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Abstract: Realizing autonomic management control loops is pivotal for achieving self-driving net-
works. Some studies have recently evidence the feasibility of using Automated Planning (AP) to carry
out these loops. However, in practice, the use of AP is complicated since network administrators, who
are non-experts in Artificial Intelligence, need to define network management policies as AP-goals
and combine them with the network status and network management tasks to obtain AP-problems.
AP planners use these problems to build up autonomic solutions formed by primitive tasks that
modify the initial network state to achieve management goals. Although recent approaches have in-
vestigated transforming network management policies expressed in specific languages into low-level
configuration rules, transforming these policies expressed in natural language into AP-goals and,
subsequently, build up AP-based autonomic management loops remains unexplored. This paper
introduces a novel approach, called NORA, to automatically generate AP-problems by translating
Goal Policies expressed in natural language into AP-goals and combining them with both the net-
work status and the network management tasks. NORA uses Natural Language Processing as the
translation technique and templates as the combination technique to avoid network administrators
to learn policy languages or AP-notations. We used a dataset containing Goal Policies to evaluate the
NORA’s prototype. The results show that NORA achieves high precision and spends a short-time on
generating AP-problems, which evinces NORA aids to overcome barriers to using AP in autonomic
network management scenarios.

Keywords: WSN; mobile sensors; sweep coverage; approximation algorithm; combinatorial mathe-
matics

1. Introduction

Networks’ complexity and size are growing exponentially, making unfeasible their
manual administration. The self-driving networks paradigm comes with the promise of
accomplishing minimal or null human intervention [1,2]. Realizing autonomic control
loops (ACLs) for network management based on Artificial Intelligence (AI) techniques,
like Automated Planning (AP) [3], Machine Learning (ML) [4], or their combination, is
pivotal for achieving the self-driving networks’ promise. Specifically, AP has been used
in the networking domain to create autonomic solutions (or plans) formed by a set of
primitive tasks that takes the network from an (troublesome) initial state to a desired state
that satisfies network management policies. However, carrying out AP-based ACLs is
complicated since network administrators, who are non-AI-experts, need to define network
management policies as AP-goals in an AP notation, and combine them with the network
status and network management tasks to obtain AP-problems. An AP-problem is a primary
input for an AI planner to build up a solution plan.
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In several domains like information technologies and telecommunications, diverse
approaches [5–7] have been proposed to automatically translate policies expressed in natural
language (NL) into AP-goals. Nevertheless, as these approaches use translation rules fitted to
their domains, their adaptability to other ones is constrained. In the network management
domain, some efforts based on policies refinement have been introduced to translate network
management policies defined in Controlled Natural Language (CNL) [8,9], Intents [10], or
Requirement Formats [11] into Software-Defined Networks (SDN) flow rules [12] or P4
programs [13]. These policies’ refinement-based approaches share some shortcomings. They
require policies described in a particular syntax, such as CNL and Intents; overall, these
syntax can be as hard to learn and interpret for network administrators as the AP notations.
Furthermore, they do not offer an interpretation bridge between management policies and AI
notations, hindering AP-problems’ realization and, consequently, the challenge of building up
AP-based ACLs for network management remains unexplored.

This paper introduces a novel approach, called NORA, envisioned to generate AP-
problems automatically; such a generation is fundamental to close autonomic management
loops and, so also, to realize self-driving networks. The NORA’s novelty lies in allowing
the network administrator to express Goal Policies in NL and automatically transform
them into AP-goals. NORA combines the AP-goals with the network status and network
management tasks to generate AP-problems. NORA uses NLP as the translation tech-
nique and templates as the combination technique. To the best of our knowledge, we
are pioneers in overcoming the interpretation gap between network management policies
and AP-problems. Bridging this gap is fundamental for paving the self-driving network’s
realization since network administrators do not need to spend time learning new policy
formats or AP-notations when building up ACLs. In this way, they can focus on their core
tasks. We implemented a NORA’s prototype and evaluated it using a Goal Policies dataset.
Results show that NORA achieves high precision and spends a short-time on generating
AP-problems. Consequently, we conclude that NORA is a promising solution to overcome
barriers to using AP in self-driving networks.

The remainder of this paper is organized as follows. Section 2 describes the back-
ground and related work. Section 3 introduces NORA. Section 4 presents a prototype that
instantiates NORA and its corresponding evaluation. Section 5 states concluding remarks
and outlines future work.

2. Background and Related Work

Initially, this section introduces fundamental concepts to understand the relationship
between self-driving networks and automated planning fully. Subsequently, it goes over
some proposed strategies in diverse domains to transform policies to AP languages, men-
tioning relevant research work in the field. Finally, it explains the most commonly used
methods to transform constrained natural languages into low-level network instructions.

2.1. Self-Driving Networks and Autonomic Control Loops

The exponential growth in the number of devices and users connected to networks
places significant stress on current human-in-the-loop network management architec-
tures. Thus, there is a rising interest in equipping networks with autonomous run-time
decision-making capability by incorporating AI, ML, AP, big data, network analytics (NA),
network telemetry combined with advances in networking (e.g., SDN, network functions
virtualization and programmable data planes) to develop self-driving networks [14,15].

