year 2018 year

Woodland 0.08 0.08 20.0 21.7 9.6 3.9 0.97 0.96

Grassland 0.02 0.01 11.4 7.2 0.04 0.31 0.84 0.93

Reservoirs and pit ponds 0.07 0.07 14.1 16.3 0.20 0.15 0.90 0.89

Tidal flats 0.04 0.01 14.3 8.0 0.82 0.12 0.91 0.91

Rivers and shallow water 0.11 0.15 22.8 26.4 6.9 1.4 0.95 0.92

Table 4.   Probability of ecological land being transformed into nonecological land in Zhuhai city, 1991–2018. 
B is the contribution of a land type to another land type, and C is the probability of a transition from one land 
type to another.

Type

1991–2000 2000–2010 2010–2018

Ecological land Nonecological land Ecological land Nonecological land Ecological land Nonecological land

Ecological land

B (%) 94.9 23.3 91.0 13.2 88.5 8.4

C (%) 75.0 25.0 80.6 19.4 85.7 14.3

Nonecological land

B (%) 5.1 76.7 9.0 86.8 11.5 91.6

C (%) 4.7 95.3 5.9 94.1 6.7 93.3
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this pattern was manifested as follows: the area of grasslands and reservoirs and pit ponds gradually increased, 
the degree of landscape fragmentation weakened, and the landscape dominance became more obvious. In addi-
tion, these land types have relatively high ecosystem service values among all land types.

Changes in the center of gravity of ecological land.  From 1991 to 2018, the center of gravity of eco-
logical land shifted to the northeast, and the center of gravity of built-up land shifted to the southwest (Fig. 5).

From 1991 to 2000, the center of gravity of ecological land moved 404 m to the east and 409 m to the north, 
and the overall movement was 578 m to the northeast. From 2000 to 2010, the center of gravity of ecological land 
moved 24 m to the east and 355 m to the north, and the overall movement trend was northward. From 2010 to 
2018, the center of gravity of ecological land moved 273 m to the east and 236 m to the north, and the overall 
movement was 473 m to the northeast. In these three periods, the center of gravity of built-up land moved to the 
southwest by 2871 m, 3983 m and 424 m. The urban expansion and internal construction mainly experienced a 
rapid and then slow evolution from the northeast to the southwest.

From the spatial distribution of all ecological land types, the center of gravity of woodland moved to the 
southeast (0.68 km) from 1991 to 2018. This movement occurred because human construction activities such 
as deforestation, urban expansion, and infrastructure construction were prominent in the western and north-
ern parts of Zhuhai during the 1991–2000 period. The movement of the center of gravity of grassland to the 
east and south was highly related to the construction of golf courses, such as the Zhuxiandong Golf Club in the 
Xiangzhou District, the Dananshan Cuihu Golf Course in Jinding Town, a golf club in the Jinwan District, and 
Zhuhai Stadium in the Xiangzhou District. The center of gravity of reservoirs and pit ponds moved southward 
(2.9 km); the center of gravity of tidal flats moved eastward (5.8 km); and the center of gravity of rivers and 
shallow water moved northward (3.5 km). These changes were closely related to the reclamation engineering 
carried out by Zhuhai city in recent years.

Modeling the ecological land change process.  Changes in urban ecological land are mainly due to 
the expansion of the outer edge of cities and the oppression of urban internal land development. Therefore, 
we selected four indicators of natural geography and regional development that might reflect changes in urban 
expansion and urban construction: elevation, slope, distance from built-up land, and growth rate of built-up 
land.

With the support of SPSS software, the equation of the transformation probability of ecological land to non-
ecological land in Zhuhai can be obtained through the binary logistic regression analysis module. Specifically, this 
equation is expressed as follows (see Supplemental Materials S2: Parameter of the driving factors for modeling):

where A is the slope; B is the elevation; C is the distance from built-up land; and D and E are the built-up land 
growth rates of categories 4 and 5, respectively. The squared maximum likelihood of the numerical values (− 2 
log-likelihood) of the model was 18,155.4, and the value of the χ2(5) comprehensive test statistic was 7871.2 
(p < 0.001), which was significantly higher than the critical test value of 20.5. This result shows that the model 
constructed based on the above training data has superior precision and can be used for future prediction 
simulations.

