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A B S T R A C T   

COVID-19 is a viral infection that affects people differently, where the majority of cases develop mild symptoms, 
some people require hospitalization, and unfortunately, a small number of patients perish. Hence, identifying 
risk factors is critical for physicians to make treatment decisions. The purpose of this article is to determine 
whether unsupervised analysis of risk factors in positive and negative COVID-19 subjects can aid in the iden-
tification of a set of reliable and clinically relevant risk profiles. Positive and negative patients hospitalized were 
randomly selected from the Mexican Open Registry between March and May 2020. Thirteen risk factors, three 
distinct outcomes, and COVID-19 test results were used to categorize registry patients. As a result, the dataset 
was reported via 6144 different risk profiles for each age group. The unsupervised learning method is proposed in 
this study to discover the most prevalent risk profiles. The data was partitioned into discovery (70%) and 
validation (30%) sets. The discovery set was analyzed using the partition around medoids (PAM) method, and 
the stable set of risk profiles was estimated using robust consensus clustering. The PAM models’ reliability was 
validated by predicting the risk profile of subjects from the validation set and patients admitted in November 
2020. In the validation set, the clinical relevance of the risk profiles was evaluated by determining the prevalence 
of three patient outcomes: pneumonia diagnosis, ICU admission, or death. Six positive and five negative COVID- 
19 risk profiles were identified, with significant statistical differences between them. As a result, PAM clustering 
with consensus mapping is a viable method for discovering unsupervised risk profiles in subjects with severe 
respiratory health problems.   

1. Introduction 

Due to the rapid spread of the SARS-CoV-2 virus worldwide, the 
Coronavirus Disease 2019 (COVID-19) pandemic outbreak has become a 
public health emergency of international concern. The high mortality 
risk associated with COVID-19, which ranges between 2% and 20% 
depending on the availability and quality of medical resources and 
economic conditions [1,2], is one of the pandemic’s primary concerns. 
Another issue is that many recovered patients experience long-term 
sequelae that impact their lives and may have economic consequences 
[3,4]. As a result, effective treatments are needed to improve or cure 
COVID-19 cases and control the disease’s effects. 

Identifying and characterizing the various risk profiles of infected 
subjects is a critical task in managing COVID-19. The accurate charac-
terization of a subject’s risk profile is critical for the prompt selection of 
effective treatment for that particular patient. Additionally, it may 
facilitate effective medical resource allocation and provide critical in-
formation to identify and protect the most vulnerable populations [5]. 

Numerous studies have been conducted in this risk profiling field. 
COVID-19 studies identified the most critical disease severity risk fac-
tors, including advanced age, male gender, obesity, and smoking, as well 
as comorbidities such as hypertension, diabetes, hematologic, renal, 
cardiovascular, and respiratory diseases, all of which may have a sig-
nificant impact on the prognosis of COVID-19 infected subjects [5–12]. 
Additionally, Gansevoort et al. discovered that subjects with chronic 
kidney disease have an extremely high risk of mortality from COVID-19 
[13]. 

As previously stated, it is critical to identify risk factors, and more 
importantly, have tools that can predict disease severity in at-risk pop-
ulations; thus, various supervised approaches have been proposed to 
identify risk factors for COVID-19 progression. The most frequently used 
methods for modeling risk factors for disease severity prediction in pa-
tients with COVID-19 have been univariate and multivariate ordinal 
logistic regression models [14]. In comparison, Ji et al. used multivar-
iate Cox regression to investigate the risk factors for COVID-19 pro-
gressing to a critical or fatal state [15]. These efforts have been 
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conducted in various settings or with limited clinical data [16–18]. 
Additionally, supervised approaches are limited because many 

possible risk factors can be associated with the severity of the outcome. 
Each risk factor and its combination generate various possible COVID-19 
risk profiles; thus, an extensive data set is required to train complex 
statistical models accurately. A novel approach is proposed to address 
the risk factor combination issue, based on unsupervised data clustering 
for identifying robust patterns in subjects’ risk presentations that are 
easily associated with disease severity and outcome [19]. This study 
aims that by using clustering to identify patients’ risk profiles, data 
analysis for treatment decisions can be streamlined. 

