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The unprecedented 2015–2016 Zika outbreak in the Americas sparked global concern
and drove the rapid deployment of vaccine and therapeutic countermeasures against this
re-emerging pathogen. Alongside vaccine development, a number of potent neutralizing
antibodies against Zika and related flaviviruses have been identified in recent years. High-
throughput antibody isolation approaches have contributed to a better understanding of
the B cell responses elicited following infection and/or vaccination. Structure-based
approaches have illuminated species-specific and cross-protective epitopes of
therapeutic value. This review will highlight previously described monoclonal antibodies
with the best therapeutic potential against ZIKV and related flaviviruses, and discuss their
implications for the rational design of better vaccine strategies.
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INTRODUCTION

The first generation of flavivirus vaccines, such as the yellow fever virus (YFV) 17D vaccine, were
developed empirically by serially passaging pathogenic virus in animal tissues until attenuated virus
variants emerged that were suitable to be used as a safe, live and effective vaccine (1, 2). Others, like
the licensed Japanese encephalitis virus (JEV) and tick-borne encephalitis virus vaccines are made
from whole inactivated viral particles (3, 4), a strategy that has been recapitulated for experimental
vaccines for other flaviviruses, such as dengue virus (DENV) and Zika virus (ZIKV) (5–7). In recent
decades, the advent of a novel suite of technologies has enabled a more rational and targeted
approach to the rapid discovery and development of immunogens for emerging pathogens (8, 9). In
particular, whole genome sequencing has revolutionized vaccinology, translating genomic
information to vaccine candidates, through a process termed “reverse vaccinology”. The next
phase of this once fresh approach—known as “reverse vaccinology 2.0”—now assembles a more
multi-faceted, seamless pipeline of complementary disciplines that 1) pre-screens human donors 2)
identifies and sequences B cell receptors of highly specific or broadly reactive B cells 3) expresses
these sequences as monoclonal antibodies (mAbs) and 4) structurally and functionally characterizes
the targeted antibody epitopes. However, this pathway not only applies to the development of
vaccines immunogens, but is now the basis to rapidly scale prophylactic and therapeutic
org February 2021 | Volume 11 | Article 6210431
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monoclonal antibodies as well (10, 11). These new technologies
were first pioneered through research of viral pathogens, such as
HIV and influenza, for which effective vaccines traditionally have
been difficult to develop (11–13). The biology and methodologies
elucidated by working on these other viruses have paid dividends
for the development of countermeasures to other infectious
diseases, particularly flaviviruses, which threaten the health of
people throughout the world. Over the last several years, a large
number of monoclonal antibodies protective against flaviviruses
have been reported, providing new insights into neutralizing
epitopes, new avenues for vaccine design, and potential
combinations of mAbs that may be used for cross-flavivirus
prophylaxis or treatment. In this article, we will review the
current status of neutralizing monoclonal antibodies against
ZIKV and DENV and provide perspectives on protective
epitopes that may be of therapeutic value or guide the
development of successful flavivirus vaccines.
THE COMPLEX ZIKA VIRUS/DENGUE
VIRUS SEROLOGIC LANDSCAPE

Neutralizing antibody responses are the major correlate of
protection from flavivirus infection (14–16). The primary
target of these protective antibodies is the viral envelope (E)
protein, incorporated into the budding virion as a premembrane
(prM)-E precursor that is cleaved into membrane (M) and E
proteins upon maturation. In mature particles, E is the only
accessible protein at the virion surface, while M anchors E at the
viral membrane. E consists of 3 domains DI, DII and DIII. The
former, located at the center of the E protomer, links the putative
host cell receptor binding domain, DIII, with DII, which drives
dimerization and harbors the fusion loop at its distal end (Figure
1) (49). Most neutralizing antibodies act either by blocking virion
binding to its host receptor or by interfering with the structural
rearrangements necessary for E fusogenic activity, upon entry to
the endocytic pathway (50). Mature ZIKV and DENV virions
display 180 copies of E protein, arranged as anti-parallel dimers
that cover the entire virion surface. These E dimers are further
organized in an “herringbone” pattern with icosahedral
architecture (51, 52). However, each of the three E proteins
within an asymmetrical unit yields non-equivalent interactions.
As a result, a given antibody epitope on the E monomer is
presented in three different conformations on the mature
particle. Quaternary epitopes, spanning several E protomers,
are of great interest as they are often the target of potent
neutralizing antibodies (22, 53). On the other hand, cryptic
epitopes, transiently exposed due to the highly dynamic
structure of E, have been associated with strain-specific poorly
neutralizing responses (49).