A self-driving network is an autonomous network where management control loops
predict changes and adapt to user and traffic behavior without the intervention of a human
operator [12,14]. Besides, according to [16,17] self-driving networks can measure, analyze
and control themselves in an automated manner employing ACLs that react to changes in
the environment by using sensors and actuators (see Figure 1). The sensors monitor the
network operation (e.g., link occupancy or buffer size) via pull or polling techniques for
getting information about its status. Algorithms based on AI, NA, and AP are useful for
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analyzing the sensed information and making decisions oriented to maintain any desired
situation or overcome a problematic one. The actuators execute actions, such as enforce
configurations in routing devices, in the managed network. Network policies play a crucial
role in any self-driving network since every ACL must handle the network targeting to
meet them [18].

Self-driving network

Sensors Actuators

Business Goal/Policies

AI
ML

NA
AP

network status configurations

Figure 1. Closed ACL.

Several proposals for accomplishing ACLs are available in the literature. For instance,
the MAPE (Monitor-Analysis-Plan-Execution) introduced in late 2004 by IBM [19] (and
applied to network management in [20,21]), and its extension FOCALE (Foundation Obser-
vation Comparison Action Learn rEason) [22] are classical ACL approaches for autonomic
computing. In turn, CogMan [23] and C-MAPE [2] are ACL approaches for autonomic
network management that employ a cognitive model for the loop operation. C-MAPE is
also an extension of MAPE, where every function in the loop incorporates learning and
inference functionalities. By its part, the Knowledge-Defined Networking paradigm [4]
operates employing an ACL that combines ML, network analytics, and SDN.

2.2. Network Policies

Policies are guidelines and constraints to system management [24]. They represent ser-
vice requirements, such as availability, response time, throughput, and security. According
to [25] policies can be classified into Action Policy, Goal Policy, and Utility Function Policy.
An Action Policy dictates the action that the Network Management System (NMS) should
take whenever the system is in a given current state. Typically, an NMS based on Action
Policies follows the structure IF(Condition) THEN(Action), where Condition specifies
either a specific state or a set of possible states that all satisfy the given Condition. Note that
the state that the NMS will reach taking the given action is not specified explicitly. Rather
than specifying what to do in the current state S, a Goal Policy specifies how the NMS
should behave when a single desired state σ, or one or more criteria that characterize an
entire set of desired states happen. Goal Policies provide only a binary state classification:
’desirable’ and ’undesirable’ [26]. A Utility Function Policy is an objective function that
expresses each possible state’s value. Utility Function Policies generalize Goal Policies.

In this paper, we work with Goal Policies because they are useful to feed the manage-
ment control loops of self-driving networks as corroborated in [27,28]. When using Goal
Policies to govern the behavior of self-driving networks, through autonomous NMS, the
AP-based ACL is responsible for computing a network management task (or possibly a
sequence of tasks or a workflow) that will cause the network to make a transition from
the current state to some desired state. Rather than relying on a network administrator to
explicitly encode rational behavior, the self-driving network generates rational behavior
itself from the Goal Policy permitting greater flexibility and frees network administrator
from the necessity of applying low-level commands at the underlying network, at the cost
of requiring reasonably sophisticated AI-planning or, in overall, modeling AI-algorithms.
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2.3. Automated Planning

AP is an AI field that automatically creates plans (set of possible actions) to go from an
initial state (real-world situation) to a goal/target state. A planning problem involves these
states and actions. A planning problem happens, for example, in a network operator that
provides enhanced mobile broadband 5G slices by using Network Functions Virtualization
(NFV), SDN, and ML, when an unexpected slice disruption occurs due to the NFV/SDN
infrastructure outage or a security attack impacts negatively the congestion decisions made
by a reinforcement learning algorithm. The disruption is the initial state. The goal state is
to restore the slice as soon as possible, aiming at meeting a previously signed SLA (Service
Level Agreement) . The set of possible actions (describing real-world tasks) to use during
the planning process are in a planning domain. Examples of actions are to replace the
broken virtual network functions with their backups and re-build up the learning model.

Recently, it has been corroborated the feasibility of using AP to automate SDN man-
agement tasks and reduce the time required by network administrators to face network
situations [3,29]. However, in such approaches, the network administrator still has to
manually describe the network problem in AP notation, which is difficult to interpret
without prior knowledge. To realize ACLs based on AP, the network itself should create
without human intervention the planning problem.

2.4. Existing Work

Liu [5] proposed a mechanism to translate high-level objectives from the IT management
domain into the goals of an AP-problem describing requirements for fault recovery. This
mechanism uses rules to map fault expressions stated in the Domain Service Language (DSL)
into the Planning Domain Definition Language (PDDL). However, the rules are attached to
the IT management domain and, so their replication on the network management domain is
hard. Other approaches [6,7] transformed user requests expressed in NL into PDDL for facing
telecommunications services issues. Despite the use of NL and its integration with AP, these
approaches present several drawbacks. First, NLP’s corpus is limited to requests related to the
environmental early-warnings domain and, consequently, disregards models of Goal Policies.
Second, the low-level configuration actions are specific for composing telecommunication
services and leaves aside the network management tasks.