There are numerous algorithms for data clustering [20–23]. Certain 
algorithms can be thought of as statistical clustering strategies [24–26]. 
They are robust approaches that result in models that adequately 
describe data, with each model containing explicit factors that aid in 
data comprehension [27,28]. Additionally, novel algorithmic advances 
facilitate the discovery of robust data clusters in multidimensional data 
sets. Consensus clustering is one such technique [29]. Consensus clus-
tering utilizes multiple iterations of the clustering method of choice to 
discover the most reliable partitions from multidimensional data sets. 
Additionally, Partitioning Around Medoids (PAM) is a robust statistical 
clustering algorithm that aims to find K-medoids that minimize the sum 
of the observations’ dissimilarities to their nearest medoid [30]. The 
proposed method utilizes consensus clustering and the PAM clustering 
algorithm to determine the risk profiles of patients. 

The purpose of this study is to determine whether the unsupervised 
discovery of risk profiles for COVID-19 and non-COVID-19 patients 
seeking medical attention can aid in identifying a subset of hospitalized 
patients at increased risk of either: 1) developing pneumonia; 2) 
requiring admission to an intensive care unit (ICU), or 3) perishing as a 
result of the infection. To accomplish this, we used the Open Mexican 
Repository, which collects COVID-19 test results, outcomes (pneumonia 
diagnosis, hospitalization, and death), and known risk factors such as 
age, gender, pregnancy, smoking, obesity, and common comorbidities 
such as hypertension and diabetes. 

2. Material and methods 

2.1. Data preparation 

The preliminary data for this study were obtained on May 9, 2020, 
from the COVID-19 Mexican Open Repository, maintained by the 
Mexican government’s General Directorate of Epidemiology [31]. On 
June 8, the dataset was updated to ensure the best possible patient 
outcome. The dataset contained 128,148 subjects and included the 
following variables: patient ID, age, sex, exposure history, obesity, 
smoking, pregnancy, patient type (ambulatory/hospitalized), and other 
underlying comorbidities (diabetes, hypertension, cardiovascular dis-
ease, chronic obstructive pulmonary disease (COPD), asthma, immu-
nosuppression, chronic kidney failure, and other diseases) (pneumonia, 
ICU, intubation, and date of death). 

The study was limited to only hospitalized subjects due to the 
Mexican COVID-19 sentinel testing strategy [32]. Among hospitalized 
patients, 13,367 subjects tested positive for COVID-19, while 19,958 
subjects tested negative. Each patient was described using 35 charac-
teristics, but for this study, the focus was on the set of 13 risk factors 
associated with illness severity, such as age, sex, obesity, smoking, and 
underlying comorbidities. Other reported data pertain to patients’ per-
sonal information and exposure history, such as the date on which the 
patient’s symptoms began, the date on which the patient was admitted 
to the care unit, the patient’s nationality, and whether the patient speaks 
an indigenous language. Since these characteristics had no discernible 
effect on the severity of illness, they were excluded from this study. As a 
result, the selected data set generated 6144 different risk profiles for 
each age group. 

Moreover, hospitalized subjects in November 2020 were used as a 

new cohort of patients to validate the discovered risk profiles’ accuracy. 
This test set included 31,987 patients with positive COVID-19 test re-
sults, while 18,170 had negative test results. This study initially took 
place in June 2020. The trained model was then validated using the 
January 2021 testing set. Table 1 contains descriptive statistics on 
selected characteristics and outcomes for hospitalized patients with 
positive and negative COVID-19 test results. Additionally, Table 2 il-
lustrates the characterization of selected test set features and outcomes. 

2.2. Initial statistical analysis 

The selected characteristics of the positive and negative groups were 
compared to determine if there were any differences between the posi-
tive and negative COVID-19 subjects (Tables 1 and 2). Additionally, 
each group was defined by the number of recovered and deceased pa-
tients. Cohen’s d (Z) and odds ratio (OR) was used to determine the 
effect size of all features for continuous and discrete variables, respec-
tively [33]. Tables S1–S4 summarizes the characteristics of positive and 
negative COVID-19 subjects from the discovery set (March to May 
hospitalized patients) and the validation set (November hospitalized 
patients). Finally, the prevalence of the top ten major risk factors 
identified in the discovery set was calculated in males and females with 
positive/negative test results stratified by age group: young (20–40), 
middle (40–60), and elderly (>60). In other words, this report details 
the frequency with which the top 120 risk profiles occur. Supplementary 
material and Fig. S1 are available. 