To eliminate the influence of the distribution deviation of the training samples, we performed model accuracy 
verification. We randomly selected 10,000 ecological land sample points from the land use map for 1991 and 
observed their changes in 2018; we then tested the simulation accuracy of the model. The results show (Table 5) 
that there are 7853 sample points with the same simulation results as the actual observations. Thus, the model 
simulation accuracy is 78.6%, indicating that the model has high accuracy and robustness.

(1)P = 1−
1

1+e−(0.069×A+ 0.033×B+ 0.473×C− 1.079×D− 0.963×E− 0.853)

Figure 4.   Dynamic changes in ecological land quality in Zhuhai city, 1991–2018. From 1991 to 2018, the 
equivalent area of ecological land in Zhuhai city showed a downward trend, with a decrease of 274.8 km2, i.e., 
32.3%. The average equivalent area index showed an upward trend, with an increase of 0.11, i.e., 9.3%.
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Transformation probability of ecological land.  Based on the above model, elevation, slope, distance 
from built-up land (based on 2018 data) and growth rate of built-up land (based on 2010–2018 change data) are 
used as input variables to predict the future transformation probability of ecological land to nonecological land 
in Zhuhai city (Fig. 6).

The simulation results show that the average transformation probability of ecological land in Zhuhai is 0.176. 
The transformation probabilities of tidal flats, reservoirs and pit ponds, rivers and shallow water and grassland 
(0.342, 0.354, 0.380, and 0.257, respectively) are higher than the average transformation probability of ecological 
land in the study area, while the transformation probability of woodland is 0.097, which is significantly lower than 
the average transformation probability of regional ecological land. The reasons for these patterns are as follows: 
tidal flats, reservoirs and pit ponds and grassland are distributed in flat areas with low elevations, meaning that it 
is easier to prioritize their development and utilization. In addition, because Zhuhai is a coastal city, urban build-
ers have a strong impulse to reclaim land, which is likely to result in the transformation of ecological land in the 
form of tidal flats and rivers and shallow water to built-up land. On the other hand, woodland in the study area 
is mostly in areas with relatively steep slopes and high elevations, mainly including Huangyang Mountain, the 

Figure 5.   Changes in the center of gravity of ecological land and built-up land in Zhuhai city, 1991–2018. From 
1991 to 2018, the center of gravity of ecological land in Zhuhai moved to the northeast by 1346 m. The center 
of gravity of built-up land moved in the opposite direction, moving 7254 m to the southwest. The boundaries 
of the map come from the Zhuhai Natural Resources Bureau, and the base map in the main map is the China 
Online Community Basemap in ArcGIS. The drawing of this map was completed with the support of ArcGIS 
10.7 software.

Table 5.   Logistic model estimation accuracy: a total of 10,000 sample points with an overall accuracy of 
78.6%.

Observation value

Predictive value

Unchanged Changed Accuracy

Ecological land

Unchanged 5230 1184 81.5%

Changed 963 2623 73.1%

Overall accuracy 78.6%
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Fenghuang Mountain Nature Reserve, Jianfeng Mountain and Lanlang Mountain Forest Park. These woodlands 
are less likely to be further developed and utilized.

In terms of spatial distribution, ecological land in the Jinwan District has the highest transformation prob-
ability, followed by that in the Xiangzhou District. The ecological land in the Doumen District, an important 
agricultural product protection and ecological agricultural development zone in Zhuhai, is mostly unsuitable for 
woodland development. Therefore, the ecological land in this district has the lowest transformation probability, 
and there is less pressure affecting ecological land protection. The Jinwan District and Xiangzhou District are 
zones in Zhuhai that gather high-end industries and business services, and there is a strong demand for land 
for regional development. In addition, these two districts are coastal and riverside areas; thus, city planners and 
builders have a strong impulse to expand urban built-up land by means of sea reclamation and river reconstruc-
tion. In these two districts, the pressure on regional ecological land protection is enormous, and the need to apply 
new technologies and methods to save land and increase ecological land is the strongest.