The works [8,9,30] introduced a framework to translate high-level policies expressed
in CNL, into low-level flow rules for SDNs. The employed CNL follows a grammar of
predefined regular expressions (regexes) representing terms of the network context such as
“HTTP” and “FTP”. These works use Inductive reasoning for analyzing policy objectives
and abductive reasoning for determining if the network infrastructure can accommodate the
reasoned objectives during translations. Although this approach provides helpful grammar
contributions regarding classification of the network context terminology, the inductive
and abductive reasoning processes led directly from high-level to low-level commands
disregarding the possibility of an AI algorithm to interpret network management regexes.

Tuncer et al. [11] proposed an approach for the automatic decomposition of High-
Level Requirements (HLRs) to network management operations. This approach relies on
developing a NorthBound Interface (NBI), including mapping functionality, that associates
technical HLRs to the network operator’s services and functions that manage the network
resources. This HLR-based approach performs the association through matching proce-
dures to support operator-defined descriptors that encode distinct features and uniquely
identify services and functions. In this approach, network administrators do not use NL
and, consequently, they must fulfill the HLR format’s attributes.

Jacobs et al. [12] introduced an approach to translate network administrators policies
expressed in NILE (i.e., an intermediate representation for network Intents) into network
configurations. This approach uses a recurrent neural sequence-to-sequence learning
model to extract Intents from NL and includes feedback from the network administrator
for improving the learning process. Although this approach offers high accuracy in the
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translation process, it does not consider a closed-loop (requires feedback from network
experts), pivotal for self-driving networks, and network administrators must learn NILE.

Riftadi and Kuipers introduced P4I/O [13], a framework that translates Intents into
P4-programs using code-templates. Although the generated P4-programs offer excellent
results for handling the network throughput, this framework requires that network admin-
istrators learn an extended version of NILE that adds custom actions for network tasks and
does not support AI-based notations.

Widmer [31] proposed a state-machine-based refinement technique that uses a gram-
mar for an Intent specification language and a parsing process to translate the intents to
low-level blockchain selection policies abstracting underlying implementation details. This
approach does not operate with policies expressed in NL nor explore AI-based notations.

The cited approaches share the following shortcomings. First, they require policies
described in a particular syntax (e.g., CNL and Intents) that can be as hard to learn and
interpret for network administrators as the AP notations are. Second, they assume a
linear correspondence between high-level policies and network configuration tasks. In
contrast, self-driving networks usually rely on AI algorithms to automatically and on the
fly compute sequences of actions that carry out corrective and even preventive network
configuration tasks to comply with high-level network management policies. In this sense,
our proposal is a pioneer in transforming from high-level policies expressed in NL to AP
notations in the network management domain. Bridging the interpretation gap between
network management and AP facilitates the current intricate administrator work by closing
AI-supported ACLs of self-driving networks.

3. NORA

In this section, we introduce how NORA operates at a high abstraction level. Further-
more, we explain in detail the architecture and modules composing NORA.

3.1. High-Level Operation

Figure 2 depicts NORA’s architecture conceived to generate AP-problems automat-
ically. This paper argues that generating such problems is pivotal for achieving the self-
driving network concept since they are essentials to close autonomic management loops.
Henceforth, we focus on presenting how NORA translates Goal Policies expressed in NL
into planning goals and combines them with network status and network management
tasks to generate AI-planning problems. In turn, in this paper, we assume an external
Monitoring and Analysis module, like the one proposed in [2,19], which provides the
network status and a network model. The network model as described in [32] contains the
management tasks necessary to realize the AP-based solutions.

Goal Policies in
natural language

AP-problem

Lexer

Criteria
Analyser

tokens

 criteria set

Grammar

Network
Administrator

1 5

4

3

2

network
management

tasks
network status

AP-goals

Converter m

Generator m
notation 1
notation 2
notation m

AI planner

Monitoring/
Analysis

Network
model

Domain

Figure 2. NORA architecture.

A Goal Policy specifies either a single desired state σ, or one or more criteria that
characterize a set of target states [25]. NORA operates with these policies because they
are useful to express business goals without technical details as in the case of SLAs [8,30].
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We model a Goal Policy as a 4-tuples P =< Target, Metric, Condition, Threshold >. In this
model, Target is a binary < S|E >, where S denotes a network service and E denotes
an endpoint (i.e., a network equipment or resource) or an end-user(s) (e.g., researchers
working on a specific laboratory of a University). Metric denotes a network performance
parameter measurable at services or endpoints. Condition denotes a boolean comparison
adjective statement. Threshold denotes boundaries for the metric values. Thus, for using
NORA, the network administrator must express policies as follows: “Streaming traffic
should receive bandwidth lower than 16 kbps”, where Target : “Streaming traffic”, Metric :
“bandwidth”, Condition : “lower than”, and Threshold : “16 kbps”. Goal Policies examples
involving several network criteria, i.e., more than one atomic policy are: “HTTP services
should receive bandwidth higher than 100 kbps and delay lower than 300 ms” and “A
network slice must all the time meet latency lower than 5 ms and packet loss rate under
10−4”. Note that, as in the last examples, Goal Policies can be decomposed in several tuples
< Target, Metric, Condition, Threshold >, leading to AP-problems with several planning
goals (see Figure 3b).