Whereas E proteins across all flaviviruses share sequence and
structural similarities, phylogenetic analyses have revealed that
ZIKV is most related to the 4 DENV serotypes (25). Accordingly,
both DENV convalescent plasma and DENV-directed
monoclonal antibodies show substantial cross-reactivity to ZIKV
(54, 55). These findings have prompted some investigators to
Frontiers in Immunology | www.frontiersin.org 2
consider ZIKV as the 5th member of the DENV serocomplex (54).
Investigations into the epidemiologic overlap of DENV and ZIKV,
in areas where the two viruses co-circulate, have revealed
important findings about their immunologic cross-reactivity. For
example, pre-existing DENV immunity in humans was associated
with reduced ZIKV symptoms in a pediatric cohort in Nicaragua
(56), as well as reduced symptoms and a lower risk of ZIKV
infection in a large prospective Brazilian cohort (57). Additionally,
mothers who were infected with ZIKV, but had serologic evidence
of pre-existing DENV, showed no increased risk of microcephaly
in their fetuses (58). There are sufficient data to suggest serologic
crosstalk between ZIKV and the four DENV serotypes that
requires consideration when designing vaccines and antibody-
based therapies.
NEUTRALIZING ANTIBODIES AGAINST
ZIKA AND DENGUE

In an effort to develop categorical solutions to virus genuses or
families, passive immunotherapy is gaining traction as a
plausible alternative to vaccines and anti-virals. This has been
made possible by the identification of highly potent and/or
broadly cross-reactive antibodies (9), through large-scale single
B cell isolation and screening approaches. These exceptionally
potent antibodies have 50% inhibitory concentration (IC50) in
the low ng/ml range, affording protection at concentrations
readily achievable in vivo. The vast majority of these antibodies
neutralize flaviviruses by locking E dimers in the pre-fusion
conformation and preventing structural rearrangements
necessary for E fusogenic activity. Engineering of these
neutralizing antibodies can further enhance their potency and
breadth as well as improve their pharmacokinetic properties (59,
60), so that a single infusion could confer protection over several
weeks. Other modifications such as fine-tuning or abrogation of
their effector functions are valuable tools (61, 62). However,
given concerns of antibody-dependent enhancement (ADE) of
infection between ZIKV and DENV (41, 54, 63, 64), ZIKV
therapeutic mAbs would likely be best deployed harboring Fc-
silenced mutations (LALA or YTE/FQQ) (65–68), to eliminate
any risks of potentiating DENV infections, especially when Fc
effector functions appear dispensable for protection in small
animal models (26, 33, 41, 45).

The E Dimer Epitope
A well-described protective epitope of flaviviruses is the E dimer
epitope (EDE), a conserved quaternary epitope that is the target
of potent cross-neutralizing antibodies. Originally discovered in
DENV-infected patients (27), EDE mAbs were subsequently
found to cross-neutralize ZIKV, and with high potency like
EDE1-C8 (25) (Figure 1). The EDE is a particularly vulnerable
site that is highly conserved across flaviviruses, as it overlaps with
the binding site of prM in the immature particle. prM plays a key
role during viral egress in the acidic Golgi compartment of the
producer cell by preventing premature exposure of the
fusion loop.
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Virus Prototypical
antibody

Similar
antibodies

Species Source, isolation strategy Epitope,critical
residues

Neutralizationpotency Cross
neutralization

References

Fu
si
o
n
lo
o
p ZIKV-DENV 2A10G6 4G2 mouse DENV-2 immunized mouse,

hybridoma screening
Fusion loop
W101

* ZIKV, DENV1-4,
WNV

(17–19)

ZIKV-DENV MZ54 MZ56 human Flavivirus-experienced ZIKV
vaccinee, B cell sort using whole
virus + ZIKV/DENV E probes