Discussion
Quick and accurate land use mapping is the basis of ecological land change assessment.  Many 
RS interpretation algorithms have been developed to extract land cover and land use types for urban land 
mapping and include deep learning42, neural networks20, support vector machines (SVMs)43, and decision 
trees44. eCognition Developer software and the Google Earth Engine (GEE) also facilitate automatic land use 
classification45,46, but automatic classification still has certain limitations. In particular, when analyzing dynamic 
changes, errors in land classification may spread to dynamic quantification47. In this study, manual visual means 
were used to correct the results of the automatic classification, which ensured the accuracy of the mapping and 
made the overall accuracy higher than 90%. However, the use of such means may lead to high costs in large-
scale regional studies. Urban ecological land types can involve a more sophisticated classification; for example, 
different types of forestland and water, such as shrubs, orchards, rivers and beaches, may have great differences 

Figure 6.   The distribution of the transformation probability of ecological land in Zhuhai city in the future. 
In Zhuhai, the average transformation probability of ecological land is 0.176; that of forestland is the lowest, 
at 0.097; that of grassland is 0.257; that of tidal flats is 0.342; that of reservoirs and pit ponds is 0.354; and 
that of rivers and shallow water is 0.380. The administrative boundary in Fig. 6 comes from the Zhuhai 
Municipal Bureau of Natural Resources. The goal of the map is to illustrate the probability of the ecological 
land transformation process. The natural breakpoints method was used to divide the transformation 
probability of ecological land into 5 levels: a transformation probability less than or equal to 0.1 is defined as 
low, a transformation probability greater than 0.1 and less than or equal to 0.3 is defined as relatively low, a 
transformation probability greater than 0.3 and less than or equal to 0.45 is defined as medium, a transition 
probability greater than 0.45 and less than or equal to 0.65 is defined as relatively high, and a transition 
probability greater than 0.65 is defined as high. The gray areas in the figure indicate nonecological land.
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in terms of their ecological value. In future research, we can further explore the full use of data such as high-
resolution RS images and urban function hotspot data to improve the fine-grained division of land use types and 
their ecological functions.

There are great uncertainties in research on the driving mechanism of land use change.  Mul-
tivariate logistic regression has been widely used in land use change studies48, for example, to extract the driv-
ing factors of and to simulate the future scenarios of regional land use change49. However, a logistic regression 
model can explain the main influencing factors only in a specific period, and it is difficult to accurately simulate 
and predict long-term and dynamic change50. The optimization and improvement of models and algorithms 
must be further studied, and new algorithms, such as generalized cross decomposition51, generalized outer 
approximation52 and selective maintenance scheduling with multiple maintenance actions53, can be introduced 
to solve complex nonlinear problems and improve the applicability and accuracy of simulation prediction. In 
the current study, we considered only four explanatory variables of driving factors, and some important natural 
and social factors, such as precipitation, meteorological disasters, geological structures, geological disasters, and 
functional types of urban blocks, may have been omitted. We sincerely hope that more scholars will make break-
throughs and progress in regard to these aspects in the future.

Managerial implications for the government.  For a long time, Chinese local governments and people 
have not fully understood the role and value of urban ecological land54. Local governments pay more attention to 
economic development than to the maintenance of a good urban ecology, which readily leads to ecological land 
being occupied in the process of land use planning and management55. Our study shows that from 1991 to 2018, 
the ecological land area of Zhuhai continuously decreased and that landscape fragmentation and heterogeneity 
increased. The rapid change in land mainly occurred from 1991 to 2000. In the future, tidal flats and rivers and 
shallow water have the highest probability of transformation in the study area. The Jinwan District and Xiang-
zhou District face severe pressure in terms of ecological land protection. The results regarding historical changes 
and future trends pose serious challenges to rational urban land planning and sustainable urban construction for 
Zhuhai authorities, and they also provide the government with key ecological land types and key spatial places 
for protection efforts in urban ecological land.