From a high-level perspective and according to Figure 2, NORA operates as follows.
First, the network administrator expresses a management policy by following the NL-based
Goal Policy model. Second, the Lexer decomposes the policy in representative terms for
the network management domain. These terms can be a word or a phrase, from now on
called tokens. For example, “Voice over IP” and “Video streaming” are tokens representing
a network service. Third, the Criteria Analyser forms a set of structured criteria where
each element reflects an atomic policy involved in the incoming Goal Policy. Fourth, the
Converter maps each element of the criteria set to a particular goal notation required by an
AP-planner. Fifth, NORA builds up the AP-problem by combining the obtained planning
goals with the network status and management tasks. Figure 3 exemplifies the output of
NORA at steps 4 and 5 in PDDL notation for a Goal Policy with a single (Figure 3a) and
several goals (Figure 3b). In the next subsections, we detail the NORA modules and how
they interrelate to generate AP-problems from Goal Policies, network status, and network
management tasks.

"Streaming	traffic	should	receive	bandwidth
lower	than	16	kbps"

Lexer

Criteria
Analyser

"at streaming bandwidth
lower 16 kbps"

Converter 

Generator  PDDL (define (network policy violation)
  (:domain self-driving network)
  
  (:init (QoE degraded))
  (:goal 
  (at streaming bandwidth lower 16 kbps)
))

(a) Single atomic policy

"A network slice must all the time meet
latency lower than 5 ms and packet loss

rate under 10-4"

Lexer

Criteria
Analyser

Converter 

Generator  PDDL (define (network policy violation)
  (:domain remote surgery self-driving network)
  
  (:init (video streaming quality degraded))
  (:goal 
  (and  (at slice latency lower 5 ms)
           (at slice packet loss under 10-4)
   )))

"at slice latency lower 5 ms"
"at slice packet loss under 10-4"

(b) More than one atomic policy

Figure 3. NORA—High-level operation.

3.2. Lexer

This module receives management policies expressed by the network administrator
in NL by following the Goal Policy model and extracts from them tokens. The Lexer builds
up a matrix of tokens per each input policy as follows. First, it removes irrelevant terms to
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achieve faster tokens identification. Let us suppose a network policy defined for a remote
surgery scenario as P = “A network slice must all the time meet latency lower than 5 ms
and packet loss rate under 10−4”. In P, the terms removed would be “a”, “must”, “all the
time”, and “meet”.

Second, the Lexer performs stemming to reduce words composing terms; e.g., in the
raised policy “network slice” becomes “slice”, “lower than” becomes “lower” and “packet
loss rate” becomes “packet loss”. Third, it carries out spell-checking to correct misspelled
words or words damaged during stemming and compares remaining terms to expressions
stored in a predefined domain grammar. Table 1 exemplifies our network management
grammar based on [8]. Note that in Table 1 the Entity column corresponds to the 4-tuples
defined for our policies model, i.e., Target, Metric, Condition, Threshold, and the Expression
column corresponds to terms of network management argot classified under each entity
type. The Connector entity in the last row refer to expressions that allow us to determine
whether an input policy includes by several atomic policies, i.e., it involves more than one
tuple (see detail in Section 3.3). Entities in the proposed grammar let categorize parts of an
input policy instead of comparing with a set of specific policies; this offers flexibility to the
extraction process.

Fourth, the Lexer marks as tokens the terms of the input policy matching grammar ex-
pressions and extracts their values and their positions in the original sentence. Figure 4 depicts
the terms matched between the previous example policy P and the grammar (i.e., “slice”,
“latency”, “lower”, “5 ms”, “and”, “packet loss”, “under”, “10−4”), their corresponding entity
type (i.e., endpoint, metric, condition, threshold, connection, metric, condition, threshold),
and their start and end positions (e.g., the term “slice” begins and ends at positions 11 and
15, respectively). A further 4-tuples format allows to structure data extracted per token as
t =< entityType, value, initialPosition, f inalPosition >. Note that from each input policy n
tokens can be marked, giving place to n tuples t1, t2...tn. We defined a 4 x n matrix, called T,
to store the n tuples representing tokens derived from query policies, i.e., the rows of T are
t1, t2, ..., tn. As an example, rows t1, t2...t8 in the T(P) matrix in Figure 5 correspond to the
eight tuples for the tokens marked in the policy P presented in Figure 4. Note that the data for
the first token marked in P, i.e., t1 =< endpoint, slice, 11, 15 >, is the first row in T(P) and
so on. Fifth, the Lexer sends T to the Criteria Analyser.

Table 1. Network management grammar.

Entity Expression

Service VoIP, Streaming, HTTP, FTP, SMTP, P2P...

Endpoint gateway, database, slice, VM, CPU, client, user...

Metric bandwidth, delay, throughput, jitter, load, latency, packet loss ...

Condition

more, high, higher, up, over, exceed, not under,...

equal, like, even, same, similar,...

less, lower, not exceed, down, below, under,...

Threshold-unit ms, s, kbps, GB, GHz, %...

Connection and, also, as well as, or...

A network slice must all the time meet latency lower than 5 ms and packet loss rate under 10−4

Endpoint Metric

Condition Connection

Threshold Metric

Condition

Threshold

11   15

Figure 4. Identification of entities in a Goal Policy.
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T(P) =

t7

t6
t5

t4
t3
t2
t1

t8

 =

endpoint slice 11 15

metric latency 40 46

condition lower 48 52

threshold 5 ms 59 62

connection and 64 66

metric packet loss 68 78

condition under 85 89

threshold 10-4 91 92

Figure 5. Matrix T for policy P.

