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Abstract: In recent years, different responses of archaea and bacteria to environmental changes
have attracted increasing scientific interest. In the mid-latitude region, Fen River receives water
transferred from the Yellow River, electrical conductivity (EC), concentrations of Cl− and Na+ in
water, total phosphorus (TP), and Olsen phosphorus (OP) in sediments were significantly affected by
water transfer. Meanwhile, temperature and oxidation-reduction potential (ORP) of water showed
significant seasonal variations. Based on 16S rRNA high-throughput sequencing technology, the
composition of bacteria and archaea in sediments was determined in winter and summer, respectively.
Results showed that the dominance of bacterial core flora decreased and that of archaeal core flora
increased after water diversion. The abundance and diversity of bacterial communities in river
sediments were more sensitive to anthropogenic and naturally induced environmental changes
than that of archaeal communities. Bacterial communities showed greater resistance than archaeal
communities under long-term external disturbances, such as seasonal changes, because of rich
species composition and complex community structure. Archaea were more stable than bacteria,
especially under short-term drastic environmental disturbances, such as water transfer, due to their
insensitivity to environmental changes. These results have important implications for understanding
the responses of bacterial and archaeal communities to environmental changes in river ecosystems
affected by water diversion.

Keywords: archaea; bacteria; 16SrRNA high-throughput sequencing; water transfer; seasonal
changes; river sediments

1. Introduction

Bacteria and archaea are important elements of a community of microorganisms,
which participate in and influence the process of material circulation and energy transmis-
sion in nature [1–3]. In river sediments, bacteria and archaea can dominate the nitrogen
cycle and the corresponding energy transfer process [4–6]. Bacteria are widely distributed
in all corners of the earth [1], but in extreme environments, the abundance and diver-
sity of bacteria decreases, while archaea become the main microorganisms [7,8], and the
proportion of extremophiles increases significantly. Bacteria and archaea belong to two
evolutionary branches that are very distinct from each other, and different genes lead to
different responses of bacteria and archaea to different conditions [9,10]. For example,
ammonia-oxidizing archaea (AOA) and bacteria (AOB) react differently to nitrogen concen-
trations [11]. At the same time, bacteria and archaea have different reactions to different
heavy metal concentrations [12–15], drought sensitivity [2,16], and many other conditions.
In addition, archaea have a special membrane structure, causing some difficulties to use
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ATP, and therefore, it would enable itself to extract its energy from a natural pH gradi-
ent [3,17–19]. Thus, early on, it was believed that archaea had been all extremophiles,
which means they could thrive in high temperature, high salinity, low or high pH, absolute
anaerobic or combinations, and that maybe something about their physiology made them
poor competitors with bacteria in more normal niches. What turned the tide was the PCR
amplification and Sanger-based sequencing of 16S rRNA genes present in environmental
samples, which was the beginning of finding archaea in nonextreme environments, and
many new archaeal and bacterial lineages (including phyla) have been discovered.

Recently, comparative studies of archaea and bacteria in nonextreme environments,
including wetlands [20,21], coastal zones [22] lakes [23,24], and soil [25–27] have become
more and more popular. In different habitats, bacteria and archaea showed different com-
munity structures and compositions. Despite some fluctuating environmental conditions,
many microbial taxa displayed significant seasonal changes [28]. The diversity of bacterial
communities in coastal wetlands was higher than that of archaeal communities, and the
temperature was the main factor driving the seasonal changes of bacterial communities [29].
Archaeal communities in the Bay of Banyuls area were strongly influenced by terrestrial
sources, but changes in marine conditions played a more important role in the construction
of bacterial communities [28]. Bacteria and archaea in the Alps showed obvious seasonal
variation rules, and the abundance of archaea reached a peak in cold spring and winter [30].
In general, the abundance of bacteria was much higher than that of archaea, while in
arid saline land, the abundance of archaea was much higher than that of bacteria [31]. By
observing the bacterial and archaeal communities in different habitats, it was found that the
bacterial communities often changed to different degrees with the change of topography
and landform and the dry and wet seasons, while the changes of archaeal communities
were not obvious [32,33]. However, the change of archaeal community might be very
significant in rivers or estuaries affected by sewage discharge [6], the abundance of archaea
is sometimes greater than that of bacteria [5], and the environmental factors affecting
bacteria and archaea are also completely different [13]. These factors suggest that bacteria
and archaea respond obviously differently to environmental changes caused by seasonal
changes and human activities.

Natural changes such as seasonal variations tend to change slowly and put less stress
on bacteria and archaea. In contrast, large-scale human activities can often change the
environment in a short period of time, and drastic environmental changes put bacteria and
archaea under greater environmental stress. The exploration of the response of bacteria and
archaea to environmental changes caused by seasonal changes and human activities could
lead scientists to a deeper understanding of bacteria and archaea. However, studies in this
field have explored the different responses of bacteria and archaea in rivers to large human
activities, such as urban drainage [34] and reservoir construction [35], while insufficient
attention has been paid to the effects of water transfer projects.

Water diversion projects are common efforts to balance regional water resources.
However, water diversion projects, especially inter-basin water diversion projects, may
lead to a high degree of spatial and temporal heterogeneity of the ecological environment
in the water receiving area and have a profound impact on the bacterial and archaeal
communities [36,37]. At the same time, most water diversion projects are located in the
mid-latitude region with a concentrated population and arid/semi-arid climate. The
heterogeneity is further deepened by the distinct seasonal changes. Previous studies
have shown that bacteria in water bodies and sediments affected by water diversion have
significant spatiotemporal changes [38–42]. However, the different responses of bacterial
and archaeal communities in river sediments affected by both water diversion and seasonal
changes are currently less known.

Based on 16S rRNA high-throughput sequencing technology, this paper determined
bacterial and archaeal community compositions in river sediments influenced by inter-
basin water transfer in a mid-latitude region, and discussed the changes of river sediments
bacterial and archaeal communities under the anthropogenic water transfer activity and
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natural seasonal changes, comparatively analyzing different responses between the bac-
terial and archaeal communities. This study aimed to contribute to the understanding of
bacteria and archaea communities in changing environments.

2. Materials and Methods
2.1. Study Area and Sampling Site

The Fen River, 710 km in length, is the second-largest tributary of the Yellow River in
China (Figure 1). The study area located in 38◦48′~38◦15′ N, 111◦52′~112◦07′ E, covering
the reach from the river head (Gongjiazhuang) till Fengrun, with a length of around 80 km.
The research area has a temperate monsoon climate with dry cold winters and wet hot
summers. The annual average temperature is about 7 ◦C, with an average temperature
of −9 ◦C in January and 21 ◦C in June. The annual rainfall is 380 mm to 500 mm, about
70% of which occurs from June to September. The study river reach has been receiving an
injection of 320 million m3/a from the Yellow River water in Toumaying since 2003. The
water diversion is usually suspended in February, March, August, and September.

Figure 1. Map of the study area and sampling sites.

The sampling site of FR01 (Gongjiazhuang) is about 1 km away from the source of the
Fen River (Figure 1). The site of FR02 is 100 m upstream of the Yellow River water injection
point (Toumaying). The sampling site of FR03 is 4.5 km downstream of Toumaying, with no
tributary. The site of FR04 is located about 50 km downstream of FR03. Multiple tributaries
are fed in the river reach between FR03 to FR04, although their total runoff is relatively
limited. The sampling site of FR05 is located about 6 km downstream of FR04, followed by
FR06 about 15 km downstream.

2.2. Sample Collection and Measurements

Samples were collected from six sampling sites in winter (January) and summer
(June) of 2017, respectively. Before sampling, physicochemical parameters, such as wa-
ter temperature, electrical conductivity (EC), oxidation-reduction potential (ORP), and
total dissolved solids (TDS) of the river water, were measured (HORIBA U-51). Then,
three replicate samples were collected at each site. Water samples below 20 cm from the
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water surface in the center of the river were collected and loaded into three 60 mL high-
density polyethylene bottles. About 1 kg sediment samples were collected and put into
sterile zip-lock bags. These samples were stored in a laboratory refrigerator at 4 ◦C until
physicochemical analysis.

River sediment samples of 1–2 cm below the surface of sediments were homogenized
with five surficial sediment locations collected in a 1 × 1 m sample area. Three replicate
samples were collected at each site and then sealed in 10 mL aseptic centrifugal tubes
and placed in dry ice. All sediment samples were frozen with dry ice immediately after
collection, then were stored at −80 ◦C until DNA extraction [43].

The contents of Ca2+, Mg2+, Na+, and K+ in water samples were determined using ICP-
OES (PerkinElmer 5300DV), and the contents of Cl−, SO4

2− and NO3
− were determined

using an ion chromatograph (Dionex ICS-900). The contents of HCO3
− were measured

by titration on the sampling day. The particle size (PS) of river sediment samples was
analyzed by a laser particle size analyzer (Mastersizer 2000) [44]. In addition, total nitrogen
(TN) and alkaline nitrogen (AN) were measured by the Kjeldahl method and alkaline
solution diffusion method, respectively [45]. The sodium hydroxide fusion method was
used to measure total phosphorus (TP) and total potassium (TK) [46]. Sodium bicarbonate
extraction method (Olsen) and ammonium acetate extraction measurement were com-
mon methods for the determination of Olsen phosphorus (OP) and available potassium
(AK), respectively [47,48]. Soil organic matter (SOM) content was determined by H2SO4—
K2Cr2O7, the external heating oxidation method [49]. The instruments used include an
atomic absorption spectrometer (Zeenit of Jena, Germany 700 p), a spectrophotometer, and
the Kjeldahl apparatus.

2.3. DNA Extraction and PCR Amplification

Total DNA was extracted from each replicate sample using FastDNA® Spin Kit for Soil
(MP Biomedicals, CA, USA) according to the manufacturer’s instruction. The DNA extract
was checked on 1% agarose gel, and DNA concentration and purity were determined with
NanoDrop 2000 UV–VIS spectrophotometer (Thermo Scientific, Wilmington, DC, USA).