Fusion loop
W101

** ZIKV, DENV1-4,
WNV

(20)

D
I=
D
II

ZIKV Z3L1 human ZIKV-infected human, memory B
cell sort using ZIKV E probe

DI, DI-DII hinge ** ZIKV specific (21)

DENV-1 1F4 human B cells from DENV immune human,
screening of EBV-transformed B
cells from total PBMCs

DI, DI-DII hinge *** DENV-1 specific (22, 23)

D
II ZIKV-DENV MZ20 1C19 human Flavivirus-experienced ZIKV

vaccinee, B cell sort using whole
virus + ZIKV/DENV E probes

DII bc loop
R73

** ZIKV, DENV1-4,
JEV

(20, 24)

E
d
im

er

ZIKV/DENV EDE1-C8 EDE1-B10,
C10, EDE2-
A11

human Patients with acute DENV infection,
screening of total plasmablasts

E dimer
M68, S70, S72,
G104, Q253, T315

*** (C8)
**** (B10)

ZIKV, DENV1-4 (25–30)

DENV-2 2D22 human B cells from DENV immune human,
screening of EBV-transformed B
cells from total PBMCs

E dimer ** (DENV-2) DENV-2 specific (22, 31)

D
III

la
te
ra
l
ri
d
g
e

ZIKV ZV-67 ZV-54 mouse ZIKV-infected mouse with EDIII
boost, hybridoma screening

DIII lateral ridge
K394

** ZIKV specific (32)

ZIKV/
DENV-1

Z004 Z006, 1C11,
ZIKV-116,
SMZAb5

human B cell from a ZIKV-infected human,
memory B cell sort using ZIKV EDIII
probe

DIII lateral ridge
E393, K394

**** ZIKV, DENV-1 (33–37)

DENV-1 E105 E106 mouse DENV-1 infected mouse with EDIII
boost, hybridoma screening

DIII lateral ridge *** DENV-1 specific (38)

DENV-2 3H5 2C8 mouse DENV-2 infected mouse, hybridoma
screening

DIII lateral ridge **** DENV-2 specific (39, 40)

ZIKV ZKA190 human B cell from a ZIKV-infected human,
EBV-transformed B cell from total
memory B cells

DI-DIII linker, DIII
lateral ridge

*** ZIKV specific (41, 42)

D
I=
D
III

lin
ke

r ZIKV/DENV MZ4 MZ1, MZ2,
MZ24

human Flavivirus-experienced ZIKV
vaccinee, B cell sort using whole
virus + ZIKV/DENV E probes

DI-DIII linker
Y305

**** ZIKV, DENV1-4 (20)

DENV-4 5H2 chimpanzee Phage display from repertoire of
infected chimpanzee

DI, DI-DIII linker ** (DENV-4) DENV-4 specific (43, 44)

Q
ua

te
rn
ar
y

ZIKV ZIKV-117 human B cell from a ZIKV-infected human,
screening of EBV-transformed B
cells from total PBMCs

dimer-dimer
interface
D67, Q89, K118

**** ZIKV specific (45, 46)

DENV-3 5J7 human B cells from DENV immune human,
screening of EBV-transformed B

Quaternary DI-DII
hinge, DII, DIII on 3

**** DENV-3 specific (22, 47)
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cells from total PBMCs different protomers

Quaternary DI-DII 

E-dimer (EDE)
EDE1-C8
EDE1-B10

Fusion loop (FLE)
2A10G6
MZ54

DIII lateral ridge
Z004
SMZAb5
ZKA190

DII quaternary epitopes
ZIKV-117

DI-DII interface
Z3L1

DI-DIII linker
MZ4

DII bc loop
MZ20

DIII

DI DII

FIGURE 1 | Neutralizing epitopes of Zika virus (ZIKV) and dengue virus (DENV) monoclonal antibodies. Top, Characteristics of prototypical ZIKV and DENV
neutralizing antibodies grouped by epitope specificities. Neutralization potency is based on IC50 against ZIKV unless otherwise indicated. IC50 (ng/ml) are indicated
as follows: **** (<10 ng/ml); *** (10–50 ng/ml); ** (50–500 ng/ml); * (>500 ng/ml). Bottom, the same neutralizing epitopes mapped onto the ZIKV E dimer. The ZIKV E
dimer, PDB 5LBV (25), is shown in ribbon representation with the respective domains of each protomer colored in red (DI), yellow (DII), and blue (DIII) while the fusion
loop in DII is highlighted in green. This visual was generated using UCSF Chimera (48).
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B10, another EDE mAb, was found to be particularly potent
against ZIKV and protected mice against lethality and fetal
demise (26). It provided robust therapeutic as well as
prophylactic efficacy against ZIKV infection in rhesus monkeys
and, importantly, did not induce viral escape, which is rare in
antibody monotherapy (28).