2.3. Consensus clustering and the PAM clustering model 

Fig. 1 summarizes the overall methodology used to discover clusters 
and model risk profiles. Initially, hospitalized patients were considered 
from the beginning of the COVID-19 pandemic through May, and the 
data set was divided randomly into discovery/training and validation 

Table 1 
The characteristics of subjects from the COVID-19 Mexico hospitalization data 
set (from March to May, at the start of the COVID-19 pandemic). The values 
indicate the number of subjects (percentage) and the mean (SE) for Age. The OR 
was calculated with a 95% confidence interval for positive vs negative COVID- 
19. *, **, and *** denote a small effect size (between 0.2 and 0.5 for Z and 
1.5 to 2 for OR), a medium effect size (between 0.5 and 0.8 for Z and 2 to 3 for 
OR), and a large effect size (greater than 0.8 for Z and more than 3 for OR), 
respectively.  

Feature Positive 
COVID 

Negative 
COVID 

Effect Size 

Subjects (male ratio) 13367 
(65.75%) 

19958 
(55.92%) 

OR = 1.18 (1.13–1.22) 

Age 53.75 (0.13) 44.43 (0.16) Z = 0.3* 
Pregnancy 58 (0.43%) 287 (1.44%) OR ¼ 0.3 (0.23–0.4) 
Diabetes 4099 

(30.66%) 
5288 
(26.50%) 

OR ¼ 1.16 (1.11–1.21) 

COPD 549 (4.11%) 1387 (6.95%) OR ¼ 0.59 (0.53–0.65) 
Asthma 335 (2.51%) 769 (3.85%) OR ¼ 0.65 (0.57–0.74) 
Immunosuppression 370 (2.77%) 1273 (6.38%) OR ¼ 0.43 (0.39–0.49) 
Hypertension 4313 

(32.27%) 
6126 
(30.69%) 

OR ¼ 1.05 (1.01–1.1) 

Cardiovascular 588 (4.40%) 1433 (7.18%) OR ¼ 0.61 (0.56–0.68) 
Obesity 3307 

(24.74%) 
3497 
(17.52%) 

OR ¼ 1.41 (1.34–1.49) 

Chronic kidney 607 (4.54%) 1488 (7.45%) OR ¼ 0.61 (0.55–0.67) 
Smoking 1251 (9.36%) 2151 

(10.78%) 
OR ¼ 0.87 (0.81–0.93) 

Other diseases 584 (4.37%) 1482 (8.63%) OR ¼ 0.59 (0.53–0.65) 
Outcome    
ICU 1596 

(11.94%) 
1457 (7.30%) OR ¼ 1.64 (1.52–1.76) 

* 
Deaths 5610 

(41.97%) 
2510 
(12.58%) 

OR ¼ 3.34 
(3.17–3.51)*** 

Pneumonia 9490 
(71.00%) 

11342 
(56.83%) 

OR ¼ 1.25 (1.21–1.29)  
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sets. This strategy eliminated biases associated with discovery/training 
in the risk assessment of each patient’s risk profile. 70% of subjects were 
randomly selected to participate in the cluster discovery and training of 
the final risk profile prediction model. The corresponding risk profiles 
were predicted for the remaining 30% of patients after estimating all the 

data transformation parameters, the optimal number of clusters, and the 
final cluster parameters via the training data set. Additionally, the cor-
responding risk profiles of the November hospitalized patients were 
predicted to evaluate the discovered risk profiles and the training 
models’ accuracy. Finally, using Classification and Regression Tree 
(CART) analysis, the role of each risk characteristic in each of the risk 
profiles was described [34]. 

Each feature was assigned a value between 0 and 1. Between the 
minimum and maximum ages, the age factor was normalized [35]. 
Males were assigned a code of one, while females were assigned zero. 
The remaining risk categorical features were set to 1 for risk factor 
presence and 0 for risk factor absence. Dimensionality was reduced 
using the principal components analysis (PCA) transform by selecting 
PCA feature vectors that captured more than 80% of total variance [36, 
37]. The risk profile was discovered in the following manner. First, the 
Partitioning Around Medoids (PAM) algorithm was selected as a method 
for clustering [30]. PAM is insensitive to data distribution differences, 
and the user provided the initial K-medoids. Consensus clustering was 
used to determine the optimal number of K-medoids. 