The V3–V4 hypervariable regions of the bacteria and archaea 16S rRNA gene were am-
plified with primers 338F (5′–ACTCCTACGGGAGGCAGCAG–3′)/806R (5′–GGACTACHV
GGGTWTCTAAT–3′) [50] and 524F10extF (5′–TGYCAGCCGCCGCGGTAA–3′)/Arch958R
modR (5′–YCCGGCGTTGAVTCCAATT–3′) [51] by an ABI GeneAmp® 9700 PCR ther-
mocycler (ABI, CA, USA), respectively. PCR was performed with the following program:
3 min of denaturation of template DNA at 95 ◦C, 27cycles of 30 s at 95 ◦C, 30 s for annealing
at 55 ◦C, 45 s for elongation at 72 ◦C, and a final extension at 72 ◦C for 10 min.

2.4. Illumina MiSeq Sequencing

Amplicons from each PCR sample were normalized to equimolar amounts and se-
quenced using 468 bp chemistry on a MiSeq PE300 platform (Illumina, San Diego, CA,
USA) at Majorbio Biopharm Technology Co., Ltd. (Shanghai, China). The sequencing data
were submitted to the NCBI Sequence Read Archive database under accession number
SUB8145997. Subsequently, 16S rRNA sequencing data were processed using the Mothur
MiSeq pipeline [52]. Then, 16S rRNA V4–V5 region genes were amplified in triplicate
from each pooled RNA sample to investigate the population of bacteria and archaea, using
relevant paired primers, respectively. Using fastp (https://github.com/OpenGene/fastp
(accessed on 19 June 2017), version 0.20.0), software quality control was carried out on the
original sequencing sequence [53]. FLASH (http://www.cbcb.umd.edu/software/flash
(accessed on 19 June 2017), version 1.2.7) software was used for Mosaic [54]. UPARSE
software (http://drive5.com/uparse/ (accessed on 6 March 2018), version 7.1), was used
according to 97% operational taxonomic units (OTUs) on a sequence of similarity clus-
tering [55,56]. Classifier (http://rdp.cme.msu.edu/ (accessed on 6 March 2018), version
2.2) was used to annotate the species classification of each sequence, and the comparison

https://github.com/OpenGene/fastp
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was made to the Silva 16S rRNA database (V128), with the comparison threshold being
70% [56].

The sequencing results of the sampling sites FR01–FR06 in winter and summer were
labeled as W1–W6 and S1–S6, respectively.

2.5. Statistical Analysis

The physicochemical characteristics of river water and sediment were analyzed by
t-test with SPSS Statistics, Version 20.0 (International Business Machines Corporation, NYC,
USA). To analyze the bioinformation of the high-throughput data, quantitative insights into
microbial ecology (QIIME), Version 1.9.1 was used to classify the sequences into operational
taxonomic units (OTUs) using a 97% identity threshold [57]. The α-diversity, including
Sobs, Chao, Shannon, and Coverage indexes, were calculated using the Mothur [58].

Principal component analysis (PCA) was conducted for environmental indicators by
Origin, Version 2018 (OriginLab Corporation, Northampton, MA, USA). The microbial
composition bar was mapped at the gene level using R, Version 3.6.3 (Microsoft, Redmond,
WA, USA) [59]. The “pheatmap” package in R, Version 3.6.3 (Microsoft, Redmond, WA,
USA) was employed to display the correlation between environmental factors and species
visually. Heat map was based on the relationship between strains with relative abundance
greater than 1% and environmental factors. Spearman correlation coefficient between these
bacteria/archaea and environmental factors was calculated, and hierarchical clustering of
environmental factors and taxa was conducted according to the correlation coefficient [60].
Wilcoxon rank-sum test method was used for hypothesizing to assess the significance
level of species abundance differences and obtaining species with significant differences
between groups with a double-tail test at the classification level of genes. The fdr multiple
test calibration method was used to calibrate p-value with a confidence interval of 0.95 [61].

To study the similarity or difference relationship of different sample community
structures, cluster analysis was performed on the sample community distance matrix.
quantitative insights into microbial ecology (QIIME), Version 1.9.1 used the Bray–Curtis
distance algorithm to calculate the beta diversity distance matrix and then used the upgma
function in the “phangorn” package in R, Version 3.6.3 (Microsoft, Redmond, WA, USA)
to sample clustering and the par function to draw the tree graphically [62]. The network
analysis was constructed by calculating the correlation between taxa using Networkx [63].
The nodes in the network diagram are species nodes, and the connecting lines show that
the correlation coefficient between species and species is greater than 0.8. Parameters in
statistical analysis were introduced in the Supplementary Materials. Evolutionary trees
were constructed using Mega (version 10.0, https://www.megasoftware.net/ (accessed
on 23rd April 2019) by sequences corresponding to taxonomic information according to
the maximum likelihood (ML) method, and the phylogenetic relationships of species were
presented in the form of a ring diagram using the R, Version 3.6.3 (Microsoft, Redmond,
WA, USA) [64]. The smallest taxonomic unit is the genus.

In total, 3,145,879 high-quality 16S rRNA sequences were generated for 72 samples.
After subsampling each sample to an equal sequencing depth (above 30,000 reads per
sample) and clustering, 7603 operational taxonomic units (OTUs) at 97% identity were
obtained, with the number of OTUs ranging from 1193 to 3988 per sample. The Good’s
coverage for the observed OTUs was 98.67 ± 0.15% (mean ± s.e.m.), and the rarefaction
curves showed clear asymptotes (Figure S1), which together indicate a near-complete
sampling of the community.

3. Results and Discussion
3.1. Physicochemical Features of River Water and Sediment

Significant variations of physicochemical parameters of the river water and the sedi-
ment caused by changing seasons and water transfer were found. From January to June,
the temperature of the river water increased, and ORP decreased significantly (p < 0.01).
The average increase of EC and TDS in the water-receiving reach was about 2.5 times the

https://www.megasoftware.net/
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normal river reach. Particularly, concentrations of Cl- and Na+ increased by 1985% and
1725% on average (Table 1).

Table 1. Physicochemical features of the river water and sediment.

January June

Normal River Reach Water-Receiving
Reach Normal River Reach Water-Receiving

Reach

Water

T (◦C) 1.4 ± 1.0 1.2 ± 0.5 19.6 ± 0.1 * 21.9 ± 0.6 *
EC (µs/cm) 535.0 ± 28.0 ** 1257.0 ± 27.0 ** 436.0 ± 34.0 ** 1205.0 ± 32.0 **
ORP (mv) 410.0 ± 55.2 366.0 ± 15.0 209.4 ± 26.3 199.2 ± 22.5
TDS (g/L) 0.3 ± 0.0 ** 0.8 ± 0.0 ** 0.3 ± 0.2 ** 0.8 ± 0.0 **

NO3
− (mg/L) 12.0 ± 1.7 * 19.7 ± 0.5 * 12.4 ± 2.6 11.4 ± 1.7

SO4
2− (mg/L) 70.1 ± 6.7** 205.5 ± 3.7 ** 121.6 ± 0.9 * 400.9 ± 116.3 *

Cl− (mg/L) 6.6 ± 0.8 ** 132.3 ± 3.8 ** 7.0 ± 0.4 ** 150.9 ± 67.6 **
Na+ (mg/L) 6.7 ± 0.6 ** 121.1 ± 3.8 ** 8.4 ± 1.2 ** 152.2 ± 3.9 **
K+ (mg/L) 1.8 ± 0.0 3.9 ± 0.0 2.4 ± 0.3 4.9 ± 0.6

Mg2+ (mg/L) 15.5 ± 0.7 ** 37.0 ± 0.6 ** 16.8 ± 1.5 * 41.0 ± 0.6 *
Ca2+ (mg/L) 63.7 ± 0.2 67.6 ± 1.6 76.3 ± 7.0 65.2 ± 3.7

Sediment

PS (µm) 105.0 ± 33.0 53.0 ± 18.0 247.0 ± 147.0 116.0 ± 61.0
pH 7.8 ± 0.0 8.1 ± 0.2 8.4 ± 0.4 8.9 ± 0.1

SOM (g/kg) 14.7 ± 1.9 23.2 ± 8.3 11.9 ± 3.7 16.0 ± 4.2
TN (g/kg) 4.4 ± 0.0 8.3 ± 0.1 11.3 ± 0.0 * 6.4 ± 0.0 *

AN (mg/kg) 33.0 ± 2.0 * 84.3 ± 23.1 * 160.0 ± 29.0 * 73.0 ± 8.5 *
TP (mg/kg) 464.5 ± 36.5 578.5 ± 45.3 530.0 ± 50.0 589.3 ± 44.4
OP (mg/kg) 5.5 ± 0.5 10. 3 ± 3.9 17.0 ± 4.0 7.8 ± 1.8
TK (g/kg) 28.3 ± 0.0 27.0 ± 0.2 28.2 ± 0.2 23.5 ± 0.1

AK (mg/kg) 48.5 ± 6.5 * 109.8 ± 24.3 * 69.0 ± 1.0 78.0 ± 15.5

The normal river reach includes sites of FR01 and FR02. The water-receiving reach includes sites of FR03–FR06. * indicates the difference
between values from different river reaches is significant at the p < 0.05; ** indicates difference is significant at the p < 0.01. PS: particle size;
SOM: soil organic matter; TN: total nitrogen; AN: alkaline nitrogen; TP: total phosphorus; OP: Olsen phosphorus; TK: total potassium; AK:
alkaline potassium.

Compared with winter (January), PS, AN, and OP of the sediments increased by 126%,
52%, and 28%, respectively, in summer (June), while SOM and AK decreased by 28% and
16%, respectively. Compared with the normal river reach, the contents of most nutrient
salts in the water-receiving reach sediments visibly increased, with an increase of 156% for
AN, 125% for AK, 89% for OP, 88% for TN, and 58% for SOM in January, while the contents
of most nutrient salts in the water-receiving reach sediments decreased by 44%, 54%, and
55% for TN, AN, and OP, respectively, in June. On average, PS in the water-receiving reach
decreased by 51% than that in the normal river reaches (Table 1).