3.3. Criteria Analyzer

This module receives each T matrix computed by the Lexer and delivers a corre-
sponding set of criteria involved in the Goal Policy; Figure 6a shows how each network
criteria follows our policies tuples model. Thus, the Criteria Analyzer transforms every
T matrix in a collection of network criteria: i.e., C = [c1, c2...ck], where ci is an atomic
network management policy and k (i.e., the size of C) represents the quantity of atomic
policies contained in an input policy. The tokens of type Connection (Table 1) in a policy
allows obtaining the k value (see Equation (1)). For instance, in T(P) (Figure 5) there is
one token of type Connection, i.e., t5, which means that the raised policy P involves two
atomic policies.

k = Connection in T + 1; (1)

c1 c2 ck. . .

C

Target Metric Condition Threshold

Service Endpoint

(a) Collection of network criteria

C(T)

slice latency lower 5 ms slice packet
loss under 10-4

c1 c2

(b) Result of Algorithm 1 for T(P)

Figure 6. Criteria vs. Goal Policy Model.

Algorithm 1 transforms the matrix T into the set C. Initially, this algorithm counts
the number of Connection tokens in T (line 1). Then, it calculates k (line 2) and creates
a k-size string vector (line 3) (e.g., in P, the values con = 1 and k = 2—from Figure 5 and
Equation (1)—lead to C = [c1, c2]). Finally, it fulfills each c by performing a cycle with k
iterations, each time completing a network criteria ci conforming the set C (lines 4 to 14). In
this cycle, Algorithm 1:

• Adds to c1 the value of the endpoint or service with the minor initialPosition in the
matrix T (lines 5 and 6). In the example, t1 is the endpoint with the minor initialPosition
(from Figure 5 initialPosition(t1) = 11); thus, at this step, c1 = “slice”.

• Calculates proximity between tokens type metric and the previous selected token and
adds the closest metric value to c1 (lines 7 and 8). In the exemplified T(P), this choice
is t2, hence, current c becomes c1 = “slice latency”. The algorithm runs a similar
process for tokens of type condition and threshold (lines 9 to 12). In this way, in our
example, c1 = “slice latency lower 5 ms”.

• Marks as “used” appended tokens (line 13). Note that they can be appended to more
than one ci when the quantity of a type of token in T is less than k. For instance, observe
that in T(P) (Figure 5) t1 is the only token of type target (i.e., service or endpoint),
thus, its value, i.e., “slice”, is appended to c2 although it was earlier appended to c1.
On the other hand, tokens of the matrix T can be discarded of the resulting set C if
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there is a (already “used”) token of the same type closest to the previous element of
the tuple.

Once Algorithm 1 ends up, the Criteria Analyzer sends the criteria set (C) to the
Converter. In the example, the transformation of T(P) after executing Algorithm 1 is
C = [c1, c2], where c1 =“slice latency lower 5 ms” and c2 = “slice packet loss under 10-4”
(see Figure 6b).

Algorithm 1: Tokens Positions Comparison
Input: T: Matrix of tokens.
Output: C = [c1, c2...ck ]: Granular Goals Collection.

1 con = tokens type Connection in T;
2 k = con + 1;
3 C = [c1, c2...ck ];
4 for each c in C do
5 Search in T the token of type endpoint or service with the minor initialPosition number;
6 c.append(endpoint|service.value);
7 Search in T the closest token of type metric;
8 c.append(metric.value);
9 Search in T the closest token of type condition;

10 c.append(constraint.value);
11 Search in T the closest token of type threshold ;
12 c.append(threshold.value);
13 Mark in T all already appended tokens
14 end

3.4. Converter

This module maps the elements of C (set of criteria: c1, c2...ck) to a particular AP-goal
notation (e.g., PDDL) that is compatible with a specific planner (e.g., Simple Hierarchical
Ordered Planner [33] or Hierarchical Task Planner [34]). This planner can be used for
closing the autonomic management loop. As there are multiple planning goal notations,
the Converter defines a repository of m mapping functions (or converters) and a selection
function that calls the appropriate mapping for the target AP-problem notation.

To exemplify the Converter, we overview its operation when using PDDL and STRIPS.
In PDDL, the problem file reserves a piece of code for specifying goals. Listing 1 shows
the syntax that the PDDL must generate. STRIPS defines problems using a boolean value
function that allows describing the problem by logical conditions and specifies the problem
goal as “things that we want to be true”. Listing 2 shows that the STRIPS converter must
generate the goal by placing the policy’s Condition followed by its remaining parameters
(in brackets). This condition can be true or false.

Listing 1. AI-planning goals in PDDL.
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(see Figure 6b).

Algorithm 1: Tokens Positions Comparison
Input: T: Matrix of tokens.
Output: C = [c1, c2...ck ]: Granular Goals Collection.

1 con = tokens type Connection in T;
2 k = con + 1;
3 C = [c1, c2...ck ];
4 for each c in C do
5 Search in T the token of type endpoint or service with the minor initialPosition number;
6 c.append(endpoint|service.value);
7 Search in T the closest token of type metric;
8 c.append(metric.value);
9 Search in T the closest token of type condition;

10 c.append(constraint.value);
11 Search in T the closest token of type threshold ;
12 c.append(threshold.value);
13 Mark in T all already appended tokens
14 end

3.4. Converter

This module maps the elements of C (set of criteria: c1, c2...ck) to a particular AP-goal
notation (e.g., PDDL) that is compatible with a specific planner (e.g., Simple Hierarchical
Ordered Planner [33] or Hierarchical Task Planner [34]). This planner can be used for
closing the autonomic management loop. As there are multiple planning goal notations,
the Converter defines a repository of m mapping functions (or converters) and a selection
function that calls the appropriate mapping for the target AP-problem notation.