Consensus clustering is based on multiple random replications of the 
determined clustering method, enabling a robust assessment of the 
clustering approach’s sensitivity to input variation [38–40]. Addition-
ally, the repeated random repetition makes the K-medoids selection 
more robust to random changes in the input parameters. The random-
ness of the approach was increased by randomly selecting 70% of sub-
jects for medoid discovery, and the holdout discovery samples were used 
to assess the predictability of clustering labels predicted on the holdout 
set. The procedure was repeated 100 times to obtain a reliable evalua-
tion of training-holdout-sample clustering with different clustering 
numbers (K = 2,3,4,5,6,7). The computation of the cluster 
co-association matrix (CCAM) is used to assess the reliability/stability of 
consensus clustering [41]. The CCAM is a matrix in which each column 
and row represents a subject from the discovery set, and it stores the 
counts of the number of times two holdout subjects shared a cluster 
label. As a result, stable data partitions produce sharp checkerboard 
patterns, whereas unstable data partitions produce fuzzy patterns. The 

Table 2 
The characteristics of subjects from the COVID-19 Mexico November hospital-
ization test data set. The values indicate the number of subjects (percentage) and 
the mean (SE) for Age. The OR was calculated with a 95% confidence interval for 
positive vs negative COVID-19. *, **, and *** denote a small effect size (between 
0.2 and 0.5 for Z and 1.5 to 2 for OR), a medium effect size (between 0.5 and 0.8 
for Z and 2 to 3 for OR), and a large effect size (greater than 0.8 for Z and greater 
than 3 for OR), respectively.  

Feature Positive 
COVID 

Negative 
COVID 

Effect Size 

Subjects (male ratio) 31987 
(58.64%) 

18170 
(52.23%) 

OR = 1.3 (1.25–1.35) 

Age 58.93 (0.09) 48.92 (0.18) Z = 0.48* 
Pregnancy 163 (0.51%) 487 (2.68%) OR ¼ 0.19 (0.16–0.22) 
Diabetes 10919 

(34.13%) 
5017 
(27.61%) 

OR ¼1.36 (1.31–1.41) 

COPD 1159 (3.62%) 770 (4.24%) OR ¼ 0.85 (0.77–0.93) 
Asthma 639 (2.01%) 388 (2.13%) OR ¼ 0.93 (0.82–1.06) 
Immunosuppression 685 (2.14%) 695 (3.82%) OR ¼ 0.55 (0.49–0.61) 
Hypertension 13207 

(41.29%) 
6039 
(33.24%) 

OR ¼ 1.41 (1.36–1.47) 

Cardiovascular 1450 (4.53%) 1204 (6.63%) OR ¼ 0.67 (0.62–0.72) 
Obesity 6740 

(21.07%) 
2560 
(14.09%) 

OR ¼ 1.63 (1.55–1.71) 
* 

Chronic kidney 1605 (5.96%) 1907 (8.83%) OR ¼ 0.45 (0.42–0.48) 
Smoking 2517 (7.87%) 1460 (8.03%) OR ¼ 0.98 (0.91–1.05) 
Other diseases 1631 (5.10%) 1301 (7.16%) OR ¼ 0.7 (0.65–0.75) 
Outcome    
ICU 2390 (7.47%) 1077 (5.93%) OR ¼ 1.28 (1.19–1.30) 
Deaths 13653 

(42.68%) 
3502 
(19.27%) 

OR ¼ 3.12 
(2.99–3.26)*** 

Pneumonia 20299 
(63.46%) 

8231 
(45.30%) 

OR ¼ 2.1 (2.02–2.18) 
**  

Fig. 1. The overall methodology of risk-profile’s classification of Mexico COVID-19 data set. The multimodal data is split into training and testing sets and the results 
of the testing set are used to describe the association of disease risk-profiles to clinically relevant outcomes. 
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CCAM’s clarity is determined by the proportion of ambiguous clustering 
(PAC). As a result, low PAC values indicate a very robust clarification 
scheme that is insensitive to changes in the discovery set. As a result of 
repeating the consensus clustering for various K values, the optimal data 
partition has the lowest PAC number and thus represents the most robust 
and reliable data clustering. 

2.4. Statistical and CART analysis of the discovered risk-profiles 

After computing the PCA transform and determining the optimal 
number of clusters and their associated medoids for each discovered risk 
profile, the risk profiles for each validation and test set samples were 
predicted. The validation set consisted of 30% of March to May hospi-
talized patients, while the test set consisted of 30% of November hos-
pitalized patients. Three steps are involved in predicting risk profiles: 
Initially, normalizing the patients’ age; second, forecasting the magni-
tude of each subject’s principal component and third, labeling the 
validation and test samples’ risk profiles. This risk profile prediction 
algorithm generates a unique class label for each subject in the valida-
tion and test sets. 