Two principal components were recognized based on all physicochemical parameters
and the principal component analysis (Figure 2). The samples of the normal river reach and
the water-receiving reach were separated by the line of x = 0, while the samples of winter
and summer were separated by the line of y = 0. Therefore, the first principal component
(PC1) could reflect the influence of water diversion on the water environment of the Fen
River, and the second principal component (PC2) could reflect the influence of seasonal
changes on the water environment of the Fen River. According to the compositions of PC1
and PC2, environmental factors (physicochemical parameters) can be divided into three
categories, i.e., (1) factors mainly relating to seasonal changes, including water temperature
and ORP; (2) factors mainly relating to the water diversion, including EC, TDS, Cl-, Mg2+,
K+, Na+, Ca2+, TP, and OP; and (3) other factors not obviously influenced by the changing
seasons and water diversion.
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Figure 2. Result of the principal component analysis of physicochemical parameters of river water
and sediments. Here, 95% confidence ellipses of sampling groups are shown. The sequencing
results of the sampling points FR01–FR06 in winter and summer were labeled as W1–W6 and S1–S6,
respectively.

3.2. Overview of Bacterial and Archaeal Communities

The number of sequences used for analyses is more than 30,000. The coverage index of
all samples is above 97%. The sample sequence information can fully represent the sample
population (Table 2). At the same time, the rarefaction curve of the Shannon index tended
to be flat, indicating that the sequencing results could reasonably characterize the diversity
of bacteria and archaea.

Table 2. Operational taxonomic units (OTUs) number and α-diversity index of bacteria and archaea.

Sample Season
OTUs Shannon Index Chao Index Coverage Index

Bacteria Archaea Bacteria Archaea Bacteria Archaea Bacteria Archaea

FR01
Winter 2822 590 6.06 3.56 3768.44 733.13 0.98 0.99

Summer 2149 504 5.94 3.32 2859.82 602.89 0.99 0.99

FR02
Winter 3146 512 6.51 3.10 4103.01 610.25 0.98 0.99

Summer 2884 456 6.42 3.17 3857.02 619.43 0.98 0.99

FR03
Winter 3631 582 6.76 3.26 4722.66 789.59 0.97 0.99

Summer 3549 392 6.86 2.95 4470.78 553.25 0.98 0.99

FR04
Winter 3659 363 6.77 3.08 4717.44 462.13 0.98 0.99

Summer 3602 237 6.92 3.03 4479.15 326.44 0.98 0.99

FR05
Winter 3441 288 6.51 2.42 4513.04 380.57 0.98 0.99

Summer 3737 298 7.01 2.94 4746.85 385.15 0.98 0.99

FR06
Winter 2708 335 5.79 2.89 4044.36 450.93 0.98 0.99

Summer 2303 348 5.76 3.06 3261.68 461.56 0.98 0.99

Average Winter 3234.5 445 6.40 3.05 4311.49 580.51 0.98 0.99
Summer 3037.3 372.5 6.48 3.08 3945.88 491.45 0.98 0.99

Overall, the bacterial community was 672% more than the archaeal community
(Table 2). Affected by water transfer, the number of bacterial and archaeal OTUs in winter
increased by 6.7% and 18.8%, compared to that of summer. Contrasting bacteria and
archaea, seasonal changes caused a large change in the number of OTUs in the archaeal
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community, while that of bacteria changed little. This result was reasonable because sea-
sonal changes in environmental factors could cause microbial biomass in natural river
sediments to be higher in winter than in summer [65]. Seasonal changes in water temper-
ature (p < 0.001), ORP (p < 0.001) and NO3

− (p < 0.05) were significant in the study area
(Table 1). At the same time, there were obvious seasonal changes in the contents of SOM,
potassium, nitrogen, and phosphorus in sediments (Table 1).

In total, the bacterial community was 111% more diverse than the archaeal community
(Table 2). In addition, seasonal variations had little effect on the spatial heterogeneity of
bacterial diversity, but rather affected the average level of bacterial diversity in the study
area. Bacterial diversity was high in summer and low in winter. The opposite effect of
seasonal variation was observed for archaea. The spatial heterogeneity of archaeal diversity
was significantly greater in winter than in summer, and the average level of diversity of
archaea in the study area changed little. The response of bacteria and archaea to water
transfer was equally opposite. After water transfer, the diversity of bacteria increased by
2.7% and 7.4% in winter and summer, respectively, and the diversity of archaea decreased
by 12.54% and 7.7% in winter and summer, respectively.

For bacteria, a total of 53 phyla, 123 classes, 267 orders, 356 families, and 1057 genera
were identified. In summer, the amounts of species with their relative abundance greater
than 1% was 44, while in winter it was 33. As for archaea, a total of 13 phyla, 25 classes,
32 orders, 36 families, and 58 genera were identified in the samples. There were 17 genera
with relative abundance greater than 1% in summer, and the number was 16 in winter.
According to distribution ranges, the abundance, and stability of the bacteria and archaea in
sediments in different seasons, the taxa of bacteria and archaea with the highest abundance
were defined as the core flora in this study [66,67].

In winter, Comamonadaceae was the most abundant family, accounting for 5.9–13.9%
of the total number of bacteria in each sample (Figure 3a), followed by Flavobacterium
(4.5–21.3%), Cyanobacteria (1.4–6.7%), Arenimonas (2.2–5.6%), Hydrogenophaga (1.8–6.3),
and Subgroup_6 (1.7–2.7%). In summer, Comamonadaceae was the most abundant fam-
ily, accounting for 2.9–9.1% of the total number of bacteria in each sample, followed by
Flavobacterium (2.8–12.2%), Arenimonas (1.1–4.0%), Saprospiraceae (1.1–4.0%), Anaerolin-
eaceae (1.3–15.4%) and Subgroup_6 (1.9–4.9%). These bacteria constituted the core flora of
the bacterial community in the river sediment. The dominant position of the core bacterial
flora decreased slightly. The average relative abundance of the core bacterial flora in the
normal river reach was about 33.9% and 21.5% for winter and summer, and that was about
29.4% and 20.4% in the water-receiving reach, respectively.
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Figure 3. The microbial composition of bacteria (a) and archaea (b). The smallest taxonomic unit is the genus. The relevant
abundance of taxa less than 1% were classified as others. The sequencing results of the sampling points FR01–FR06 in
winter and summer were labeled as W1–W6 and S1–S6, respectively.

In winter, the core flora of the archaea communities consists of SCG (17.9–24.9%),
Methanosaeta (1.2–49.1%), Nitrosoarchaeum (0.5–31.9%), Methanosarcina (7.5–24.0%), Bath-
yarchaeota (1.9–15.3%), Candidatus_Nitrososphaera (2.7–6.1%), and Marine_Group_I
(0.4–6.6%) (Figure 3b). In summer, the core flora consists of SCG (9.9–54.6%), Methanosarcina
(11.6–39.2%), Methanosaeta (0.6–22.8%), Bathyarchaeota (0.8–15.7%), Methanobacterium
(1.3–9.2%), and Candidatus_Nitrososphaera (1.0–7.8%). The dominant position of the core
archaea flora in sediments of the river increased slightly. The average relative abundance
of the core archaea flora in the normal river reach was about 79.2% and 75.6% in winter and
summer, respectively. Additionally, that was about 89.3% and 83.8% in the water-receiving
reach in winter and summer, respectively.
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3.3. Different Responses of Bacterial and Archaeal Core Floras to Water Diversion

Compared to other bacteria, Anaerolineaceae, Bacteroidetes_vadinHA17, and Thiobacil-
lus were better adapted to the sediment environment after water diversion. Anaerolineaceae
and Bacteroidetes_vadinHA17 had similar correlations with environmental factors, and
they clustered into similar clusters (Figure 4). These two bacterial taxa played an important
role in the degradation of carbohydrates and other cellular materials in methanogenic
biological systems [68,69]. Thus, they survived well in hypoxic or anoxic environments
and could grow well in response to environmental changes by water transfer. Among
them, the abundance of Anaerolineaceae increased in summer and became sub-dominant
bacteria at FR04 (5.37%) and FR05 (3.88%) (Figure 3a). In summer, the relative abundance
of Thiobacillus rose in FR04 (from 1.32% to 6.76%). The abundance of Thiobacillus was signif-
icantly negatively correlated with TK (Figure 4). Recent studies have demonstrated that
Thiobacillus is one of the few bacteria capable of efficient denitrification at high potassium
concentrations, thus validating results in this paper [70]. The TK content in the sediments
of the water-receiving reach was 16% lower than that in the normal river reach, and the
TK content in FR04 was the lowest. Thus, the abundance of Thiobacillus was significantly
increased. In addition, the abundance of Xanthomonadales and SC-I-84 in the receiving
river reach increased.

Figure 4. Heat map of environmental factor correlations of bacteria. The significant level was
symbolled as: *: p ≤ 0.05, **: p ≤ 0.01, ***: p ≤ 0.001. Red represented positive correlation, blue
represented negative correlation, the darker the color, the greater the correlation. The range of
positive and negative correlation coefficients is −1 to 1. TP: total phosphorus; T: temperature; SOM:
soil organic matter; EC: electrical conductivity; TDS: total dissolved solid; AN: alkaline nitrogen;
ORP: oxidation-reduction potential; PS: particle size; TN: total nitrogen; OP: Olsen phosphorus; TK:
total potassium; AK: alkaline potassium.
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Terrestrial_Miscellaneous_Gp_TMEG (TMEG), Lokiarchaeota, Methanobacterium were
more active in the receiving river reach. TMEG and Lokiarchaeota were newly emerged
archaea at FR03. These two archaea were significantly positively correlated with concentra-
tions of SO4

2−, Cl−, Na+ and K+, EC, and TDS in winter (Figure 5), while in summer they
were significantly positively correlated with pH and significantly negatively correlated
with OP content (Figure 3b). The abundance of TMEG and Lokiarchaeota was more than
2% at FR03, and it was close to 10% at FR04 (Figure 3b). Methanobacterium belongs to
the hydrogen-nutrient methanogenic archaea and survives in a strict anaerobic environ-
ment [71]. The optimum growth temperature of the warm species was 37–45 ◦C, which
were never reached in winter [72]. The concentration of nitrate and sulfate was greatly
increased after the injection of the Yellow River water, which could provide abundant ni-
trogen and sulfur sources for Methanobacterium. Methanobacterium was most sensitive to the
above environmental factors and was highly correlated with them, and it stably survived
in the receiving river reach (average abundance of 1.3%). The correlations between the
three above-mentioned archaea and various environmental factors were similar. Thus,
these three archaea were clustered into one cluster.