Conclusions
With the support of RS and GIS technology, we applied the transformation matrix method, equivalent ecological 
land method, landscape index method, center of gravity migration method, logistic regression modeling and 
simulation prediction method to conduct multidimensional and comprehensive research on the changes in eco-
logical land in Zhuhai, China. We constructed a complete technical route for urban ecological land assessment. 
This technical route comprehensively applied Earth observation and cloud storage, cloud computing technology, 
satellite image automatic classification technology, and GIS spatial analysis technology, as well as the ecological 
landscape index method, logistic model construction method, and land transformation probability simulation 
prediction method, and it realized a comprehensive and systematic analysis of ecological land from the histori-
cal evolution of the spatial–temporal trajectory to the driving mechanism of change to future prediction. This 
technical method can be applied in similar research on other regions and cities around the world, and the results 
of this paper can provide a scientific basis for urban planning and ecological protection for the Zhuhai govern-
ment and even other large municipalities in southern China.

Materials and methods
Study area.  Zhuhai city is located at 21° 48′–22° 27′ N and 113° 03′–114°19′ E (Fig. 7). Zhuhai faces Hong 
Kong across the sea to the east, Macao to the south, Jiangmen city to the west and Zhongshan city to the north. 
Zhuhai is an important gateway connecting Guangdong, Hong Kong and Macao. It is the core city of the Dawan 
District in southern China and is located on the western bank of the Pearl River Estuary. The total population 
of Zhuhai city is 1.57 million, and it has jurisdiction over three administrative districts: Xiangzhou, Doumen 
and Jinwan. The landforms are diverse, mainly consisting of plains and low hills with terraces and tidal flats. The 
sea area of Zhuhai city is 5941.8 km2, the coastline is 224.5 km long, and there are 217 large and small islands. 
The city has the largest sea area and the largest number of islands among the cities of the Pearl River Delta. The 
river network in the territory of Zhuhai is dense and braided. Zhuhai has a subtropical maritime climate, and the 
vegetation type is tropical evergreen forest. The annual average temperature of the study area is 22.4 °C, and the 
average annual rainfall is 1700–2300 mm.

In this study, the study area was limited to the land area of Zhuhai city. The scope of the study includes 
continental coastal tidal flats but does not include the Wanshan Islands, which are scattered in the outer sea.

Basic supporting datasets.  The data involved in this study include Landsat RS image data, digital eleva-
tion model (DEM) data, and Zhuhai administrative division and related land planning data. Among them, Land-
sat Thematic Mapper/Enhanced Thematic Mapper Plus (TM/ETM+) and Landsat Operational Land Imager 
(OLI) data for 1991, 2000, 2010 and 2018 were obtained from the United States Geological Survey (USGS) web-
site (https​://earth​explo​rer.usgs.gov/). For details on the data, see Supplemental Materials S3. Based on satellite 
RS images, land use classification and mapping can be conducted.

The DEM is a ground model that represents ground elevation in the form of an ordered array of numerical 
values. For the study area, we selected ASTER GDEM DEM data; these data have a spatial resolution of 30 m 
and were derived from the Geospatial Data Cloud Platform (https​://www.gsclo​ud.cn/searc​h). Based on the DEM 
data, derived indicators, such as slope, can be extracted.

https://earthexplorer.usgs.gov/
https://www.gscloud.cn/search
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The 2006 land use map and overall land use planning map (2006–2020) for Zhuhai came from the Zhuhai 
Natural Resources Bureau (https​://www.gtjzh​.gov.cn/gtxx/gtzyl​ygh/). The scale of the map was 1:350,000, and 
the map was compiled by the Zhuhai Municipal Bureau of Land and Resources and the Land Research Center 
of Sun Yat-sen University. With the support of GIS software, automatic classification data can be corrected based 
on urban land use data, and additional data such as the distance from urban built-up land can be calculated.

Land transformation matrix.  The land change transformation matrix is used to quantitatively describe 
the number of land use type transformations in closed land systems56. The calculation formula of the change 
amount of a certain type of land transformation is as follows:

where A is the amount of change in a land type, and Aa and Ab are the areas of the land type at the beginning and 
end of the study period, respectively.