After predicting risk profiles, the prevalence of adverse outcomes 
associated with each discovered risk profile was analyzed. Three adverse 
events were examined: pneumonia diagnosis, intensive care unit (ICU) 
admission, and patient death, and the data set only contained these 
negative outcomes. As a result, the risk profile associated with the 
highest prevalence of adverse outcomes is most critical. Moreover, the 
discovered risk profiles of the validation set and test set were compared 
and then analyzed for the difference of the selected features and out-
comes together in both testing sets. Finally, the objective was to develop 
simple decision rules for categorizing each new patient according to the 
discovered risk profiles. The classification and regression trees (CART) 
analysis were selected for this purpose. CART generates decision tree 
algorithms automatically for problems involving classification or pre-
dictive regression modeling [42]. For continuous and discrete values, 
either the ANOVA or chi-square test was used to infer the statistical 
significance of each discovered risk profile. Additionally, the statistical 
difference between the validation and test sets for selected features of 
each predicted risk profile was computed using the proportions test and 
the t-test test for discrete and continuous values, respectively. Signifi-
cant values were defined as those less than 0.05, and no attempt was 
made to correct for false discovery. 

Implementation and data used are available on GitHub (htt 
ps://github.com/FahimehN/COVID-19-Risk-Profiles-Discovering). 

3. Results 

As the discovery set, a cohort of 33,325 patients with positive and 
negative COVID-19 tests were analyzed who were hospitalized from 
March to May. Additionally, hospitalized subjects with positive and 
negative COVID-19 tests in November (N = 50157) were investigated to 
add a new patient group to the test set. The characteristics of positive 
and negative COVID-19 hospitalized patients in the discovery and test 
sets are summarized in Tables 1 and 2 Differences in their statistical 
significance were expressed as effect sizes with 95% confidence intervals 
(95% CI). The mortality rate was significantly different between positive 
and negative COVID-19 in both sets: OR = 3.34 (95% CI = 3.17 to 3.51) 
and OR = 3.12 (95% CI = 2.99 to 3.26) respectively. In other words, 
subjects infected with COVID-19 had a higher mortality rate than other 
patients with respiratory problems. 

Tables S1–S4 detail the characteristics of infected and non-infected 
subjects based on deaths and recoveries from the discovery and test 
sets, respectively. The findings indicated a moderate difference in age, 
COPD, chronic kidney disease, and ICU hospitalization between those 
who perished and those who recovered with positive COVID-19 test 
results in the discovery set. In comparison, age has a negligible effect 
size (Z = 0.64) on the difference between the deaths and the recovered 

groups in the test set (Table S3). Between March and May, deceased 
patients were 2.25 and 2.35 times (95% confidence intervals, 1.89 to 
2.68 and 1.98 to 2.78) more likely to have COPD or chronic kidney 
disease, respectively, than recovered patients (Table S1). Similarly, 
moderate effect sizes were observed for age (Z = 0.68) and ICU admis-
sion during the same period (OR of 2.41, 95% CI, 2.16 to 2.68). Table S2 
and Table S4 show the recovered-death analysis of negative COVID-19 
patients from March to May and November. In the discovery set, 
chronic kidney disease and advanced age were the most significant risk 
factors for death (Table S2). There were marginal differences in dia-
betes, COPD, immunosuppression, hypertension, and cardiovascular 
disease between the two groups, with ORs ranging between 1.5 and 2. 
However, subjects over the age of 65, those with diabetes, and those 
with hypertension had the highest risk of death among non-infected 
hospitalized patients in November (Table S4). 

Additionally, the prevalence of the top 120 risk profiles was deter-
mined. The frequency distributions of the top 10 risk profiles by age/ 
gender and the COVID-19 test results are shown in Fig. S1. The com-
bined analysis results revealed that most men and women aged 60 and 
over suffer from hypertension, diabetes, or both, whereas obesity is 
highly prevalent in the younger age group of 20–40. As a result, the 
majority of hospitalized patients (both males and females with positive 
and negative COVID) in the middle age range of 40–60 years have hy-
pertension, diabetes, or obesity, indicating that these three comorbid-
ities are significant risk factors for seeking medical care following a 
respiratory illness. 