Figure 5. Heat map of environmental factor correlations of archaea. The significant level was
symbolled as: *: p ≤ 0.05, **: p ≤ 0.01, ***: p ≤ 0.001. Red represented positive correlation, blue
represented negative correlation, the darker the color, the greater the correlation. The range of
positive and negative correlation coefficients is −1 to 1. TP: total phosphorus; T: temperature; SOM:
soil organic matter; EC: electrical conductivity; TDS: total dissolved solid; AN: alkaline nitrogen;
ORP: oxidation-reduction potential; PS: particle size; TN: total nitrogen; OP: Olsen phosphorus; TK:
total potassium; AK: alkaline potassium.
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For bacteria, Caldilineaceae, Verrucomicrobiaceae, Novosphingobium, and OPS_17 were
unsuitable for changes caused by water transfer and reduced or even disappeared in the
receiving river reach (Figure 3a). Caldilineaceae were significantly positively correlated
with the contents of TN, AN, and TK (Figure 4). The contents of TN, AN, and TK decreased
in summer by about 44%, 54%, and 16% of that in the water-receiving reach, respectively.
Verrucomicrobiaceae was often used as an electron donor for biofuel cells [73]. Perhaps
because of this property, Verrucomicrobiaceae was inhibited in water-receiving reach where
the ORP decreased due to water transfer. This indicated an increase in e-donors and more
competition between these kinds of microorganisms. Novosphingobium, as parthenogenic
anaerobic bacteria, would be inhibited under a highly dissolved oxygen concentration
environment [74]. Water transfer caused the river level to rise and flow faster, creating good
water circulation conditions. Thus, the water-substrate interface was more likely to form a
high dissolved oxygen environment. OPS_17 was significantly negatively correlated with
OP and K+, which might be the reason why it was inhibited in the water-receiving reach. Af-
ter water transfer, both OP content and K+ concentration increased obviously. For archaea,
Methanospirillum’s abundance was relatively low at FR03 (2.05%) and was not detected
at other downstream sampling sites. Methanospirillum’s dependence on environmental
factors was contrary to that of TMEG, Lokiarchaeota, and Methanobacterium (Figure 5). The
abundance of Nitrosoarchaeum at FR03 was reduced by 68.9%, compared with the upstream
and downstream (Figure 3b), and the correlation between Nitrosoarchaeum and various
environmental factors did not reach a significant level. The Nitrosoarchaeum participates
in the process of nitrification and nitrosation of ammonia in environments [75]. The con-
centration of NO3

− at FR03 in winter was 19.8 mg/L, which was 46% and 5% higher than
that of the upstream and downstream sampling sites. The obvious change of abundance
of Nitrosoarchaeum might be related to nitrate at FR03, where nitrate concentration was
greatly increased. In conclusion, more bacteria were inhibited after water diversion than
archaea. At the same time, many bacteria were active downstream of water transfer inlet,
and therefore, the bacterial flora replacement was more obvious than that of the archaea.

Some bacteria and archaea floras appeared only in the water-receiving river. In
summer, the new bacteria taxa, including Subgroup_6, Desulfocapsa, SC-I-84, Bacteroidet-
es_VadinHA17, Sulfuritalea, KD4-96, and Thiobacillus, replaced almost all bacteria taxa with
an abundance of more than 1%, except those in the core flora in the FR03. In winter, the new
bacteria taxa with an abundance of more than 1%, including Bacteroidetes_VadinHA17,
Fusibacter, and Dracoribacteriaceae, also appeared in the FR03, obviously less than those
in summer. At the same time, TMEG, Lokiarchaeota, and Marine_Group_I in summer,
and TMEG, Lokiarchaeota, Methanobacterium, and Methanospirillum in winter were the new
archaea with an abundance of more than 1% in the sediment of FR03, where the Yellow
River water was poured into.

In conclusion, bacteria and archaea that successfully and unsuccessfully adapted to the
water environment of water receiving reach, and new bacteria and archaea that emerged
through water diversion, were sensitive to DO, ORP, salinity, and nutrients. The compo-
sition and quantity of microbial functional groups are directly related to water quality
characteristics, nutrients levels, and their transformation [76,77]. Water salinity provides a
wide range of electron acceptors and electron donors for microbial growth, metabolism, and
reproduction [78]. The higher nutrient concentration in the water environment is conducive
to the survival of bacteria and archaea that use and break down nutrients, most of which
are anaerobic or partly anaerobic. Therefore, after water diversion, although the water
flow was accelerated and good water circulation brought a stronger oxidative environment,
anaerobic and facultative anaerobic decomposition processes could proceed due to high
nutrient concentrations. During this period, the community composition of anaerobic and
facultative anaerobic microorganisms resulted in a turnover [79,80]. Under the influence of
water transfer, the EC value and main ion content of the river in the study area increased
drastically (Table 1), and the contents of TP and OP in the sediment increased significantly
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(Table 1). Thus, water transfer causes turnover of bacterial and archaeal communities by
drastically changing the salinity and nutrient concentration of overlying water.

3.4. Different Responses of Bacterial and Archaeal Core Floras to Seasonal Variations

There were significant seasonal variations in the abundance of bacteria and archaea.
Generally, 1057 bacterial genera and 58 archaea genera were detected in the study area,
and 8.6% of the archaea had significant seasonal variation, which was higher than the
percentage of 0.4% of the bacteria. Among the bacterial communities, Cyanobacteria,
Verrucomicrobiaceae, Novosphingobium, and Caldilineaceae were significantly affected
by seasonal changes (p < 0.05, Figure 6). Except for Caldilineaceae, the other bacterial
taxa’s abundances were low in summer and high in winter. Seasonal changes in bacteria
were primarily related to the number of nutrients in sediments. Novosphingobium had a
significant negative correlation with TN and SOM (Figure 4). With SOM decreasing by 36%
in winter, the abundance of this strain was significantly higher in winter than in summer.
There was a significant positive correlation between Caldilineaceae and TN, AN, TK in
summer. With the contents of TN and AN increasing by 28% and 50% in summer, the
abundance of this strain was significantly higher in summer than that in winter. Among the
archaeal communities, the abundances of Nitrosoarchaeum (p < 0.05), Methanocorpusculum
(p < 0.05), and Methanomethylovorans (p < 0.01) were significantly affected by seasonal
changes (Figure 6). The abundance of Nitrosoarchaeum was much higher in winter than in
summer. It had an abundance of more than 10% at FR01–FR04 in January but only appeared
at FR02 and FR03 in June with a much smaller abundance. Methanomethylovorans were
detected only in summer, and their abundance was high at FR05 (5.0%) and FR06 (9.2%).

Figure 6. Significance test for bacterial (a) and archaeal (b) differences due to seasonal variation. The significant level was
symbolled as *: p ≤ 0.05, **: p ≤ 0.01.

The newly emerged bacteria and archaea in the water-receiving reach also had obvi-
ous seasonal changes. For bacteria, the seven new taxa of bacteria (Subgroup_6, Desulfo-
capsa, SC-I-84, Bacteroidetes_VadinHA17, Sulfuritalea, KD4-96, and Thiobacillus) that were
newly emerging in the water-receiving reach were more active in summer than in winter,
showed similar correlation with environmental factors, and were classified into one cluster
(Figure 4). Among them, Anaerolineaceae, Thiobacillus, and Subgroup_6 had more than 4%
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abundance at FR04 in summer (Figure 3a). In addition to the influence of EC, ion concentra-
tion, and nutrient contents in sediments, the newly emerged bacteria in the water-receiving
reach were also significantly affected by water temperature (Figure 4), and the abundance
increased with increasing temperature. For archaea, the abundance of the newly emerged
Methanobacterium and Marine_Group_I in the water-receiving reach were significantly
different in winter and summer (p < 0.05, Figure 7). The adaptability of Marine_Group_I
to temperature was different from Methanobacterium. Marine_Group_I could not adapt to
higher temperatures in summer, which was the same result as the previous studies [81,82].
At the same time, Marine_Group_I have a very close genetic relationship and genetic
composition with deep-sea archaea groups, adapting to a high ion concentration environ-
ment [83]. The water diversion caused a sudden and substantial increase in the EC value of
the river at FR03, which stimulated the abundance of Marine_Group_I to increase to 2.1%
even in summer (Figure 3b). In addition, TMEG, Lokiarchaeota, and Methanospirillum were
significantly reduced in summer.

Figure 7. Significance test for bacterial (a) and archaeal (b) differences due to water diversion. The significant level was
symbolled as *: p ≤ 0.05, **: p ≤ 0.01.

3.5. Differences in Changes of Microbial Diversity and Community Structure

Microbial communities have microbial functional diversity [18]. Changes in dominant
flora and their interaction with other flora affected the abundance, diversity, community
structure, and stability of microbial ecosystems [84], resulting in corresponding changes in
the microbial community’s function. Studies have shown that areas with dramatic changes
in the physical and chemical environment could lead to increased abundance and diversity
levels of bacteria and archaea, improving the adaptability of the community by producing
more microbial populations [75–87].