To exemplify the Converter, we overview its operation when using PDDL and STRIPS.
In PDDL, the problem file reserves a piece of code for specifying goals. Listing 1 shows
the syntax that the PDDL must generate. STRIPS defines problems using a boolean value
function that allows describing the problem by logical conditions and specifies the problem
goal as “things that we want to be true”. Listing 2 shows that the STRIPS converter must
generate the goal by placing the policy’s Condition followed by its remaining parameters
(in brackets). This condition can be true or false.

Listing 1: AI-planning goals in PDDL.

a t s l i c e l a t e n c y lower 5 ms
at s l i c e packet l o s s under 10−4

Listing 2: AI-planning goals in STRIPS.

lower ( s l i c e , la tency , 5 ms)
under ( s l i c e , packet loss , 10−4 )

3.5. Generator

From a general perspective, a planning-problem definition involves deciding what
actions to execute given a goal and an initial state [1]. Thus, the primary entries for
describing a problem in AI-planning based solutions are predicates defining an initial state,
a problem goal, and (a reference to) a set of tasks (atomic or composed). NORA gets the
problem goals automatically from Goal Policies expressed in NL. In turn, in NORA, the
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initial state corresponds to the network status obtained from an external Monitoring and
Analysis module available in solutions running MAPE [19] or C-MAPE [2] ACLs. NORA
assumes this loop delivers network status like “streaming quality degraded” and “QoE
degraded”. NORA retrieves the network management tasks from an external network
model like the YANG-based and SDN-centered proposed in [32]. An example of a network
management task is “scale up a VNF” or “scale down a VNF”. We do not detail about
initial state and management tasks because it is out of the scope of this paper. We address
them to get a closed ACL based on AI-planning techniques in future work. Summarizing,
the Generator builds up an AI-planning problem by combining a Goal Policy received from
the Converter, the network status, and management tasks (along with their preconditions
and effects). The implementation of this module follows a templates-based approach. Since
NORA needs to build up problems into different AI-planning notations, similar to the
Converter, m Generators are needed. Each one uses the corresponding template for the
particular target notation.

Figure 7a shows an AP-problem described with the PDDL templates proposed
in [35,36]. In such templates, the problem attributes follow a schema-like representa-
tion including mainly: (i) name, i.e., a string used to identify the planning problem—in the
example “Network Policy Violation”, (ii) domain where actions (i.e., network management
tasks) are specified, (iii) initial state is the network status; and (iv) goal state containing
one or several atomic goals that correspond to the Goal Policy in AP notation. Figure 7b
shows an STRIPS-based AP-problem that includes the sections: Init, Goal, and Actions.
The Init section corresponds to the network status. The Goal is the translated Goal Policy.
The Actions are the network management tasks that the AP planner will use to achieve
the Goal.

 (define (network policy violation)
  (:domain self-driving network)
  
  (:init (streaming quality degraded))

  (:goal 
  (and  (at slice latency lower 5 ms)
           (at slice packet loss under 10-4))
   ))

planning goals

network status

network management tasks

(a) AP-problem in PDDL

Init
 violated(network policy) 
 degraded(streaming quality)

Goal
 lower(slice, latency, 5 ms)
 under(slice, packetLoss, 10-4)

Actions
    ...

network status

planning goals

network management tasks

(b) AP-problem in STRIPS

Figure 7. AP-problems.

NORA sends the resulting AP-problem to the planner responsible for computing
a management plan intended to obtain a closed network management ACL. An AP-
based management plan is a sequence of management tasks that, once enforced in the
underlying network, cause the network to go from the current status to another that meets
the translated Goal Policy; recall, it is initially expressed in NL by the network administrator
and translated to AP notation by NORA.

4. Evaluation

This evaluation aims to assess and discuss NORA’s performance when generating
AP-problems from Goal Policies, network status, and network management tasks. This
section initially introduces the prototype of NORA and the Goal Policies dataset used in the
tests. This section then describes the performance metrics assessed, namely Precision and
Processing Time. Finally, this section presents and discusses the NORA’s evaluation results.

4.1. Prototype

Figure 8 depicts the prototype of NORA. The Lexer module was instantiated by using
Rasa 1.10.0 [37], an ML-based NLP tool that allows understanding and manipulating NL
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for extracting tokens [38]. We used Rasa because a recent comparative study on NLP
services’ performance demonstrated that it overcomes similar tools, such as LUIS [39] and
Lex[40], in terms of adaptability and customization thanks to its open-source nature [41].
The Linux Command Line is the user interface of NORA.

Figure 9 presents as example the tokens extracted by the Rasa-based Lexer when
processing the Goal Policy P = “A network slice must all the time meet latency lower
than 5 ms and packet loss rate under 10−4”. The data retrieved per policy are: (i) end,
the position of the last character of the token in the policy, (ii) entity, the type of token
according to the Grammar, (iii) extractor, an identifier for the ML-based engine used in the
learning and extraction processes, (iv) start, the position of the first character of the token
in the policy; and (v) value, the token itself as it appears in the policy.

