
Clinical and Translational Radiation Oncology 29 (2021) 65–70

Available online 20 May 2021
2405-6308/© 2021 The Authors. Published by Elsevier B.V. on behalf of European Society for Radiotherapy and Oncology. This is an open access article under
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Prospective study of artificial intelligence-based decision support to 
improve head and neck radiotherapy plan quality 

David J. Sher a,*, Andrew Godley a, Yang Park a, Colin Carpenter b, Marc Nash b, Hasti Hesami a, 
Xinran Zhong a, Mu-Han Lin a 

a Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX, United States 
b Siris Medical, United States   

A R T I C L E  I N F O   

Keywords: 
Head and neck cancer 
Artificial intelligence 
Decision-support tools 
IMRT 

A B S T R A C T   

Background and purpose: Volumetric modulated arc therapy (VMAT) planning for head and neck cancer is a 
complex process. While the lowest achievable dose for each individual organ-at-risk (OAR) is unknown a priori, 
artificial intelligence (AI) holds promise as a tool to accurately estimate the expected dose distribution for OARs. 
We prospectively investigated the benefits of incorporating an AI-based decision support tool (DST) into the 
clinical workflow to improve OAR sparing. 
Materials and methods: The DST dose prediction model was based on 276 institutional VMAT plans. Under an IRB- 
approved prospective trial, the physician first generated a custom OAR directive for 50 consecutive patients 
(physician directive, PD). The DST then estimated OAR doses (AI directive, AD). For each OAR, the treating 
physician used the lower directive to form a hybrid directive (HD). The final plan metrics were compared to each 
directive. A dose difference of 3 Gray (Gy) was considered clinically significant. 
Results: Compared to the AD and PD, the HD reduced OAR dose objectives by more than 3 Gy in 22% to 75% of 
cases, depending on OAR. The resulting clinical plan typically met these lower constraints and achieved mean 
dose reductions between 4.3 and 16 Gy over the PD, and 5.6 to 9.1 Gy over the AD alone. Dose metrics achieved 
using the HD were significantly better than institutional historical plans for most OARs and NRG constraints for 
all OARs. 
Conclusions: The DST facilitated a significantly improved treatment directive across all OARs for this generalized 
H&N patient cohort, with neither the AD nor PD alone sufficient to optimally direct planning.   

1. Introduction 

Head and neck radiation treatment planning has undergone a sig
nificant revolution over the past 20 years. Treatment techniques tran
sitioned from opposed laterals and an anterior field to 3-dimensional 
radiotherapy (3D-CRT) to intensity modulated radiation therapy (IMRT) 
over a relatively brief period of time [1]. Given the routine imple
mentation of volumetric modulated arc therapy (VMAT), increased 
conformality and reduced organ-at-risk (OAR) doses are achievable with 
a relatively brief treatment delivery [2]. Yet with increasing complexity 
comes a lengthier treatment planning process and the need for physi
cians to make more tradeoff decisions. 

While physicians may use standard, nationally-accepted organ-at- 
risk constraints to direct the planning process, the configuration of each 
patient’s targets and normal tissue anatomy is different. By using a rigid 

set of constraints for any given patient, some OARs may receive an 
unnecessarily high dose that would still be technically within tolerance, 
or the planner may spend excessive optimization time trying to meet a 
constraint that is unachievable. Thus, the optimal dose distribution may 
not be achieved without a more personalized treatment directive that 
incorporates their anatomy. Research harnessing artificial intelligence 
(AI) has led to algorithms that can estimate the expected dose distri
bution either based on the intrinsic relationship between targets and 
normal structures (i.e. knowledge-based methods) [3–5] or on mapping 
the given patient to a library of similar patients (i.e. atlas-based 
methods) [6]. Preliminary work has suggested that such algorithms 
may lead to clinically reasonable and accurate estimates of an achiev
able treatment plan [7–9]. These predictions can be utilized in several 
ways, including informing physician decision-making on acceptable 
OAR target doses or automatically driving a treatment planning 
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optimizer towards a clinically optimal plan [4,7,10,11]. 
Clinical decision support tools (DST) have been frequently imple

mented in oncology, such as the use of clinical pathways for chemo
therapy regimen or radiotherapy prescription dose in medical and 
radiation oncology, respectively [12,13]. The incorporation of AI into a 
treatment planning DST is promising not only from an accuracy stand
point but also as a means to avoid potential pitfalls of relying exclusively 
on AI, including lack of clinical context or unintended bias from the 
underlying data. Further, the improved confidence in delivering the 
right treatment to the patient, provided by a DST, should result in 
improved efficiency for the clinical team. It is within this framework that 
we have evaluated the application of a commercially-available DST 
(QuickMatch, Siris Medical) [14] to augment clinical expertise by 
incorporating AI-based dose prediction into the head and neck treatment 
directive process. 