In this case, the abundance and diversity of bacterial and archaeal communities in
the river sediments were greatly affected by water transfer. However, archaea showed a
different changing trend of the abundance and diversity with bacteria. The quantity and
diversity of bacteria were higher in water receiving reach, which caused single peaks of the
quantity and diversity of bacteria community along the river (Figure S2). However, the
quantity and diversity index of archaea were the largest at FR01 and decreased overall along
the flow direction. Although there was a drastic environmental change at FR03, the quantity
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and diversity of archaeal communities decreased in summer. The Sobs and Shannon
diversity indexes of archaea were negatively correlated (p < 0.05) with the concentrations
of Cl−, Na+, and K+ in summer. However, water diversion raised the ion concentration,
which decreased archaeal community diversity.

The dominant position of the core bacterial flora decreased in sediments of the water-
receiving reach, while the dominant position of the core archaeal flora increased. This
was the most obvious difference in the responses of bacterial and archaeal communities
to water transfer. The average relative abundance of the core bacterial flora in the sedi-
ments of the normal reach in winter and summer was 33.9% and 21.5%, respectively, while
that of the water-receiving reach was 29.4% and 20.4%, respectively. The average relative
abundance of the core archaeal flora in the sediments of the normal river reach in winter
and summer was 79.2% and 75.6%, respectively, while that of water-receiving reach was
89.3% and 83.8%, respectively. Among bacteria, the abundances of Comamonadaceae and
Hydrogenophaga were significantly lower (p < 0.05) in the core bacterial flora in sediments of
the water-receiving reach (Figure 6). These two taxa belong to the class of Betaproteobac-
teria, and hence, they were grouped into one cluster due to their similar correlation with
environmental factors (Figure 4). In winter, Comamonadaceae and Hydrogenophaga were
significantly negatively correlated with TN, SOM, AN, AK of sediments, and EC and Na+

of river water. There was a significant positive correlation with TK in summer. Water
transfer caused TN, SOM, AN, and AK in sediments to increase by 88%, 58%, 156%, and
125%, respectively, while TK decreased by 16% in summer (Table 2). Therefore, the abun-
dances of Comamonadaceae and Hydrogenophaga in sediments were significantly reduced
as a result of water transfer. Hydrogenophaga disappeared downstream of FR03 during the
summer. The water transfer changed the chemical compositions of the river water and the
nutrient contents of the sediments, which affected the decrease of the abundance of the core
bacterial flora in sediments. Among archaea, the abundance of Bathyarchaeota in the core
archaeal flora was significantly increased (p < 0.05, Figure 6). Bathyarchaeota ranging from
land to ocean has both degradation of refractory organic compounds, autotrophic synthesis
of acetic acid using inorganic carbon, and functions involved in methane metabolism [88].
A significant negative correlation between Bathyarchaeota and TK was found in the study
area (Figure 5). The content of TK in sediments of the water-receiving reach was decreased
by 5% and 16% in winter and summer, respectively. This offered an explanation about the
adaption of Bathyarchaeota to the environmental changes brought by water transfer.

The water transfer is the main factor for the changes of bacterial community structure
in the river sediments, while seasonal changes are the main factors for the changes of
archaeal community structure. Bacterial communities in all sediment samples could be
clustered into three clusters (Figure 8a). Except for S4, the remaining samples are divided
into two clusters by the normal river reach and the receiving river reach. Within the two
clusters, samples are further divided according to the two seasons. The clustering results
suggested that water transfer imposed more influences on the changes of bacterial commu-
nity structure in the river sediments than the changing seasons. The archaeal community
samples can be clustered into two clusters (Figure 8b). The community structure of FR01
was similar to that of FR05 and FR06, and S1, S5, W5, S6, and W6 are divided into the
first cluster. The dominant archaea of FR02–FR04 had the same characteristics to form the
second cluster. In W1, due to the higher abundance of Nitrosoarchaeum (Figure 3b), it was
divided into the second cluster. The results of this classification did not separate the winter
and summer samples, nor did they separate the normal river reach and water-receiving
reach. In the second cluster, samples from FR02, FR03, and FR04 impacted most by water
transfer were further divided into two subclusters according to the two seasons, indicating
that the changing seasons played a greater role in changes of the archaeal community
structure in sediment than water transfer.

Both bacterial and archaeal communities showed resistance and stability to a certain
degree in the studied river sediments. Additionally, the differences in the stability of
the resistance between the bacterial and archaeal communities exist. The abundance and
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diversity of bacterial OTUs in the river sediments were much higher than those of archaea
(Figure S2). Although bacteria are sensitive to environmental changes, the abundant species
and complex community structure of the bacterial community made it resistant to external
disturbances. The species composition and structure of the archaeal community were
relatively simple compared with bacteria. The proportion of core archaeal flora abundance
was 67.9% higher than that of bacteria. In front of external environmental changes and
stress, archaeal communities are less but more stable in performance. However, under
the pressure of drastic environmental changes caused by water transfer in the short term,
the abundance and diversity of archaea still showed a decreasing trend, although more
archaeal species were produced to adapt to the environmental changes.

Figure 8. Hierarchical clustering of bacteria (a) and archaea (b). The length of the scale represents the
differences between the community composition structures of the samples. The longer the distance
is, the greater the difference becomes. The sequencing results of the sampling points FR01–FR06 in
winter and summer were labeled as W1–W6 and S1–S6, respectively.

This pattern exists in numerous related studies. The temperature was the main factor
driving the seasonal changes of the bacterial community [29,30]. Archaeal communities
in the Bay of Banyuls area were strongly influenced by terrestrial sources, but changes in
marine conditions played a more important role in the construction of bacterial communi-
ties [28]. In arid saline land, the abundance of archaea was abnormally much higher than
that of bacteria [31]. These seem to be explained by the fact that bacteria are more adapted
to slowly changing environments, such as changes in seawater conditions and changes in
temperature due to seasonal variations. Archaea, on the other hand, show advantages in
drastically changing environmental conditions, such as the turnover of terrestrial sources
along the coast that often changes abruptly with the direction of ocean currents, and the
salinity of arid saline surface soils that changes rapidly with the alternation of rainy and
dry seasons [28,31].

Bacteria have significant advantages in terms of diversity over archaea [89]. From a
phylogenetic point of view, the bacterial domain contains more biological lineages than
other domains. In the same sample size, the archaea contain species that are smaller than
the bacterial range. Consistent with this view, archaea found in many ecosystems, such as
seawater [90], hydrothermal vents [91], and subsurface surfaces [92], whereas microbial
communities associated with humans [93] are less diverse, which is due to archaea evolving
more slowly than bacteria. This might be the result of maintaining a stable expression of a
particular phenotypic gene that adapts to extreme environments. Archaea are therefore
thought to be the earliest form of life on earth [94]. Although bacteria and archaea are
both important forces involved in the elemental biogeochemical cycle, results in this paper
found significant differences in their abundance, diversity, community structure, and
stability in response to anthropogenic or natural environmental impacts. The mechanism
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responsible for the difference might be related to differences in their cellular structures,
enzyme systems, and branches of evolutionary kinship, which is for further study.

3.6. Microbial Interaction

According to the different responses of bacteria and archaea in river sediments to
human water transfer activities and natural seasonal changes, bacteria can be divided into
two categories, i.e., those mainly affected by water transfer, such as Comamonadaceae, Hy-
drogenophaga, Subgroup_6, Anaerolineaceae, Nitrosomonadaceae, Sulfuritalea, Thiobacillus,
OPS_17, Bacteroidetes_vadinHA17, and Xanthomonadales (Figure 6), and those mainly
affected by changing seasons, such as Verrucomicrobiaceae, Cyanobacteria, Novosphingob-
ium, and Caldilineaceae (Figure 7). Archaea can be divided into three categories, i.e., those
that are mainly sensitive to human activities, such as Bathyarchaeota, TMEG, and Lokiar-
chaeota (Figure 6), archaea mainly affected by seasonal changes, such as Nitrosoarchaeum,
Methanocorpusculum, and Methanomethylovorans (Figure 7), and lastly, those that produce
significant responses to both water-transfer activities and seasonal changes, such as the
Methanobacterium and Marine_Group_I (Figures 3b and 7). Archaea in the river sediments
can produce significant responses to water transfer and seasonal changes simultaneously,
which is different from bacteria.

There were fewer interactions between the two classes of bacteria (Figure 9a). In
general, the bacteria mainly affected by water transfer are significantly positively correlated
with most environmental factors, especially nitrogen, phosphorus, and organic matters
in sediments, and EC, TDS, and ion concentrations in river water. However, the bacteria
mainly affected by seasonal changes are negatively or weakly correlated with most of the
environmental factors (Figure 4). The different correlations with environmental factors
provide an explanation for the weak interaction between the two classes of bacteria. In
fact, there were only one or two species that had significant interactions with bacteria that
are mainly affected by seasonal changes. Therefore, the bacteria mainly affected by the
seasonal changes were relatively independent in the community.

The three types of archaea interacted significantly. There were 10 taxa that had
significant interaction with Nitrosoarchaeum (synthesis with seven taxa and the other
three were antagonistic). Similarly, both TMEG and Lokiarchaeota interacted with eight
taxa, Marine_Group_I interacted with seven genera, and Methanobacterium interacted
with four taxa (Figure 9b). In addition, although the abundances of Methanocorpusculum,
Methanomethylovorans, and Woesearchaeota were low, their interactions with other species
were strong. They are mostly related to the carbon and nitrogen cycle in environments, and
their metabolites and metabolic processes have great influences on other species. Therefore,
the archaea with low abundance also played an important role in the archaeal community.

Complex interspecific regulatory mechanisms exist among bacteria. Studies have
shown that inter- and intraspecific quorum-sensing (QS), in which microorganisms secrete
and sense chemical signaling molecules, is the main pathway regulating microbial interac-
tions and can regulate gene expression based on population density [95]. This mechanism
was able to avoid the overlap of bacterial ecological niches [96]. Thus, in this study, the
response patterns between bacteria that responded significantly to the season and bacteria
that responded significantly to water regulation differed between environmental factors,
and the two groups of bacteria were independent of each other. In contrast, there was no
obvious ecological niche separation in archaea. At present, the mechanism of interspecific
interactions of archaea is not clear [97,98]. When scientists study interspecific interactions
between bacteria and archaea, they often assume that the two have similar regulatory mech-
anisms [99]. However, these results suggested that the interspecies regulation mechanisms
of archaea and bacteria may not be the same.
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Figure 9. Network analysis of bacteria (a) and archaea (b). Nodes represent taxa, and the size of
the node indicates the relative abundance of the taxon. Different colors of nodes represent different
phylum. The red line represents a positive correlation between the two bacteria and the green line
represents a negative correlation.