The discovery of these potent EDE mAbs encouraged the
development of immunogens capable of inducing B cell
responses of similar specificities through vaccination. The
addition of disulfide bonds necessary to stabilize the dimeric E
also has the secondary benefit of masking the fusion loop epitope
(69), another conserved epitope that has yielded cross-reactive
but poorly neutralizing antibody responses (49). Stabilized
dimers also present virus-specific, protective E dimer epitopes,
recognized by mAbs such as 2D22 (70), a DENV-2 specific
antibody. Efforts to develop EDE immunogens are ongoing and
hold promise in eliciting broad and potent flavivirus protective
responses (71).
Domain III-Directed Antibodies
Antibodies to DIII have been shown to develop at later stages of
ZIKV infection, and are associated with increased neutralization
potency (72). While DIII antibodies have been readily elicited in
murine models (32, 73) and are believed to be less frequent in
humans (74), several potent DIII antibodies have been isolated
from ZIKV-infected patients (33–37) (Figure 1). Prototypical
DIII neutralizing antibodies target the lateral ridge epitope; these
include mouse mAbs 3H5 (DENV-2) (40), E16 (WNV) (75),
ZV-67 (ZIKV) (67) and human mAbs Z004 (34), SMZAb5 (33)
and ZKA190 (42). Unlike the EDE directed B10 mAb, passive
immunotherapy with single DIII antibodies quickly select for
resistant virus variants. Therefore, a combination of at least two
DIII antibodies (37) or the use of bi-specific antibodies targeting
different domains (42) may prevent viral escape and are likely to
be more effective for therapeutic use.
DI/DIII Linker
A new class of potent ZIKV/DENV-2 cross-neutralizing
antibodies targeting the DI/DIII linker region was recently
identified in a donor with pre-existing DENV immunity
following vaccination with a whole ZIKV inactivated virus.
One prototypic mAb, MZ4, is highly potent against ZIKV and
DENV-2 (20) (Figure 1). Since the DI/DIII linker is highly
conserved across flavivirus species, secondary contacts with DI
and DIII likely define the breadth and potency of such
antibodies. Other mAbs such as ZKA190 (42) and 5H2 (43)
also engages the DI/DIII linker, but more extensive interaction
with DIII, or DI, restricts their specificity to ZIKV and DENV-4,
respectively. The highly conserved hinge region between DI and
DIII appears to be another site of vulnerability on the flavivirus E
protein. This flexible inter-domain linker allows for major
structural rearrangements during formation of the fusogenic
trimer (76), which makes it an attractive target for the
development of new immunogens.
Frontiers in Immunology | www.frontiersin.org 4
Quaternary Epitopes
Another group of potent neutralizing antibodies target more
complex virion-specific quaternary epitopes consisting of
multiple E protomers and are, as such, more likely to be virus
specific due to differences in sequence, glycosylation and
structural plasticity of E across flaviviruses (Figure 1). One
example of such antibody is ZIKV-117, a ZIKV-specific DII
antibody that cross-links monomers within the E dimers as well
as between neighboring dimers, preventing the reorganization of
E necessary for viral entry (46). Whereas the antigen binding
fragments (Fab) of antibodies binding EDE (31) and DIII (42)
engage all 180 E copies on the virion in a 1:1 stoichiometry,
ZIKV-117 needs only 60 Fabs to effectively cross-link the
glycoprotein shell, contributing to its potent neutralization
capacity and its ability to prevent fetal infection and
intrauterine fetal demise in mice (45). Similarly, the DENV-3
specific antibody 5J7 is exceptionally potent and able to coat the
virus surface with only 60 Fab molecules, with a single Fab
binding across the DI-DII hinge, DII and DIII on three different
E protomers (47). 5J7 interferes with both attachment and fusion
steps, consistent with its multi-domain targeting ability.
GENETICS OF ZIKA AND DENGUE
NEUTRALIZING ANTIBODIES