2. Methods 

2.1. Decision-support tool 

Two hundred seventy-six patients from 2015 to 2018 with standard 
dose-fractionation regimens were used for AI model training. The DST 
engine uses a machine learning approach to model dose, although the 
output to the user is a list of de-identified patients selected as the closest 
matches to the expected doses to the OARs and planning target volumes 
(PTV). Once a new patient’s contours were finalized, they were exported 
to the DST, and following processing, several matched patients in the 
database are shown to the physician. This study focused on dose metrics 
to the key OARs that typically drive planning trade-offs. Based on our 
historical practice, the key OARs were: contralateral parotid gland, 
ipsilateral superficial parotid gland, contralateral submandibular gland, 
oral cavity, middle pharyngeal constrictor, inferior pharyngeal 
constrictor, cervical esophagus, and larynx. 

3. Clinical implementation 

One physician (DJS) used the DST on 50 consecutive patients with 
oropharynx, oral cavity, larynx, or hypopharynx cancer prior to sub
mitting the treatment directive to the dosimetrist. Prior to sending target 
and OAR structures to the DST for evaluation, the physician prepared 
the treatment directive (physician directive, PD) for the dosimetrist. The 
physician’s routine practice is to evaluate the patient’s unique PTV and 
OAR anatomic relationships and provide a custom estimate for the OARs 
of that case based on experience. Once the initial constraints were 
recorded, the DST was engaged, and the physician then identified the 
preferred matched patient produced by the DST. For each OAR, if the PD 
constraint was lower than the corresponding OAR in the DST matched 
patient (AI directive, AD), the PD constraint was kept. If the AD 
constraint was lower than the PD constraint, the AD constraint was 
submitted instead. Thus, the final directive used for treatment planning 
was a hybrid of the initial physician and AI constraints, called a Hybrid 
Directive (HD). 

This study was reviewed by the IRB and considered exempt. 

4. Treatment planning 

The treatment plans were created using Eclipse treatment planning 
system V15.5 (Varian, Palo Alto, CA) and volumetric modulated arc 
therapy (VMAT) technique. The general target coverage requirements 
are: (1) more than 95% of the target receiving the prescribed dose, (2) 
less than 105% hot spot and (3) optimal dose conformality (i.e. minimize 
the dose leak between individual dose level PTVs). The planner gener
ated the VMAT plan with three to five 6MV arcs to achieve the optimal 
dose distribution fulfilling both the HD and the target coverage re
quirements. When the HD constraint was unachievable, variation was, 
of course, allowed to meet coverage criteria. 

5. Analysis 

The primary aim of the analysis was to assess the benefit of using the 
hybrid directive over the physician or decision-support directives alone. 
First, we compared the AD and PD as well as the frequency that each of 
them used in the HD for planning. As a general statement, we assumed 
that planning directives and achieved doses within 3 Gy of each other 
are clinically comparable and report the frequency at which the AD and 
PD were different by at least 3 Gy. We also showed the probability that 
the achieved plans were more than 3 Gy lower than either directives. 
The achieved doses based on the HD were compared with the initial AD 
or PD using Wilcoxon signed rank test. We also compared the OAR 
metrics from the achieved plans using the HD with both NRG national 
standards and our prior institutional experience using a two-tailed t-test. 

In order to determine if the planning results based on the HD were 
achieved because the planner/optimizer was simply able to improve on 
the given directive, we compared the original directive for the historical 
plans matched by the DST; 39 original directives were accessible from 
the record. The differences between the original directive and original 
achieved plan were compared against zero using a one-sample t-test, as 
were the differences between the HD and its achieved plan. 