4. Conclusions

The water diversion project, as an anthropogenic short-term drastic environmental
disturbance, significantly altered EC, ORP, and salinity of water, as well as nutrient content
in the sediment through allochthonous inputs and hydrodynamic disturbances. Seasonal
changes, as a long-term slow natural variation, had a significant effect on water temperature
(p < 0.05).

Bacteria and archaea responded differently to the water transfer project and seasonal
changes. The dominance of core bacterial flora decreased, and that of core archaeal flora
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increased in sediments of water receiving reaches. This study revealed that the reason is that
bacteria and archaea had different stability and reversal mechanisms in response to natural
and anthropogenic disturbances. Bacterial communities in sediment were more sensitive to
anthropogenic and naturally induced environmental changes than archaeal communities.
However, the rich species composition and complex community structure of bacterial
communities made them showed stronger resistance than archaeal communities to long-
term external disturbances such as seasonal changes. Archaea had a simple community
composition, but their insensitivity to environmental changes made them more stable than
bacteria, especially in the face of short-term drastic environmental disturbances, such as
water diversion projects.

In addition, the results of this study indicated that bacteria and archaea had different
interspecific regulatory mechanisms. This phenomenon has guiding implications for
related studies.
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in thermal karst springs of gellért hill discharge area (Hungary). J. Basic Microb. 2018, 58, 928–937. [CrossRef] [PubMed]
8. Gonzalez-Martinez, A.; Muñoz-Palazon, B.; Maza-Márquez, P.; Rodriguez-Sanchez, A.; Gonzalez-Lopez, J.; Vahala, R. Perfor-

mance and microbial community structure of a polar arctic circle aerobic granular sludge system operating at low temperature.
Bioresour. Technol. 2018, 256, 22–29. [CrossRef]

9. Albright, M.B.N.; Timalsina, B.; Martiny, J.B.H.; Dunbar, J. Comparative genomics of nitrogen cycling pathways in bacteria and
archaea. Microb. Ecol. 2019, 77, 597–606. [CrossRef]

10. Michael, A.J. Polyamine function in archaea and bacteria. J. Biol. Chem. 2018, 293, 18693–18701. [CrossRef]
11. Dang, C.; Liu, W.; Lin, Y.; Zheng, M.; Jiang, H.; Chen, Q.; Ni, J. Dominant role of ammonia-oxidizing bacteria in nitrification due

to ammonia accumulation in sediments of danjiangkou reservoir, china. Appl. Microbiol. Biot. 2018, 102, 3399–3410. [CrossRef]

https://www.mdpi.com/article/10.3390/microorganisms9040782/s1
https://www.mdpi.com/article/10.3390/microorganisms9040782/s1
http://doi.org/10.1038/s41579-019-0158-9
http://www.ncbi.nlm.nih.gov/pubmed/30760902
http://doi.org/10.1016/j.soilbio.2018.11.017
http://doi.org/10.1111/j.1574-6976.2009.00187.x
http://www.ncbi.nlm.nih.gov/pubmed/19645821
http://doi.org/10.1016/j.resmic.2014.08.003
http://doi.org/10.1038/s41598-018-20044-6
http://doi.org/10.1016/j.ecoleng.2016.01.068
http://doi.org/10.1002/jobm.201800138
http://www.ncbi.nlm.nih.gov/pubmed/30160784
http://doi.org/10.1016/j.biortech.2018.01.147
http://doi.org/10.1007/s00248-018-1239-4
http://doi.org/10.1074/jbc.TM118.005670
http://doi.org/10.1007/s00253-018-8865-0


Microorganisms 2021, 9, 782 20 of 23

12. Ouyang, Y.; Norton, J.M.; Stark, J.M.; Reeve, J.R.; Habteselassie, M.Y. Ammonia-oxidizing bacteria are more responsive than
archaea to nitrogen source in an agricultural soil. Soil Biol. Biochem. 2016, 96, 4–15. [CrossRef]

13. Cao, H.; Li, M.; Hong, Y.; Gu, J. Diversity and abundance of ammonia-oxidizing archaea and bacteria in polluted mangrove
sediment. Syst. Appl. Microbiol. 2011, 34, 513–523. [CrossRef] [PubMed]

14. Liu, Y.; Liu, Y.; Ding, Y.; Zheng, J.; Zhou, T.; Pan, G.; Crowley, D.; Li, L.; Zheng, J.; Zhang, X.; et al. Abundance, composition and
activity of ammonia oxidizer and denitrifier communities in metal polluted rice paddies from south China. PLoS ONE 2014, 9,
e102000. [CrossRef] [PubMed]

15. Tang, Y.; Zhang, X.; Li, D.; Wang, H.; Chen, F.; Fu, X.; Fang, X.; Sun, X.; Yu, G. Impacts of nitrogen and phosphorus additions
on the abundance and community structure of ammonia oxidizers and denitrifying bacteria in chinese fir plantations. Soil Biol.
Biochem. 2016, 103, 284–293. [CrossRef]

16. Muema, E.K.; Cadisch, G.; Röhl, C.; Vanlauwe, B.; Rasche, F. Response of ammonia-oxidizing bacteria and archaea to biochemical
quality of organic inputs combined with mineral nitrogen fertilizer in an arable soil. Appl. Soil Ecol. 2015, 95, 128–139. [CrossRef]

17. Oren, A. Thermodynamic limits to microbial life at high salt concentrations. Environ. Microbiol. 2011, 13, 1908–1923. [CrossRef]
18. Yang, H.; Zhang, G.; Yang, X.; Wu, F.; Zhao, W.; Zhang, H.; Zhang, X. Microbial community structure and diversity in cellar water

by 16s rrna high-throughput sequencing. Environ. Sci. 2017, 38, 1704–1716. [CrossRef]
19. Oren, A. Bioenergetic aspects of halophilism. Microbiol. Mol. Biol. Rev. 1999, 63, 334–348. [CrossRef]
20. Sims, A.; Gajaraj, S.; Hu, Z. Seasonal population changes of ammonia-oxidizing organisms and their relationship to water quality

in a constructed wetland. Ecol. Eng. 2012, 40, 100–107. [CrossRef]
21. Sims, A.; Horton, J.; Gajaraj, S.; McIntosh, S.; Miles, R.J.; Mueller, R.; Reed, R.; Hu, Z. Temporal and spatial distributions of

ammonia-oxidizing archaea and bacteria and their ratio as an indicator of oligotrophic conditions in natural wetlands. Water Res.
2012, 46, 4121–4129. [CrossRef]

22. Bayer, B.; Vojvoda, J.; Reinthaler, T.; Reyes, C.; Pinto, M.; Herndl, G.J. Nitrosopumilus adriaticus sp. nov. and Nitrosopumilus
piranensis sp. nov., Two ammonia-oxidizing archaea from the adriatic sea and members of the class Nitrososphaeria. Int. J. Syst.
Evol. Micr. 1892, 69, 1892–1902. [CrossRef]

23. Hou, J.; Song, C.; Cao, X.; Zhou, Y. Shifts between ammonia-oxidizing bacteria and archaea in relation to nitrification potential
across trophic gradients in two large chinese lakes (lake Taihu and lake Chaohu). Water Res. 2013, 47, 2285–2296. [CrossRef]

24. Jiang, H.; Dong, H.; Yu, B.; Lv, G.; Deng, S.; Berzins, N.; Dai, M. Diversity and abundance of ammonia-oxidizing archaea and
bacteria in Qinghai lake, northwestern China. Geomicrobiol. J. 2009, 26, 199–211. [CrossRef]

25. Wang, J.; Wang, J.; Wang, W.; Wang, W.; Gu, J.; Gu, J. Community structure and abundance of ammonia-oxidizing archaea and
bacteria after conversion from soybean to rice paddy in albic soils of northeast China. Appl. Microbiol. Biot. 2014, 98, 2765–2778.
[CrossRef]

26. De Gannes, V.; Eudoxie, G.; Dyer, D.H.; Hickey, W.J. Diversity and abundance of ammonia oxidizing archaea in tropical compost
systems. Front. Microbiol. 2012, 3, 244. [CrossRef]

27. Zhao, D.; Zhao, D.; Luo, J.; Luo, J.; Wang, J.; Wang, J.; Huang, R.; Huang, R.; Guo, K.; Guo, K.; et al. The influence of land use on
the abundance and diversity of ammonia oxidizers. Curr. Microbiol. 2015, 70, 282–289. [CrossRef]

28. Lambert, S.; Tragin, M.; Lozano, J.; Ghiglione, J.; Vaulot, D.; Bouget, F.; Galand, P.E. Rhythmicity of coastal marine picoeukaryotes,
bacteria and archaea despite irregular environmental perturbations. ISME J. 2019, 13, 388–401. [CrossRef]

29. Cheung, M.K.; Wong, C.K.; Chu, K.H.; Kwan, H.S. Community structure, dynamics and interactions of bacteria, archaea and
fungi in subtropical coastal wetland sediments. Sci. Rep. 2018, 8, 14397. [CrossRef] [PubMed]

30. Reitschuler, C.; Hofmann, K.; Illmer, P. Abundances, diversity and seasonality of (non-extremophilic) archaea in alpine freshwaters.
Antonie Van Leeuwenhoek 2016, 109, 855–868. [CrossRef] [PubMed]

31. Genderjahn, S.; Alawi, M.; Mangelsdorf, K.; Horn, F.; Wagner, D. Desiccation- and saline-tolerant bacteria and archaea in kalahari
pan sediments. Front. Microbiol. 2018, 9, 2082. [CrossRef]