Understanding of the antibody repertoire generated by flavivirus
infections has been largely shaped by studies aimed at identifying
potent therapeutic antibodies in a few select donors and may not
generalize to the most prevalent responses. Higher throughput
and more systematic antibody characterization (77) is needed to
obtain unbiased insights into the B cell responses elicited by
flavivirus infection and vaccination. Nonetheless, the most
comprehensive study to date has revealed a wide array of VH
gene usage with limited overlap between individuals and no
association between VH gene and epitope specificity (41).
Epitopes such as the fusion loop and the E dimer are targeted
by highly divergent antibodies which may make specificity
predictions based on gene usage only difficult (27) (Table 1).
One notable exception is the case of the DIII lateral ridge-
targeting antibodies. Recurrent lineages using the VH3-23/
VK1-5 combination have been identified in at least eight
donors from central and south Americas by four independent
groups (33–36). This type of antibodies was further associated
with cross-neutralization of DENV-1, suggesting a role of prior
DENV-1 immunity in priming those responses. However, one
donor did not display serologic evidence of DENV-1 infection
(35), indicating that primary ZIKV infection can, in principle,
also elicit such lineage. While other specificities have not been
studied as extensively, it is likely that other flavivirus-specific
public lineages will emerge. A common observation between all
these studies is the very low level of somatic hypermutation
observed, even among potent neutralizing antibodies (34, 41, 78).
A germline-like ZIKV specific neutralizing antibody with no
apparent diversification through affinity maturation was
February 2021 | Volume 11 | Article 621043
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identified, indicating that ZIKV can be readily targeted by
germline BCRs (79).
IMPLICATIONS FOR VACCINE DESIGN
AND CONCLUSIONS

Several neutralizing epitopes on ZIKV and DENV 1-4 have been
identified as desirable targets for successful immunogens (17, 20–
22, 25, 32–36, 45). In our opinion, the ideal vaccine will be able to
elicit protective cross-neutralizing antibodies to ZIKV and
DENV 1-4, providing cross-protection while minimizing
responses to non-neutralizing epitopes that may result in ADE.
Although there are antigenic differences between ZIKV and
DENV, and within DENV 1-4, there is evidence that a pan-
ZIKV/DENV flavivirus vaccine could be achieved by using
different approaches that target the antigenic similarities
between these viruses. For example, stabilized E-dimers may be
promising candidates as they display EDE, DII, DI-DIII, and
DIII neutralization epitopes, which may be exploited by
sequential vaccine strategies with different serotypes to guide B
Frontiers in Immunology | www.frontiersin.org 5
cell responses toward conserved ZIKV/DENV cross-neutralizing
epitopes (69–71). Further examination is needed on whether
they should be used as subunit vaccines or multivalently
displayed on scaffold/nanoparticles. Vaccines based on whole
virus or virus-like particles are antigenically unique in their
ability to present quaternary epitopes capable of eliciting some
of the most potent neutralizing antibodies (20, 45), pending
various inactivation methods (5, 80). A potential issue with
whole inactivated flavivirus vaccines is the residual presence of
prM, a target for non-neutralizing antibodies, which would need
to be considered in future strategies. However, the development
of novel stable cell lines overexpressing furin would allow for the
production of fully mature virions, devoid of prM (81), if viral
sequences produced within these cell lines are representative of
circulating viruses. Recent advances in virus inactivation
techniques could further enhance the immunogenicity of such
vaccines and allow for fewer immunizations with higher
neutralizing antibody titers (82). Finally, among several
alternative vaccine platforms, viral-vectored vaccines based on
non-replicating adenoviruses that encode for the ZIKV M and E
proteins are quickly moving forward. Recent studies revealed
February 2021 | Volume 11 | Article 621043
TABLE 1 | Genetics and characteristics of Zika virus (ZIKV) and dengue virus (DENV) neutralizing monoclonal antibodies.