6. Results 

Fifty cases were accrued from January 2019 to June 2019. Baseline 
patient characteristics are shown in Table 1. Approximately 50% of 
patients had oropharynx cancer, and the remainder larynx/hypophar
ynx or oral cavity. The mean OAR constraints from the AD and PD es
timates are shown in Table 2, as well as the frequency that each was used 
in the HD. For some structures, the AD was used more frequently, while 
in others, the PD was more often used for planning. Overall, at least one 
OAR prediction from the AI DST was incorporated into the final direc
tive for 90% (45/50) of patients; further, at least two OAR predictions 
from the DST were incorporated for 76% of the patients (38/50). 

With respect to the initial prediction from the physician and DST, 
there was no consistent pattern of one estimate consistently higher than 
the other (Fig. 1a); while there was reasonably high concordance in 
some OARs such as the inferior constrictor and contralateral parotid, 
there was also significant disagreement in some structures, such as the 
esophagus and middle constrictor. While the directives were frequently 
comparable, when there was a discrepancy greater than 3 Gy, the mean 
difference was quite large (greater than 5.7 Gy in Supplementary 
Table 1). Moreover, the percent of directives derived from the AD or PD 
that made up the HD for a given patient were variable, depending on the 
patient (Fig. 1b). 

Table 1 
Patient characteristics. T and N stage are based on the 
AJCC (American Joint Commission on Cancer) 7 
staging manual.  

Characteristic Number (%) 

Disease site  
Oropharynx 26 (52%) 
Larynx 14 (28%) 
Oral cavity 7 (14%) 
Other 3 (6%)  

T stage  
T1 10 (20%) 
T2 17 (34%) 
T3 10 (20%) 
T4 13 (26%)  

N stage  
N0 12 (24%) 
N1 7 (14%) 
N2 30 (60%) 
N3 1 (2%)  
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The final achieved plan was often significantly lower than the orig
inal estimates from the AD or PD alone (Fig. 2, Table 3). In fact, 
depending on the OAR, the final plan was more than 3 Gy lower than the 
AD and PD in 17%-53% and 13%-53% of the cases, respectively. When 
comparing either the AD or PD to the final achieved doses, the achieved 
plans were more likely to be within 3 Gy of the PD than the AD pre
diction, but the achieved doses were often more than 3 Gy less than the 
PD estimate as well. Whereas the final plan metrics were highly unlikely 
to be more than 3 Gy higher than the PD, the AD overestimated the 
potential sparing of several OARs for 4%-14% of cases. In these cases, if a 
planner strictly relied on the AD, unnecessary effort would have been 

spent trying to (unsuccessfully) meet the proposed constraints. 
We compared the achieved metrics in this study with both historical 

institutional treatments (effectively using the PD alone) and RTOG/NRG 
standards (Fig. 3). The OAR metrics from the prior institutional plans 
were typically significantly lower than the cooperative group standards. 
Despite this favorable baseline plan quality, though, the hybrid directive 
approach further improved the mean OAR dose for an average of 2 to 9 
Gy in comparison to historical plans, many of which were statistically 
significant. 

Finally, we found that the improvement gained using the HD was not 
due to overachievement by the dosimetrists, as there was no significant 
difference between the historical PD and its respective achieved plan 
(Supplementary Fig. 1, blue), nor were there significant differences 
between the HD estimation and the achieved plan (Supplementary 
Fig. 1, purple). In fact, out of all OAR directives in the 39 original plans, 
only 13% were more than 3 Gy lower than the directive. The larynx, 
superior and inferior constrictor planned doses were more than 3 Gy less 
than the directive in 11%, 22% and 16% of cases, with all other OARs 
within 3 Gy of the directive at least 93% of time. In other words, the 
improvement achieved with the HD was due to their attempt to meet the 
more aggressive directive; had the higher initial directive been used 
instead, one would expect higher final plan metrics. 

7. Discussion 

In this study, we have shown that the use of an AI-based decision- 
support tool facilitated significantly improved treatment plans in com
parison to institutional historical plans, and RTOG/NRG standards. 
Depending on the OAR, the DST provided a significantly lower (i.e. at 
least 3 Gy less) estimate in up to 39% of cases, and in most of these 
patients, this lower directive led to improved OAR dosimetry. Yet solely 

Table 2 
Mean AI directives (AD) and physician directives (PD) and the proportion each 
was used for the hybrid directive (HD). Abbreviations: Sup = superior; Mid =
middle; Inf = inferior; CL = contralateral; IL = ipsilateral; SMG = submandib
ular gland; Gy = Gray.  