32. Pasternak, Z.; Al-Ashhab, A.; Gatica, J.; Gafny, R.; Avraham, S.; Minz, D.; Gillor, O.; Jurkevitch, E. Spatial and temporal
biogeography of soil microbial communities in arid and semiarid regions. PLoS ONE 2013, 8, e69705. [CrossRef]

33. Wang, A.; Wu, F.; Yang, W.; Wu, Z.; Wang, X.; Tan, B. Abundance and composition dynamics of soil ammonia-oxidizing archaea
in an alpine fir forest on the eastern tibetan plateau of China. Can. J. Microbiol. 2012, 58, 572–580. [CrossRef] [PubMed]

34. Tu, R.; Jin, W.; Han, S.; Zhou, X.; Wang, T.; Gao, S.; Wang, Q.; Chen, C.; Xie, G.; Wang, Q. Rapid enrichment and ammonia
oxidation performance of ammonia-oxidizing archaea from an urban polluted river of China. Environ. Pollut. 2019, 255, 113258.
[CrossRef]

35. Wang, S.; Dong, R.M.; Dong, C.Z.; Huang, L.; Jiang, H.; Wei, Y.; Feng, L.; Liu, D.; Yang, G.; Zhang, C.; et al. Diversity of microbial
plankton across the three gorges dam of the Yangtze river, China. Geosci. Front. 2012, 3, 335–349. [CrossRef]

36. Nogueira, M.G.; Henry, R.; Maricatto, F.E. Spatial and temporal heterogeneity in the jurumirim reservoir, Sao Paulo, Brazil. Lakes
Reserv. Res. Manag. 1999, 4, 107–120. [CrossRef]

37. Shen, H.; Li, B.; Cai, Q.; Han, Q.; Gu, Y.; Qu, Y. Phytoplankton functional groups in a high spatial heterogeneity subtropical
reservoir in China. J. Great Lakes Res. 2014, 40, 859–869. [CrossRef]

38. Qu, J.; Jia, C.; Liu, Q.; Li, Z.; Liu, P.; Yang, M.; Zhao, M.; Li, W.; Zhu, H.; Zhang, Q. Dynamics of bacterial community diversity
and structure in the terminal reservoir of the south-to-north water diversion project in China. Water 2018, 10, 709. [CrossRef]

http://doi.org/10.1016/j.soilbio.2016.01.012
http://doi.org/10.1016/j.syapm.2010.11.023
http://www.ncbi.nlm.nih.gov/pubmed/21665398
http://doi.org/10.1371/journal.pone.0102000
http://www.ncbi.nlm.nih.gov/pubmed/25058658
http://doi.org/10.1016/j.soilbio.2016.09.001
http://doi.org/10.1016/j.apsoil.2015.06.019
http://doi.org/10.1111/j.1462-2920.2010.02365.x
http://doi.org/10.13227/j.hjkx.201608097
http://doi.org/10.1128/MMBR.63.2.334-348.1999
http://doi.org/10.1016/j.ecoleng.2011.12.021
http://doi.org/10.1016/j.watres.2012.05.007
http://doi.org/10.1099/ijsem.0.003360
http://doi.org/10.1016/j.watres.2013.01.042
http://doi.org/10.1080/01490450902744004
http://doi.org/10.1007/s00253-013-5213-2
http://doi.org/10.3389/fmicb.2012.00244
http://doi.org/10.1007/s00284-014-0714-5
http://doi.org/10.1038/s41396-018-0281-z
http://doi.org/10.1038/s41598-018-32529-5
http://www.ncbi.nlm.nih.gov/pubmed/30258074
http://doi.org/10.1007/s10482-016-0685-6
http://www.ncbi.nlm.nih.gov/pubmed/27002962
http://doi.org/10.3389/fmicb.2018.02082
http://doi.org/10.1371/journal.pone.0069705
http://doi.org/10.1139/w2012-032
http://www.ncbi.nlm.nih.gov/pubmed/22494458
http://doi.org/10.1016/j.envpol.2019.113258
http://doi.org/10.1016/j.gsf.2011.11.013
http://doi.org/10.1046/j.1440-1770.1999.00086.x
http://doi.org/10.1016/j.jglr.2014.09.007
http://doi.org/10.3390/w10060709


Microorganisms 2021, 9, 782 21 of 23

39. Dai, J.; Wu, S.; Wu, X.; Lv, X.; Sivakumar, B.; Wang, F.; Zhang, Y.; Yang, Q.; Gao, A.; Zhao, Y.; et al. Impacts of a large river-to-lake
water diversion project on lacustrine phytoplankton communities. J. Hydrol. 2020, 587, 124938. [CrossRef]

40. Yang, Q.; Wu, S.; Dai, J.; Wu, X.; Xue, W.; Liu, F. Effects of short-term water diversion in summer on water quality and algae in
gonghu bay, lake Taihu. J. Lake Sci. 2018, 30, 34–43. [CrossRef]

41. Qu, J.; Li, Z.; Zhao, M.; Liu, P.; Yang, M.; Jia, C.; Zhang, Q. Niche analysis of microbial community reveals the south-to-north
water diversion impacts in miyun reservoir. IOP Conf. Ser. Earth Environ. Sci. 2018, 170, 52037. [CrossRef]

42. Isaac, J.; Schulz, C.; Childers, G. Impact of freshwater diversion projects on diversity and activity of methanotrophic communities
in freshwater wetlands. AGU Fall Meet. Abstr. 2009, 2009, B11A–B480A.

43. Yang, P.; Jin, B.; Tang, L.; Tong, C. Temporal variation of nutrients fluxes across the sediment-water interface of shrimp ponds and
influencing factors in the Jiulong river estuary. Acta Ecol. Sin. 2017, 37, 192–203. [CrossRef]

44. ZENG, M.F.D.S. The grain-size distribution of the suspended particulate matter in the huanghe estuary and its adjacent sea area
in winter. Acta Oceanol. Sin. 2011, 30, 75–83. [CrossRef]

45. Akama, A. Balance sheet of nitrogen applied to japanese red pine (Pinus densiflora sieb. Et zucc.) Seedlings-a pot experiment. J.
Jpn. For. Soc. 1986, 68, 150–154. [CrossRef]

46. Smith, B.F.L.; Bain, D.C. A sodium hydroxide fusion method for the determination of total phosphate in soils. Commun. Soil Sci.
Plan. 2008, 13, 185–190. [CrossRef]

47. Otabbong, E.; Leinweber, P.; Schlichting, A.; Meissner, R.; Shenker, M.; Litaor, I.; Sapek, A.; Robinson, S.; Niedermeier, A.; Hacin,
H.; et al. Comparison of ammonium lactate, sodium bicarbonate and double calcium lactate methods for extraction of phosphorus
from wetland peat soils. Acta Agric. Scand. Sect. B Soil Plant Sci. 2004, 54, 9–13. [CrossRef]

48. Chaitanya, T.; Padmaja, G.; Rao, P.C. Improving the efficiency of ammonium acetate extraction of soil potassium by saturation
extract method. Curr. J. Appl. Sci. Technol. 2020, 26, 121–136. [CrossRef]

49. Bremner, J.M.; Jenkinson, D.S. Determination of organic carbon in soil: I. Oxidation by dichromate of organic matter in soil and
plant materials. Eur. J. Soil Sci. 2010, 11, 394–402. [CrossRef]

50. Xu, N.; Tan, G.; Wang, H.; Gai, X. Effect of biochar additions to soil on nitrogen leaching, microbial biomass and bacterial
community structure. Eur. J. Soil Biol. 2016, 74, 1–8. [CrossRef]

51. Liu, C.; Li, H.; Zhang, Y.; Si, D.; Chen, Q. Evolution of microbial community along with increasing solid concentration during
high-solids anaerobic digestion of sewage sludge. Bioresour. Technol. 2016, 216, 87–94. [CrossRef]

52. Kozich, J.J.; Westcott, S.L.; Baxter, N.T.; Highlander, S.K.; Schloss, P.D. Development of a dual-index sequencing strategy and
curation pipeline for analyzing amplicon sequence data on the miseq illumina sequencing platform. Appl. Environ. Microb. 2013,
79, 5112–5120. [CrossRef]

53. Chen, S.; Zhou, Y.; Chen, Y.; Gu, J. Fastp: An ultra-fast all-in-one fastq preprocessor. Bioinformatics 2018, 34, i884–i890. [CrossRef]
[PubMed]

54. Magoc, T.; Salzberg, S.L. Flash: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics 2011, 27,
2957–2963. [CrossRef]

55. Edgar, R.C. Uparse: Highly accurate otu sequences from microbial amplicon reads. Nat. Methods 2013, 10, 996–998. [CrossRef]
56. Wang, Q.; Garrity, G.M.; Tiedje, J.M.; Cole, J.R. Naive bayesian classifier for rapid assignment of rRNA sequences into the new

bacterial taxonomy. Appl. Environ. Microb. 2007, 73, 5261–5267. [CrossRef] [PubMed]
57. Caporaso, J.G.; Kuczynski, J.; Stombaugh, J.; Bittinger, K.; Bushman, F.D.; Costello, E.K.; Fierer, N.; Peña, A.G.; Goodrich, J.K.;

Gordon, J.I.; et al. Qiime allows analysis of high-throughput community sequencing data. Nat. Methods 2010, 7, 335–336.
[CrossRef] [PubMed]

58. Schloss, P.D.; Westcott, S.L.; Ryabin, T.; Hall, J.R.; Hartmann, M.; Hollister, E.B.; Lesniewski, R.A.; Oakley, B.B.; Parks, D.H.;
Robinson, C.J.; et al. Introducing mothur: Open-source, platform-independent, community-supported software for describing
and comparing microbial communities. Appl. Environ. Microb. 2009, 75, 7537–7541. [CrossRef]