Afterward, consensus clustering and the PAM clustering model were 
used to determine the risk profiles of positive and negative hospitalized 
COVID-19 subjects in the validation set (30% of March to May hospi-
talized patients) and test set (November hospitalized patients). Figs. 2 
and 3 depict the optimal CCAM partitioning and PAC analysis for the 
hypothesis of 2–7 different risk profiles for positive and negative COVID- 
19 subjects in the discovery set, respectively. The optimal partition for 
positive COVID-19 patients consisted of 6 clusters, whereas the optimal 
partition for negative COVID-19 patients consisted of 5 clusters. As a 
result, the PAM clustering model was trained using the discovery set’s 
optimal number of clusters for both positive (K = 6) and negative (K = 5) 
groups. Then, using the trained models, the risk profiles of the validation 
and test samples were determined. Tables S5–S8 present descriptive 
statistics about the investigated features stratified by risk profiles for 
subjects with positive and negative COVID-19 test results in the vali-
dation and test sets. In Tables S5 and S7, three risk profiles with a high 
death risk were labeled accordingly (risk profiles 4, 5, and 6). The 
analysis of risk profiles revealed that the distribution of features was 
significantly different for each risk profile. Risk profile #6 posed the 
most significant risk of death. It was primarily composed of elderly 
males who were hypertensive or diabetic. Risk profile #4 included 
subjects who were hypertensive but did not have diabetes. While risk 
profile #5 included individuals with diabetes. The analysis of the 5 risk 
profiles for the negative COVID-19 group in the validation and test sets is 
shown in Table S6 and Table S8. Subjects who tested negative for 
COVID-19 had a better chance of surviving their respiratory condition. 
The risk group with the highest mortality rate was risk profile #5, with 
23.73% and 31.14% of patients perishing in the March to May and 
November sets, respectively. It was composed entirely of men (100%) 
with diabetes (100%), and most of them suffered from hypertension. 

Moreover, Figs. 4 and 5 illustrate the percentage of selected features 
in each risk profile for subjects with positive and negative COVID-19 test 
results in the validation set (March to May) and the test set (November), 
respectively. Hypertension and diabetes are more prevalent in high-risk 
groups, as illustrated in Fig. 4. Additionally, the rate of COVID infection 
among women increased in November compared to the early months of 
the pandemic. 

Between March and May, the percentage of non-infected patients 
with hypertension and diabetes increased significantly compared to 
hospitalized patients (Fig. 5). 
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Fig. 6 shows the violin plots of age in the validation and test sets for 
each risk profile. Fig. 6(a) and (b) illustrate the age distributions of 
positive and negative subjects, respectively. Age analysis of patients 
with positive test results in November revealed that they are older than 
patients with negative test results between March and May, whereas 
subjects with negative test results are younger in a higher number of risk 
profiles in the November test set. 

In both sets, the three adverse outcomes associated with identified 
risk profiles were analyzed. The validation set (30% of March to May) 
and the test set (November) outcomes are compared in each risk profile 
of positive and negative hospitalized patients and shown in Fig. 7. The 
percentage of positive subjects who perish or are hospitalized in the 
intensive care unit was higher in the high-risk groups (Risk profiles #4, 
#5, and #6) than in the low-risk groups (Fig. 7(a)). However, patients 
who tested positive for COVID-19 in November had a lower death rate 
than those who tested positive from March to May. Additionally, they 
were less likely to develop pneumonia and require ICU admission. 

Additionally, while negative COVID-19 subjects in November had a 
lower ICU and pneumonia hospitalization rate than subjects from March 
to May, the November patients’ mortality rate increased significantly 
(Fig. 7(b)). 

The results of the CART analysis on the validation set and the test set 
are depicted in Fig. S2 and Fig. S3, respectively. The figures illustrate the 
relationship between risk factors and newly discovered risk profiles 
using decision trees constructed from the validation and test sets for 
positive and negative COVID-19. According to Figs. S2(a) and S3(a), 

40% of positive subjects in November and 48% of positive subjects be-
tween March and May were in high-risk groups (the total of the per-
centage of observation of risk profiles 4, 5, and 6 with a higher 
probability of mortality). Patients with hypertension and diabetes were 
classified as high-risk (Risk profile 6), whereas women without hyper-
tension were classified as low-risk (Risk profile 1). The validation set’s 
negative risk profile decision trees analysis revealed that risk profiles 4 
and 5 have distinct decision rules, and the predicted probability of risk 
profiles included mixture values. Surprisingly, CART analysis eliminates 
age as a significant factor for COVID-19 positive patients (Fig. S2 (b)). 
However, between March and May, there were differences in the deci-
sion rules for subjects with different risk profiles (Fig. S3 (b)). Finally, 
the primary risk factors associated with positive COVID-19 patients by 
region were identified. Fig. S4 and Tables S9 and S10 illustrate the 
geographical distributions of risk factors and how they changed from 
March to May to November. 