OAR AD PD 

Mean (Gy), 
SD 

% Used in 
HD 

Mean (Gy), 
SD 

% Used in 
HD 

Esophagus 20.8 (1.3) 33% 19.9 (1.2) 67% 
Larynx 29.4 (0.6) 60% 30.1 (0.7) 40% 
Sup 

Constrictor 
35.4 (1.1) 19% 36.2 (1.2) 81% 

Mid 
Constrictor 

33.9 (1.1) 21% 34.1 (1.0) 79% 

Inf Constrictor 21.8 (1.3) 48% 22.4 (1.3) 52% 
CL Parotid 19.2 (0.9) 56% 18.5 (0.9) 44% 
IL Sup_Parotid 24.7 (0.6) 39% 24.8 (0.2) 61% 
CL SMG 37.6 (2.3) 38% 28.0 (1.8) 62% 
Oral Cavity 17.9 (0.5) 49% 18.2 (0.7) 51%  

Fig. 1. (A) Comparison of the original physician directive (PD) and artificial intelligence directive (AD) estimates. (B) Frequency of PD vs AD use in forming the 
hybrid directive (HD). Abbreviations: Sup = superior; Mid = middle; Inf = inferior; CL = contralateral; IL = ipsilateral; Gy = Gray. 
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relying on the DST estimates would be suboptimal, since the PD was 
often more ambitious than the DST estimate, and in a marked number of 
cases, the plans were better than the AD estimate. Thus while the core 
technology of the DST was artificial intelligence, we posit that its use in 
radiation planning is best characterized by the term augmented intelli
gence, as the hybrid directive was a combination of physician experi
ence and the AI. 

Despite its technical complexities, head and neck treatment planning 
is still an art. Dosimetrists need to identify which dose constraints are 
reasonable and should be pushed further, and which are unachievable. 
Without a feasible treatment directive, though, the planner may either 
arrive at a plan that is inferior to the optimal solution or proceed through 
a large number of iterations and optimizations without converging on an 
achievable set of tradeoffs. This augmented intelligence approach at
tempts to guide both the physician and planner to the optimal tradeoff. 
Prior studies have highlighted the potential benefits as well as pitfalls in 
dose prediction and automatic planning for head and neck radiotherapy. 
Wang et al. developed their own knowledge-based dose prediction 
model for oropharynx IMRT but noted prediction errors greater than 4 
Gy in 17% of cases. The authors attributed this higher-than-anticipated 
rate to the challenge of inter-organ dependency and inconsistent 
tradeoffs in their training dataset [15]. Non-AI driven commercial-based 
automatic planning solutions have also been interrogated for their 
ability to automatically guide head and neck IMRT. Tol et al developed 
RapidPlan (Varian Medical System, Palo Alto, TM) models based on 60 
head and neck patients and then applied them to re-plan 15 older 

patients and 15 recent patients, finding that the clinical plans were 
generally, but not consistently, comparable [11]. In a recent provocative 
study, radiation oncologists at an academic center were presented in a 
blinded fashion with both dosimetry-driven plans and unadjusted 
knowledge-based plans generated with RapidPlan [16]; among the 36 
head and neck plans, the knowledge-based plan was considered superior 
or equivalent in 67% of cases, a statistically significant result. When 
comparing the quality of the delivered plans before and after the inte
gration of knowledge-based planning into their clinic, the authors found 
clear dosimetric improvements in the more recent plans. With the pos
sibility of even more refined dose predictions using AI [8,17], further 
work is needed on optimizing human- and computer-based interactions 
that lead to the optimal treatment plan. 

This study has several limitations. First, only one physician was 
involved in the directive process, so the impact of the DST on other 
radiation oncologists was untested. Other physicians may be more likely 
to provide achievable dose constraints for the directive, minimizing the 
benefit of the DST. This physician was the only head and neck radiation 
oncologist in the department at the time of the study, and thus this 
limitation was unavoidable. In the future, we hope to generalize the use 
of this tool with other practitioners in the department. Moreover, the 
DST was compared against our routine directive process, in which 
personalized constraints are submitted for each patient, rather than 
referring to a more standard list of OAR metrics. Since the PD constraints 
were generally stricter than published guidelines such as in NRG trials, 
we may have underestimated the potential benefit of the DST in other 

Fig. 2. Comparison of hybrid directive (HD) achieved plan doses to the artificial intelligence directive (AD, Panel A) and original physician directive (PD, Panel B).  