Antibody Heavy
chain

VH%
SHM

Light
chain

HCDR3
length

VDJ junction Epitope Neutralization
potency

Cross
neutralization

References

ZIKV-117 VH3-30 VK3-15 12 Quaternary **** ZIKV specific (45)
5J7 VH1-69 VK1-39 14 CARDKELLFSRAFDIW Quaternary **** DENV-3 specific (22, 47)

MZ4 VH4-59 5.5 VL1-44 14 CAGLDRYSWNEGGDHW DI-DIII
linker

**** ZIKV, DENV2-3 (20)

Z004 VH3-23 VK1-5 15 CAKDRGPRGVGELFDSW DIII lateral
ridge

**** ZIKV, DENV-1 (34)

Z006 VH3-23 VK1-5 13 CVRDRSNGWSSINLW DIII lateral
ridge

**** ZIKV, DENV-1 (34)

SMZAb5 VH3-23 VK1-5 15 CAKDRSTRGFGELLNYW DIII lateral
ridge

**** ZIKV, DENV-1 (33)

ZIKV-116 VH3-23 6.5 VK1-5 15 CAKDRLSRGVGELYDSW DIII lateral
ridge

*** ZIKV, DENV-1 (36, 45)

1C11 VH3-23 3.5 VK1-5 14 CAKDRIVLGLELFDSW DIII lateral
ridge

** ZIKV, DENV-1 (35)

ZKA190 VH3-30 2.7 VK3-20 23 CAKSGTQYYDTTGYEYRGLEYFGYW DIII lateral
ridge

*** ZIKV specific (42)

EDE1-C8 VH3-64D 6.9 VK3-11 15 CVGGYSNFYYYYTMDVW E dimer *** ZIKV, DENV1-4 (25, 27)
EDE1-C10 VH1-3 2.8 VL2-14 21 CARDKVDDYGDYWFPTLWYFDYW E dimer **** ZIKV, DENV1-4 (25, 27)
EDE2-A11 VH3-74 8.7 VL2-23 26 CVRDGVRFYYDSTGYYPDSFFKYGMDVW E dimer ** ZIKV, DENV1-4 (25, 27)
2D22 VH1-69 VL1-47 9 CARRPQSIFDW E dimer ** (DENV-2) DENV-2 specific (22)

MZ20 VH3-11 10.4 VK1-33 10 CVRAGGARIENW DII bc loop ** (ZIKV) ZIKV, DENV1-4,
JEV

(20)

MZ54 VH3-11 10.4 VK1-33 10 CVCAGGGRTDYW Fusion loop ** ZIKV, DENV1-4,
WNV

(20)

MZ56 VH3-64 4.9 VL2-11 17 CARGWYYYDSRAYWYFDLW Fusion loop ** ZIKV, DENV1-4,
WNV

(20)

Z3L1 VH3-30 VL1-51 10 CARDHLGWSSIW DI, DI-DII
hinge

** ZIKV specific (21)

1F4 VH3-33 VL1-36 18 CARDKNPGTKPYYHYGMDVW DI, DI-DII
hinge

*** DENV-1 specific (22, 23)
VH% SHM: % somatic hyper mutation in the heavy chain variable gene. VH % SHM and VDJ junction characteristics were indicated whenever available. Neutralization potency is based on
IC50 against ZIKV unless otherwise indicated. IC50 (ng/ml) are indicated as follows: **** (<10); *** (10–50); ** (50–500); * (>500). DIII lateral ridge-directed antibodies sharing heavy and light
chain V gene usage are underlined.
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that human Ad26, simian RhAd52, ChAd7, and GAd have all
been shown to elicit protective responses in animal studies,
with rapid and durable neutralizing antibody responses (83–
88). It has yet to be determined the neutralizing targets of these
protective responses.

Clearly the isolation of highly potent neutralizing antibodies
coupled with detailed examination of their properties at the
molecular level have provided pivotal insights into the protective
targets that can, in turn, inform immunogen design or ultimately
a cross-flavivirus vaccine. Until these developments come to
fruition, these mAbs offer new options in treatment modalities
for flavivirus infections, or as prophylaxis during times of an
outbreak to protect populations at risk such as pregnant women
in the case of ZIKV or children with severe secondary
DENV infections.
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