4. Discussion 

This study discovered, described, and classified the risk profiles of 
hospitalized COVID-19 positive and negative subjects. Initially, a 
detailed combinatory analysis of 6144 different risk profiles of hospi-
talized Mexican patients stratified by age was conducted. The detailed 
analysis identified the risk factors associated with the top ten profiles by 
gender, COVID-19 test result, and age. According to the analysis of 
positive patients, hypertension, diabetes, and obesity were prevalent 

Fig. 2. Result of consensus clustering applied to the discovery set of subjects with positive COVID-19 test results. (a) The comparison of PAC (the lower the number, 
the better) between the cluster numbers from 2 to 7, (b) the best result of Consensus mapping for K = 6, and (c) the worst result of Consensus mapping for K = 7 with 
the highest PAC value. 

Fig. 3. Results of consensus clustering applied to the discovery set of subjects with negative COVID-19 test results. (a) The comparison of PAC (the lower the number, 
the better) between the cluster numbers from 2 to 7, (b) the best result of Consensus mapping for K = 5, and (c) the worst result of Consensus mapping for K = 4 with 
the highest PAC value. 
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among 40-year-old women, while smoking was also more prevalent 
among men in the same age group. Smoking, obesity, diabetes, and 
hypertension in younger men were prevalent in the 20–40 age group, 
whereas smoking was less prevalent in women in this age group. These 
latter findings confirm previous findings that seeking medical care is 
strongly associated with health comorbidities and smoking [43,44]. 

Unsupervised learning via consensus clustering was used to discover 
the major risk profiles, and six and five risk profiles for infected and non- 
infected COVID-19 patients, respectively, were discovered. These pro-
files were discovered and reproduced consistently using a small training 
set and were validated using holdout cross-validation and an indepen-
dent set. The risk profiles were identified using a representative training 
set of positive and negative COVID-19 individuals. The classes were 
consistently predicted on an independent validation set by modeling 
these risk profiles with PAM clustering. Following discovery, supervised 
decision trees were used to rank each risk profile’s discovered risks. 

The association of the discovered positive COVID-19 groups to a 
severe-outcome analysis identified three high-risk profiles. The majority 
of vulnerable subjects were 60 years of age or older and had pre-existing 
medical conditions such as hypertension, diabetes, or obesity. Addi-
tionally, men were predisposed to severe conditions. The decision rule 
analysis revealed that the most significant risk factor is hypertension 
combined with diabetes (risk profile #6). Other risk groups included 
men predominantly with hypertension or diabetes (risk profiles #4 and 
#5). However, women without hypertension who were infected with 
COVID-19 were in the lowest risk group (risk profile #1). It is essential 
to highlight that CART analysis revealed that age did not significantly 
impact stratifying COVID-19 patients into the six risk profile groups. A 
significant implication was that hypertension, obesity, diabetes, and 

gender were the primary factors that characterized the top six risk 
profiles regardless of age. The findings corroborate previous reports that 
patients with hypertension and diabetes suffer from more severe ill-
nesses and have a higher mortality rate than those without hypertension 
or diabetes [45–47]. Overall, the identified risk factors for people in 
high-risk groups corroborated previous research, demonstrating that 
age, obesity, diabetes, and hypertension are all significantly associated 
with severe COVID-19 [48–50]. On the other hand, unsupervised clus-
tering models can be used to classify newly diagnosed patients associ-
ated with COVID-19 risk factors into known subgroups to aid in the 
treatment process. 

The analysis of negative COVID-19 subjects’ decision rules for both 
the validation and test sets revealed that certain nodes contain a mixture 
of risk profiles with no significantly predicted probabilities. By contrast, 
there were significant differences in the characteristics of individuals 
with various negative risk profiles. The results indicated that individuals 
with negative non-confirmed COVID-19 subjects were slightly different 
between November and validation. The most stringent validation set 
included women over 63 who had diabetes or were hypertensive 
without diabetes. According to the November set, diabetic men faced the 
worst outcomes. Although the geographical analysis indicated a shift in 
risk factors from March–May to November, the prevalence of adverse 
outcomes in COVID-19 positive patients did not change significantly 
during the first six months. 