Ubuntu 20.04.1
Lexer

RASA

labeledPolicies.md

Python 3.7

Criteria
Analyser Converter Generator

T

goals.txt

<C>

PDDLTemplate.txt

problem.pddl

Figure 8. NORA prototype.

‘‘project": "NORA"
ENTITIES
{
"end": 15,
"entity": "endpoint",
"extractor": "Mitie",
"start": 11,
"value": "slice"
},
{
"end": 46,
"entity": "metric",
"extractor": "Mitie",
"start": 40,
"value": "latency"
},
{
"end": 52,
"entity": "condition",
"extractor": "Mitie",
"start": 48,
"value": "lower"
},
{
"end": 62,
"entity": "threshold",
"extractor": "Mitie",
"start": 59,
"value": "5 ms"
},
...
]

Figure 9. Lexer output.

We implemented the modules Criteria Analyser, Converter, and Generator as Python
programs. These programs were integrated into the Rasa-based Lexer by inheriting from its
Action class [42]. Specifically, we developed a Custom Action that implements Algorithm 1
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responsible for mapping Goal Policies into AP-goals in PDDL notation as in Listing 1 and gen-
erating PDDL-problems by filling out PDDL-problem templates [43]. These PDDL-problems
stored in system files, jointly with a well-defined planning domain file, are enough input for
executing an AI Planner, such as the STRIPS engine (Standford Research Institute Problem
Solver) [44], responsible for automatically generating the corresponding management plan.
For the sake of experimentation, we have used the PDDL notation for specifying the goals
and problems of AP. However, it is noteworthy that the Converter and Generator modules
can be implemented for NORA operates with other AP-notations (e.g., STRIPS and Action
Description Language).

4.2. Goal Policies Dataset and Lexer Tuning Up

We created a Goal Policies dataset to tune up the NLP-based Lexer that allows NORA
to learn how a network management policy is usually written and, so, to identify and
extract tokens automatically; the NORA’s precision heavily depends on the Lexer success.
This dataset was built as follows. First, we collected 250 Goal Policies from 20 network
management researchers. Second, we labeled each network management term of each policy
with the corresponding entity type (i.e., service, endpoint, metric, condition, and threshold)
according to our grammar (Table 1) and stored them in a plain text file (“labeledPolicies.md”
in Figure 8) that Rasa is able to interpret as training data. For instance, the term “streaming”
was labeled as service. Note that a term written in different ways -or with synonyms- like
“P2P”, “Peer to Peer” or “Peer-to-Peer” leads to the same label; in this example service.
Third, we took the labeled policies as a base corpus for NORA and automatically generated
further policies to obtain a dataset with 1000 Goal Policies. For this, we performed random
combinations of terms for services or endpoints, metrics, conditions and thresholds, and added
complementary expressions to complete phrases, e.g., “On demand, network infrastructure
must be configured for...”, “... compared with other services...”, “NORA, the network must
...”.

We tuned up the Lexer module by using the cross-validation technique that allows using
all available data for training and testing by splitting it into k number of groups [45,46]; we
used k = 10. Once tuned up, the NLP-based Lexer identified with high precision the tokens:
Service(92.6%), Metric(99.3%), Endpoint(93.2%), and Constraint(90%). Conversely, this
module identified with moderate precision (70%) the tokens of type Threshold; to increase
this precision is necessary to add into the Goal Policies dataset more policies containing the
label Threshold. Table 2 highlights in blue color as example some failures on the Lexer’s
operation, i.e., tokens not identified or wrongly classified.

Table 2. Lexer tokens identification vs. Ground-Truth.

Tokens Ground-Truth Labeled by Experts (Expected)

ID Service Metric Endpoint Constraint Threshold

1 - - load CPU/VM’s not exceed/not be under 80%/20%
2 streaming bandwidth - - higher than 20 Mbps
3 streaming bandwidth - - higher than 20 Mbps
4 - - latency client B less than 10 ms
5 download - - professors no more than 1,000,000 MB per week

Lexer Tokens Identification

ID Service Metric Endpoint Constraint Threshold-unit

1 - - load CPU/ - - not exceed/not be under 80%/20%
2 streaming bandwidth - - higher than 20 Mbps
3 streaming bandwidth - - higher than 20 Mbps
4 - - latency client less than 10 ms
5 download - - professors more than - -
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4.3. Performance Metrics

We evaluated NORA using the Precision and Processing Time performance metrics.
Precision allows measuring whether NORA produces precise translations, meaning an
AP-problem generated by NORA includes the Goal Policy, network status, and network
management tasks appropriate. High Precision is a mandatory requirement to push the
NORA’s adoption in self-driving networks. We measured Precision as follows (see Figure 10).
First, we created 1000 testing tuples < gPol, gt > where gPol represents an incoming Goal
Policy and gt its corresponding ground truth. Each gti is the expected PDDL-problem file
given the gPoli and assuming as known the network status and network management tasks.
Second, we computed NORA precision by using Equation (2) where agr (agreement) is a
boolean variable. agr is equal to 1 when the planning problem generated by NORA (p fi)
matches the ground truth (gti) in terms of their textual content and syntax. Otherwise, agr is
equal to 0. In turn, n refers to the total number of test query policies, and the summation A
represents the overall NORA precision.

human-annotated

gPoli

ppi gti

NORA = =
?

t0 tf

gPol: test Goal Policy
pp: AP-problem generated by NORA
gt: 'ground truth' (expected output)
t0 : initial time
tf: final time

Figure 10. Test metrics.