Similar to the land change transformation matrix, the land transformation probability matrix is composed of 
transition probabilities, i.e., the probability of one land type being converted into another land type. The transi-
tion probability matrix can reveal the mutual transformation status and transition probability between different 
types of land57. The formula is as follows:

(2)A = Ab − Aa

(3)P = Pij =













P11 P12 · · · P1n

P21 P22 · · · P2n

· · · · · ·
. . . · · ·

Pn1 Pn2 · · · Pnn













Figure 7.   Overview map of the study area. Zhuhai city is the core city of the Dawan District and the Pearl River 
Estuary in southern China. It is connected to Macao to the south and Hong Kong to the east. It covers an area 
of 1732 km2, and it has a total population of 1.57 million, a sea area of 5941.8 km2, a coastline that is 224.5 km 
long, and 217 large and small islands. Additionally, it has jurisdiction over three administrative districts: 
Xiangzhou, Doumen and Jinwan. The boundaries of the map come from the Zhuhai Natural Resources Bureau, 
and the base map is the China Online Community Basemap in ArcGIS. The drawing of the map was completed 
with the support of ArcGIS 10.7 software.

https://www.gtjzh.gov.cn/gtxx/gtzylygh/
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where n is the number of land types and Pij is the transition probability of land type i to type j. Each element in 
the matrix must meet the following two conditions:

The state of the land type at any time is determined by the initial state and the transition probability. The state 
of a land use type at start time t and end time t + 1 can be expressed as follows:

where St and St+1 are the area or state probabilities of the land type at time t and time t + 1, respectively.

Landscape ecological index.  Landscape ecology refers to the composition, diversity, shape and spatial 
pattern of landscape structural units. Differences in the types, shapes, sizes, quantities and spatial combinations 
of landscape patches reflect differences in the quality of landscape functions and the ecological processes of the 
entire region58. In this study, FRAGSTATS 4.2 was used to calculate the landscape index. This software can cal-
culate the landscape pattern index from three levels: the landscape level, class level and patch level59. This paper 
explores the evolution of the landscape spatial patterns in Zhuhai from the class and landscape levels.

There were five indicators at the class level, including the PD, LSI, LPI, and CONTIG_AM. The seven indica-
tors at the landscape level included the ED, PD, LSI, LPI, CONTAG, SHDI, and SHEI. The calculation methods 
and ecological meanings of each index are based on the common formulas and expressions used by scholars in 
China and other countries33 (see Supplemental Materials S4: Landscape indicators and descriptions).

Equivalent ecological area.  The global ecological service value assessment method and value coefficient 
proposed by Costanza et al.27 realized the first quantitative calculation of the value of ecological services. Based 
on their method, Xie et al.28 further determined the value of ecosystem services per unit area of land for different 
ecosystems in China.

In this study, we first merged and reclassified the land use types of Zhuhai according to the closest ecosystem 
type. Then, we considered that the service value (absolute value) of the unit ecosystem area lacked the promotion 
value globally and in other regions of the country. According to the relative proportional relationship between 
the service value (absolute value) of different ecosystems, the values were normalized to values between 0 and 1 
(i.e., each value became a relative value)60 (Table 6). Finally, we multiplied the abovementioned ecological service 
value (relative value) by the area of the corresponding ecosystem type to obtain the equivalent ecological area. 
The calculation formula is as follows:

where Q is the average equivalent ecological area, δi is the normalized value of the ecosystem service value of 
land type i, Ai is the area of land type i, A is the total area of all land types, and n is the number of land use types.

Center of gravity transformation model.  The center of gravity transformation model can adequately 
describe the spatial evolutionary processes of populations, economic activities, and land distribution patterns61. 
In this study, the calculation method of the position of the center of gravity of ecological land is as follows:

(4)0 ≤ Pij ≤ 1,

n
∑

j=1

Pij = 1

(5)St+1 = Pij × St

(6)Q =

∑n
i=1 δi × Ai

A

(7)Xt =
∑n

i=1
(Cti × Xi)/

n
∑

i=1

Cti

(8)Yt =
∑n

i=1
(Cti × Yi)/

n
∑

i=1

Cti

Table 6.   Normalized ecosystem service value of each land use type in Zhuhai city. The values refer to the 
ecosystem service value equivalence factor and the relative proportional relationship between the value of 
the ecosystem services of different ecosystems, normalized to 0–1, and we performed a re-evaluation of the 
ecological service value of each land type. The value of woodland is the highest (1.0), while that of unutilized 
land is the lowest (0.1).