D.J. Sher et al.                                                                                                                                                                                                                                  



Clinical and Translational Radiation Oncology 29 (2021) 65–70

69

practices. Also, this analysis is obviously not a randomized trial, and we 
cannot know that the improved performance was not due to extra effort 
on the part of planners; a more robust conclusion could be made by 
generating three independent plans based on the AD, PD and HD and 
then comparing the results. However, we did not have the bandwidth to 
perform approximately 100 additional high-quality plans. Instead, when 
we compared the original treatment directive with its delivered plan, we 
found that the final dose metrics were very similar to their directive. 
This result suggests that it is the improved estimate, rather than planner 
initiative or overachievement, that led to an improved dose distribution. 
Of course, the ultimate endpoint of improved planning is superior 

clinical outcomes, and we did not assess patient outcomes as part of this 
study. Finally, an updated patient model customized to active physicians 
in the practice would presumably be more likely to accurately estimate 
an achievable and acceptable dose distribution. 

In conclusion, this study has shown that the addition of an AI-based 
decision-support tool for head and neck radiotherapy planning signifi
cantly reduced OAR doses in the clinically-approved plan. Instead of 
using either the DST or physician intuition alone to drive the planning 
process, using this augmented-intelligence solution reaps the benefits of 
both physician experience and the knowledge gained from our depart
mental planning history. Of course, every new case that benefits from 

Table 3 
Comparison of achieved organ-at-risk doses in the treatment plan relative to the AI directive (AD) and the physician directive (PD), respectively. Abbreviations: Sup =
superior; Mid = middle; Inf = inferior; CL = contralateral; IL = ipsilateral; Gy = Gray; N/A = not applicable; * = comparison versus no dose difference, p<0.05.   

AD Prediction 

Plan & AD within 3 Gy Plan > 3 Gy 
LOWER than AD prediction 

Plan > 3 Gy 
HIGHER than AD prediction 

% % Mean Dose Difference, SD (Gy) SD (Gy) % Mean Dose Difference (Gy) SD (Gy) 

Esophagus 34% 53% 10.7* 7.1 13% − 6.1 1.3 
Larynx 71% 29% 5.0* 2.0 0% N/A N/A 
Sup Constrictor 50% 44% 7.9 8.7 6% − 7.5 N/A 
Mid Constrictor 44% 52% 9.8* 6.0 4% − 3.9 N/A 
Inf Constrictor 83% 17% 4.3* 1.4 0% N/A N/A 
CL Parotid 62% 24% 7.2* 3.9 14% − 5.4 1.3 
IL Sup Parotid 70% 23% 7.4* 4.7 7% − 3.6 0.4 
CL SMG 54% 35% 16.0* 14.9 11% − 8.7 4.1 
Oral Cavity 57% 30% 5.9* 3.5 13% − 4.7 1.8   

PD Prediction 

Plan & PD within 3 Gy Plan > 3 Gy 
LOWER than PD prediction 

Plan > 3 Gy 
HIGHER than PD prediction 

% % Mean Dose Difference (Gy) SD (Gy) % Mean Dose Difference (Gy) SD (Gy) 

Esophagus 71% 25% 9.1* 7.1 4% − 4.5 0.1 
Larynx 60% 37% 5.6* 2.4 3% − 6.2 N/A 
Sup Constrictor 77% 20% 8.0* 5.3 3% − 7.6 N/A 
Mid Constrictor 47% 53% 8.5* 4.9 0% N/A N/A 
Inf Constrictor 85% 13% 6.4* 3.7 4% − 8.0 N/A 
CL Parotid 81% 17% 6.2* 2.6 2% − 3.4 N/A 
IL Sup Parotid 81% 19% 6.0* 2.3 0% N/A N/A 
CL SMG 82% 14% 5.8* 3.3 4% − 8.2 N/A 
Oral Cavity 71% 23% 7.7* 3.2 6% − 5.4 2.1  

Fig. 3. Comparison of mean doses from national protocols (RTOG/NRG), UT Southwestern historical plans (traditional directive), and the achieved doses in this 
study using the hybrid directive (HD). * represents p < 0.05. 
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the hybrid directive approach can be incorporated into an updated AI 
model, and future research will assess whether progressively improving 
performance of the DST further improves plan quality. 
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