59. Ji, P.; Rhoads, W.J.; Edwards, M.A.; Pruden, A. Impact of water heater temperature setting and water use frequency on the
building plumbing microbiome. ISME J. 2017, 11, 1318–1330. [CrossRef] [PubMed]

60. Ye, J.; Joseph, S.D.; Ji, M.; Nielsen, S.; Mitchell, D.R.G.; Donne, S.; Horvat, J.; Wang, J.; Munroe, P.; Thomas, T. Chemolithotrophic
processes in the bacterial communities on the surface of mineral-enriched biochars. ISME J. 2017, 11, 1087–1101. [CrossRef]

61. Boix-Amorós, A.; Collado, M.C.; Mira, A. Relationship between milk microbiota, bacterial load, macronutrients, and human cells
during lactation. Front. Microbiol. 2016, 7, 492. [CrossRef] [PubMed]

62. Mar, J.S.; LaMere, B.J.; Lin, D.L.; Levan, S.; Nazareth, M.; Mahadevan, U.; Lynch, S.V. Disease severity and immune activity
relate to distinct interkingdom gut microbiome states in ethnically distinct ulcerative colitis patients. mBio 2016, 7, e1016–e1072.
[CrossRef]

63. Chen, B.; Teh, B.; Sun, C.; Hu, S.; Lu, X.; Boland, W.; Shao, Y. Biodiversity and activity of the gut microbiota across the life history
of the insect herbivore spodoptera littoralis. Sci. Rep. 2016, 6, 29505. [CrossRef]

64. Ramayo-Caldas, Y.; Mach, N.; Lepage, P.; Levenez, F.; Denis, C.; Lemonnier, G.; Leplat, J.; Billon, Y.; Berri, M.; Doré, J.; et al.
Phylogenetic network analysis applied to pig gut microbiota identifies an ecosystem structure linked with growth traits. ISME J.
2016, 10, 2973–2977. [CrossRef] [PubMed]

65. Comte, J.; Jacquet, S.; Viboud, S.; Fontvieille, D.; Millery, A.; Paolini, G.; Domaizon, I. Microbial community structure and
dynamics in the largest natural french lake (lake Bourget). Microb. Ecol. 2006, 52, 72–89. [CrossRef] [PubMed]

http://doi.org/10.1016/j.jhydrol.2020.124938
http://doi.org/10.18307/2018.0104
http://doi.org/10.1088/1755-1315/170/5/052037
http://doi.org/10.5846/stxb201603130448
http://doi.org/10.1007/s13131-011-0107-6
http://doi.org/10.11519/jjfs1953.68.4_150
http://doi.org/10.1080/00103628209367257
http://doi.org/10.1080/090164700310018083
http://doi.org/10.9734/cjast/2020/v39i2630913
http://doi.org/10.1111/j.1365-2389.1960.tb01093.x
http://doi.org/10.1016/j.ejsobi.2016.02.004
http://doi.org/10.1016/j.biortech.2016.05.048
http://doi.org/10.1128/AEM.01043-13
http://doi.org/10.1093/bioinformatics/bty560
http://www.ncbi.nlm.nih.gov/pubmed/30423086
http://doi.org/10.1093/bioinformatics/btr507
http://doi.org/10.1038/nmeth.2604
http://doi.org/10.1128/AEM.00062-07
http://www.ncbi.nlm.nih.gov/pubmed/17586664
http://doi.org/10.1038/nmeth.f.303
http://www.ncbi.nlm.nih.gov/pubmed/20383131
http://doi.org/10.1128/AEM.01541-09
http://doi.org/10.1038/ismej.2017.14
http://www.ncbi.nlm.nih.gov/pubmed/28282040
http://doi.org/10.1038/ismej.2016.187
http://doi.org/10.3389/fmicb.2016.00492
http://www.ncbi.nlm.nih.gov/pubmed/27148183
http://doi.org/10.1128/mBio.01072-16
http://doi.org/10.1038/srep29505
http://doi.org/10.1038/ismej.2016.77
http://www.ncbi.nlm.nih.gov/pubmed/27177190
http://doi.org/10.1007/s00248-004-0230-4
http://www.ncbi.nlm.nih.gov/pubmed/16733620


Microorganisms 2021, 9, 782 22 of 23

66. Holman, D.B.; Brunelle, B.W.; Trachsel, J.; Allen, H.K. Meta-analysis to define a core microbiota in the swine gut. mSystems 2017,
2, e4–e17. [CrossRef] [PubMed]

67. Rudi, K.; Angell, I.L.; Pope, P.B.; Vik, J.O.; Sandve, S.R.; Snipen, L. Stable core gut microbiota across the freshwater-to-saltwater
transition for farmed atlantic salmon. Appl. Environ. Microb. 2018, 84, e1917–e1974. [CrossRef] [PubMed]

68. Meng, X.; Yan, J.; Zuo, B.; Wang, Y.; Yuan, X.; Cui, Z. Full-scale of composting process of biogas residues from corn stover
anaerobic digestion: Physical-chemical, biology parameters and maturity indexes during whole process. Bioresour. Technol. 2020,
302, 122742. [CrossRef]

69. Ding, Y.; Liang, Z.; Guo, Z.; Li, Z.; Hou, X.; Jin, C. The performance and microbial community identification in mesophilic and
atmospheric anaerobic membrane bioreactor for municipal wastewater treatment associated with different hydraulic retention
times. Water 2019, 11, 160. [CrossRef]

70. Wang, H.; Feng, C.; Deng, Y. Effect of potassium on nitrate removal from groundwater in agricultural waste-based heterotrophic
denitrification system. Sci. Total Environ. 2020, 703, 134830. [CrossRef]

71. Wu, J.; Jiang, B.; Kong, Z.; Yang, C.; Li, L.; Feng, B.; Luo, Z.; Xu, K.; Kobayashi, T.; Li, Y. Improved stability of up-flow anaerobic
sludge blanket reactor treating starch wastewater by pre-acidification: Impact on microbial community and metabolic dynamics.
Bioresour. Technol. 2021, 326, 124781. [CrossRef]

72. Jensen, D.B.; Vesth, T.C.; Hallin, P.F.; Pedersen, A.G.; Ussery, D.W. Bayesian prediction of bacterial growth temperature range
based on genome sequences. BMC Genom. 2012, 13, S3. [CrossRef]

73. Zhang, G.; Jiao, Y.; Lee, D. A lab-scale anoxic/oxic-bioelectrochemical reactor for leachate treatments. Bioresour. Technol. 2015, 186,
97–105. [CrossRef]

74. Huang, Y.; Lu, Z.; Jiang, T.; Zeng, Y.; Zeng, Y.; Chen, B. Oxygen availability affects the synthesis of quorum sensing signal in the
facultative anaerobe Novosphingobium pentaromativorans us6-1. Appl. Microbiol. Biot. 2021, 105, 1191–1201. [CrossRef]

75. Kim, B.K.; Jung, M.Y.; Yu, D.S.; Park, S.J.; Oh, T.K.; Rhee, S.K.; Kim, J.F. Genome sequence of an ammonia-oxidizing soil archaeon,
“Candidatus Nitrosoarchaeum koreensis” my1. J. Bacteriol. 2011, 193, 5539–5540. [CrossRef] [PubMed]

76. Henriques, I.S.; Alves, A.; Tacão, M.; Almeida, A.; Cunha, Â.; Correia, A. Seasonal and spatial variability of free-living bacterial
community composition along an estuarine gradient (Ria de Aveiro, Portugal). Estuar. Coast. Shelf Sci. 2006, 68, 139–148.
[CrossRef]

77. Laque, T.; Farjalla, V.F.; Rosado, A.S.; Esteves, F.A. Spatiotemporal variation of bacterial community composition and possible
controlling factors in tropical shallow lagoons. Microb. Ecol. 2010, 59, 819–829. [CrossRef] [PubMed]

78. Park, M.; Kim, J.; Lee, T.; Oh, Y.; Nguyen, V.K.; Cho, S. Correlation of microbial community with salinity and nitrogen removal in
an anammox-based denitrification system. Chemosphere 2021, 263, 128340. [CrossRef] [PubMed]

79. Puyol, D.; Batstone, D.J.; Hülsen, T.; Astals, S.; Peces, M.; Krömer, J.O. Resource recovery from wastewater by biological
technologies: Opportunities, challenges, and prospects. Front. Microbiol. 2017, 7, 2106. [CrossRef] [PubMed]

80. Ge, S.; Wang, S.; Yang, X.; Qiu, S.; Li, B.; Peng, Y. Detection of nitrifiers and evaluation of partial nitrification for wastewater
treatment: A review. Chemosphere 2015, 140, 85–98. [CrossRef] [PubMed]

81. Qin, W.; Amin, S.A.; Martens-Habbena, W.; Walker, C.B.; Urakawa, H.; Devol, A.H.; Ingalls, A.E.; Moffett, J.W.; Armbrust, E.V.;
Stahl, D.A. Marine ammonia-oxidizing archaeal isolates display obligate mixotrophy and wide ecotypic variation. Proc. Natl.
Acad. Sci. USA 2014, 111, 12504–12509. [CrossRef] [PubMed]

82. Xu, J.; Bu, F.; Zhu, W.; Luo, G.; Xie, L. Microbial consortiums of hydrogenotrophic methanogenic mixed cultures in lab-scale
ex-situ biogas upgrading systems under different conditions of temperature, PH and CO. Microorganisms 2020, 8, 772. [CrossRef]

83. Hu, A.; Jiao, N.; Zhang, R.; Yang, Z. Niche partitioning of marine group i crenarchaeota in the euphotic and upper mesopelagic
zones of the east China sea. Appl. Environ. Microb. 2011, 77, 7469–7478. [CrossRef] [PubMed]

84. Shannon, P. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003,
13, 2498–2504. [CrossRef] [PubMed]

85. Zhang, H.; Chang, Y.; Chen, Q. Community structure analysis of archaea and bacteria in sediments of liaohe estuary (in China).
Acta Oceanol. Sin. 2018, 113–130. [CrossRef]
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