Land types Woodland Grassland
Rainfed 
cropland Paddy fields

Aquaculture 
areas

Reservoirs and 
pit ponds Tidal flats

Rivers and 
shallow water Built-up land

Unutilized 
land

Normalized 
ecosystem 
service value

1.00 0.47 0.16 0.29 0.23 0.63 0.72 0.92 0.08 0.10
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where Xt and Yt are the latitude and longitude coordinates, respectively, of the center of gravity of ecological land 
in year t, Cti is the area of the i-th regional ecological land, and Xi and Yi are the latitude and longitude coordinates, 
respectively, of the geometric center of the i-th region.

Logistic regression model.  The results of land use change can be divided into two states, change or no 
change; thus, these states can be represented by the numbers 0 or 1, respectively. A logistic regression model can 
be used to construct the relationship between multiple explanatory variables and one response variable (binary 
variable)62.

Let the independent variable xi = (x1i, x2i, xki) of the i-th case and the dichotomous variable yi take the value of 
0 or 1 (yi = 0 means that the event does not occur; yi = 1 means that the event occurs). The conditional probability 
of the occurrence of an event can be denoted as follows:

Therefore, the binary logistic regression model can be expressed as follows:

where Pi is the probability of the event occurring in the i-th case, α is a constant term, βk is a regression coefficient, 
and the nonlinear function is composed of k explanatory variables.

The conditional probability of the nonoccurrence of an event can be expressed as follows:

In the land change simulation, natural geographical factors, such as topography, elevation, slope, and dis-
tance from existing built-up land, directly affect the development and utilization of land, which are the direct 
driving factors of ecological land change. Population growth, urbanization, economic development, industrial 
layout and other factors affect changes in urban land use by controlling the expansion of built-up land, which 
is an indirect driving factor of ecological land change. In this study, we selected four variables, i.e., elevation, 
slope, distance from built-up land, and growth rate of built-up land, as the independent variables of the regres-
sion model. Whether ecological land changes (0 or 1) represent the dependent variable of the regression model.

In the above independent variables, the elevation data directly use DEM data (unit: m), the slope data are 
calculated from DEM data (unit: degree (°)), and the distance from built-up land is calculated using the Euclidean 
distance tool in ArcGIS (unit: km). The above three indicators are numerically continuous and raster-type spatial 
variables. To distinguish and explore the impact of the growth rate of built-up land on ecological land change, the 
built-up land growth rate index uses categorical variables rather than continuous variables. First, we calculated 
the average annual growth rate of built-up land in the administrative units of 13 districts (townships and towns) 
in Zhuhai city from 1991 to 2018. Then, we divided the above-average annual growth rate into five levels, i.e., 
0–5%, 5–10%, 10–20%, 20–35% and > 35%, and assigned each level a value of 1, 2, 3, 4 and 5, respectively. We 
spatialized the rating assignment results of the growth rate of the abovementioned administrative districts onto 
each grid in the area. Finally, we obtained the four spatial variables of elevation, slope, distance from built-up 
land and growth rate of built-up land, all of which had a spatial resolution of 30 m.

In the specific regression analysis, we randomly selected 20,000 samples from ecological land in 1991 and then 
examined the ecological land attributes of the above samples in 2018. If the sample was still ecological land in 
2018, the result of the dependent variable was 1. If the sample was no longer ecological land, it received a value 
of 0. Finally, these 20,000 samples of the input variables (elevation, slope, distance from built-up land and growth 
rate of built-up land) and output variables (whether the ecological land changed) were used. In SPSS 25.0, the 
abovementioned modeling process and model accuracy test were completed using the logistic forward stepwise 
regression tool to determine the main driving factors of ecological land change and the driving mechanism of 
each factor in Zhuhai.
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