A =
n

∑
i=1

agri
n

agr =
{

1 if ppi == gti
0 in other case

(2)

Processing Time allows measuring the speed of NORA for generating AP-problems.
NORA’s quickness is crucial when considering its adoption in self-driving networks be-
cause ACLs should address undesired network states (detected and triggered by Moni-
toring/Analysis modules) on-the-fly before the network instability expands and affects
the Quality of Experience. We measured ProcessingTime as the time elapsed since NORA
receives a test query Goal Policy until it generates the corresponding AP-problem file, i.e.,
from t0 until t f in Figure 10.

4.4. Results and Analysis

Figure 11 depicts Precision values achieved by NORA as a function of the number
of training policies and the granular goals involved in each test query Goal Policy. The
NORA’s Precision increases when the number of training policies rises; meaning that,
as expected, a large Goal Policy dataset leads to improve the Lexer behavior regarding
tokens identification. The Precision of NORA decreases when the number of granular goals
expressed in the test query Goal Policies increases; meaning that complex policies hinder
the NORA’s behavior. In particular, NORA obtained the highest Precision, around 92.8%,
with the dataset including 1000 Goal Policies and with a single granular goal per test query
Goal Policy. NORA got the worst Precision, about 84.2%, with the dataset including 250
Goal Policies and with five granular goals per test query Goal Policy. The high-Precision
obtained by NORA shows it is a promising solution to generate the AP-problems needed
to close the autonomic management loops that allow realizing self-driving networks.
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Figure 11. Precision vs. Training Policies.

Figures 12 and 13 depict the Processing Time as a function of the quantity of test
query Goal Policies incoming one after another and the number of granular goals and
words per tets query Goal Policy. The NORA’s Processing Time increases when the number
of incoming policies, goals, and words per policy grow up, although the last criteria,
i.e., words per policy, slightly alters the Processing Time. In particular, NORA obtained
the worst Processing Time, around 290 seconds, when simultaneously translating 1000
policies with five goals each. NORA got the best Processing Time, about 20 seconds when
simultaneously translating 250 policies with 1 goal per policy. The low-Processing Time
obtained by NORA shows it allows closing the autonomic management loops quickly
which is fundamental in the context of self-driving networks.
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Figure 12. End-to-end processing time by granular goals.

Since NORA is an AP-problems generation approach with no precedents in the net-
working domain, there is no conventional method to perform a direct comparison. There-
fore, in the next lines, we compare NORA to HAUTO [7], a framework that includes an
NLP-based module for transforming NL and environmental early warning information
into PDDL problems. NORA achieved in average a Precision (92.8%) slightly lower than
the obtained by HAUTO (94.4%). We can improve the NORA’s Precision by increasing the
dataset size and the grammar expressions; this is part of our next research steps. NORA
when processing a Goal Policy including five goals got a Processing Time (290 milliseconds)
equal to the achieved by HAUTO for analyzing a user requirement phrase and generating
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the PDDL problem file. This preliminary benchmark corroborates the NORA results are
promising to put self-driving networks into reality.
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Figure 13. End-to-end processing time by policy length.

4.5. Languages Extensibility

We conceive NORA to operate with grammar and corpus defined in the English
language since it is the most common language used in the network management area;
for instance, network operators and equipment vendors usually specify Service Level
Agreements (SLAs) and Command Line Interfaces (CLIs) in English. Therefore, we describe
and evaluate the NORA’s components using English sentences. However, it is remarkable
that the NORA’s architecture does not need changes to support Goal Policies specified in
diverse languages.

NORA can be adapted to deal with Goal Policies expressed in diverse languages by
following the next steps. First, redefining the network management grammar (Table 1) in
the new language. Second, collecting Goal Policies in such a language; these policies are
the basis for the corpus generation. Third, labelling the new-language Goal Policies corpus
according to the grammar expressions. Fourth, tuning up the Lexer with the labelled
policies (see Figure 8, labeledPolicies.md file).

5. Conclusions

This paper introduced NORA, an approach that automatically generates AP-problems
by transforming Goal Policies expressed in NL into AP-goals and combining them with
both the network status and the network management tasks. The evaluation results showed
that NORA achieves a precision near 92.8% and spends around 0.084 seconds on generating
AP-problems, which evinces our approach is useful to overcome barriers to using AP to
realize autonomic management scenarios that are pivotal for accomplishing self-driving
networks. For future work, we plan to enhanced NORA by supporting another kind of
network management policy. Moreover, we intend to extend the NORA’s scope in order to
achieve an autonomic management solution.
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ACL Autonomic Control Loop
AI Artificial Intelligence
AP Automated Planning
CNL Controlled Natural Language
DSL Domain Service Language
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MAPE Monitor-Analysis-Plan-Execution
ML Machine Learning
NA Network Analytics
NBI NorthBound Interface
NFV Network Functions Virtualization
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NMS Network Management System
PBNM Policy-based Network Management
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