In contrast, negative subjects with high-risk profiles had a higher 
prevalence of adverse outcomes. Additionally, it was observed that 
hospitalized patients who did not contract COVID-19 and had negative 
test results were more susceptible to other conditions. The disease pre-
senting in these patients with respiratory symptoms could be a bacterial 

Fig. 4. The comparison between the percentage of the selected features in each risk-profile for hospitalized patients with positive COVID-19 test results in the 
validation set (30% of March to May) and the test set (November). The p-value was measured by the proportion test. The values that were less than 0.05 were 
mentioned at the top of the features. The abbreviations include; Preg: Pregnancy, Diab: Diabetes, COPD: Chronic obstructive pulmonary disease, Immun: Immu-
nosuppression, Hyper: Hypertension, Card: Cardiovascular, Obes: Obesity, Kidney: Chronic kidney, Smok: Smoking. 
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infection, influenza, or another respiratory infection that presents 
similarly to COVID-19 [51]. Additionally, while several respiratory 
symptoms may be associated with smoking, the percentage of smokers 
in each negative risk profile was insignificant. 

On the other hand, the most frequently encountered complication in 
hospitalized COVID-19 patients was severe pneumonia caused by viral 
infections, bacterial infections, or other conditions [52]. However, in 
some individuals, coronavirus infection can progress to pneumonia. 

Additionally, pneumonia and respiratory disorders are caused by a va-
riety of diverse sources. Thus, the increased risk of pneumonia in 
COVID-19-negative individuals may be related to other health problems. 
Additionally, comparing the outcomes of positive and negative 
COVID-19 hospitalized cases revealed significant differences in mortal-
ity and ICU admission rates between the two data sets, indicating that 
infected COVID-19 patients are more likely to become critically ill, and 
some will perish. 

Fig. 5. The comparison between the percentage of the selected features in each risk-profile for hospitalized patients with negative COVID-19 test results in the 
validation set (30% of March to May) and the test set (November). The p-value was measured via the proportion test. The values that were less than 0.05 were 
mentioned at the top of the features. The abbreviations include; Preg: Pregnancy, Diab: Diabetes, COPD: Chronic obstructive pulmonary disease, Immun: Immu-
nosuppression, Hyper: Hypertension, Card: Cardiovascular, Obes: Obesity, Kidney: Chronic kidney, Smok: Smoking. 

Fig. 6. The comparison of age of the validation set (30% of March to May) and the test set (November) in each risk-profile for hospitalized patients with a) Positive 
COVID-19 test results. b) Negative COVID-19 test results. The p-value was measured by the t-test test. 
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Additionally, when the validation set and the test set were compared 
in each risk profile, it was found that the positive COVID-19 subjects in 
November were less likely to perish, require ICU care, or even progress 
to pneumonia than the March–May subjects. It could be related to the 
development of effective coronavirus treatments. However, the mor-
tality rate for negative subjects increased significantly in November 
compared to the validation set’s non-infected patients. Fear of Covid-19 
may be causing other patients to forego necessary treatment. In other 
words, patients who require additional medical care urgently delay or 
forego critical procedures that could save their lives. Additionally, 
hospitals may ask patients with underlying diseases to discontinue 
treatment in order to minimize risk. This could increase the mortality 
rate of patients who were not infected with Covid-19. 

The clustering method had the advantage of predicting clusters of 
patients associated with various combinations of risk factors for both 
positive and negative COVID data sets. Simultaneously, supervised de-
cision trees failed to discover consistent decision rules from the 
discovered risk profiles. 

Multiple limitations applied to this study. The findings of this study 
were based on a Mexican cohort that is skewed toward those seeking 
medical care and those who have been hospitalized. As a result, they 
cannot be applied to the entire population. As a result, the findings must 
be validated in a separate cohort. A second limitation was that because 
the cluster-based analysis was used to identify the significant risk pro-
files, many different conditions were missed, and thus the simple 
decision-making rules presented in this study cannot be used to make 
clear treatment decisions. A third limitation was that outcomes changed 
throughout the pandemic. Numerous treatments were evaluated, and 
hospital saturation varied significantly between patients. As a result, the 
risk association findings presented in this paper are most likely to be 
valid only for the population studied. 

5. Conclusion 

This study demonstrated the use of consensus clustering in 
conjunction with PAM models to identify the most consistent risk pro-
files among COVID infected and non-infected patients. Additionally, 
CART analysis was used to describe the relationship between newly 
discovered risk factors and each risk profile. The findings demonstrated 
that the proposed method could identify a small set of the most preva-
lent risk profiles for both data sets, and it may be a valuable tool for 
filtering out the most prevalent risk profiles in larger multidimensional 
datasets. The findings indicated that regardless of age group, gender, 
hypertension, diabetes, and obesity may be the primary high-risk factors 

for COVID-19 mortality. 
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