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Neuropathic pain, which is one of themost common forms of chronic pain, seriously increases healthcare costs and impairs patients’
quality of life with an incidence of 7–10%worldwide.Microglia cell activation plays a key role in the progression of neuropathic pain.
Better understanding of novel molecules modulatingmicroglia cell activation and these underlying functions will extremely benefit
the exploration of new treatment. Recent studies suggested long noncodingRNAsmay be involved in neuropathic pain.However, its
underlying functions and mechanisms in microglia cell activation remain unclear. To identify the differentially expressed lncRNAs
and predict their functions in the progression of microglia cell activation, GSE103156 was analyzed using integrated bioinformatics
methods.The expression levels of selected lncRNAs and mRNAs were determined by real-time PCR. In the present study, a total of
56 lncRNAs and 298 mRNAs were significantly differentially expressed.The differentially expressed mRNAs were mainly enriched
in NF-kappa B signaling pathway, TNF signaling pathway, Toll-like receptor signaling pathway, and NOD-like receptor signaling
pathway. The top 10 hub genes were Tnf, Il6, Stat1, Cxcl10, Il1b, Tlr2, Irf1, Ccl2, Irf7, and Ccl5 in the PPI network. Our results
showed that Gm8989, Gm8979, and AV051173 may be involved in the progression of microglia cell activation. Taken together, our
findings suggest that lots of lncRNAs may be involved in BV2 microglia cell activation in vitro. The findings may provide relevant
information for the development of promising targets for the microglial cells activation of neuropathic pain in vivo in the future.

1. Introduction

Neuropathic pain, which is one of the most common forms
of chronic pain [1, 2], seriously increased healthcare costs
and impairs patients’ quality of life with an incidence of
7–10% worldwide [3, 4]. Moreover, there are no effective
treatments for patients with neuropathic pain. To design
new prophylactic and therapeutic strategies, more studies
are needed to explore the pathogenesis of neuropathic pain.
Neuropathic pain often results from traumatic, infectious,
chemical, metabolic, or cancerous impairments [3–5], in
which significant features are hyperalgesia, allodynia, and
spontaneous burning pain. Although the pathogenesis of
neuropathic pain is obscure, microglia cell activation has
been shown to be essential for neuropathic pain [6, 7]. A
recent study has shown that spinal microglia activation was

induced by peripheral nerve injury and contributed to central
sensitization [8].

Considerable advances have been made in high-
throughput technology for identifying microglial factors in
neuropathic pain [9–11] in the past decade. However, the
mechanisms of microglia activation-induced neuropathic
pain are still poorly understood.

In general, ncRNAs do not encode functional proteins.
It has shown that lncRNAs participate in most essential
biological processes at the levels of posttranscription, tran-
scription, and epigenetics [12–15]. Recent research has shown
that some lncRNAs may be involved in the pathophysiology
of neuropathic pain. Xiuli Zhao et al. reported that Kcna2
antisense RNA was an endogenous trigger in the progression
of neuropathic pain [16]. Differentially expressed lncRNAs
were identified in SNI-induced neuropathic pain using
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high-throughput sequencing techniques, identifying a series
of potential therapeutic targets of neuropathic pain [17].
However, the potential functions and mechanisms of lncR-
NAs in microglia cell activation remain incompletely under-
stood.

In this study, we investigated the expression profile of
lncRNAs andmRNAs in BV2microglial cells stimulated with
LPS and predicted the potential functions and mechanisms
of differentially expressed lncRNAs. Due to opportunities
to identify novel promising targets of BV2 microglial cells
activation, our results may provide relevant information for
future study of microglial cells activation of neuropathic pain
in vivo.

2. Materials and Methods

2.1. Cell Culture, LPS Treatment, and RNA Isolation. BV2
microglial cells were purchased from ATCC (Manassas,
VA, USA) and cultured according to the manufacturer’s
instructions. BV2 microglial cells were stimulated for 24 h
with LPS (1 𝜇g/ml) or vehicle control (HBSS) in DMEM high
glucose media containing 2.5% FBS. Total RNA was isolated
and identified as previously described.

2.2. Microarray Data. Raw data of GSE103156 (Affymetrix
Mouse Gene 2.1 ST Array) were downloaded from the GEO
data repository [18, 19]. In the present study, three BV2
control samples and three BV2 LPS samples were used for
bioinformatic analysis.

2.3. Identification of Differentially Expressed lncRNAs and
mRNAs. Using Transcriptome Analysis Console (TAC) 4.01
(Affymetrix, Santa Clara, CA, USA), differentially expressed
lncRNAs and differentially expressed genes (DEGs) were
identified. 2.0-fold or greater and an adjusted p value < 0.01
were selected as a threshold.

2.4. Gene Ontology (GO) and Pathway Enrichment Analyses.
The Database for Annotation, Visualization and Integrated
Discovery (DAVID; http://david.ncifcrf.gov) (version 6.8)
was used to analyze the biological function of differentially
expressed genes [20–24]. p value < 0.05 was selected as a
threshold.

2.5. Protein-Protein Interactions (PPI) Network and Mod-
ule Analysis. The interactions of DEGs were predicted by
STRING online database (http://string-db.org, version 10.5)
[25]. PPI networkwas drawn byCytoscape (version 3.7.1) [26]
and its plugin (MCODE [27] and CytoNCA [28]).

2.6. Transcription Factor (TF) Regulatory Network Analysis.
IRegulon plugin in Cytoscape was used to predict TFs of
selected DEGs [29]. Normalized enrichment score (NES) >
10 was used as the thresholds.

2.7. LncRNA-mRNACoexpression Network. LncRNA-mRNA
coexpression network was constructed to analyze the
interactions between lncRNA and mRNA by weighted

correlation network analysis (WGCNA) as described
previously [30].

2.8. Real-Time PCR. SuperReal PreMix Plus (Tiangen, Bei-
jing, China) was used to perform real-time PCR in the Ari-
aMx Real-time PCR System (Agilent Technologies, Palo Alto,
CA). The reaction conditions were as follows: incubation at
95∘C for 10 min, followed by 40 cycles of 95∘C for 15 s, 61∘C
for 20 s, and 72∘C for 30 s. The 2-ΔΔCt method was used
to calculate the relative expression levels of selected lncRNAs
and mRNA normalizing to GAPDH levels.

2.9. Statistical Analysis. All data were expressed as the mean
± SEM. Unpaired Student’s t-test for parametric data and
Mann-Whitney’s U-test for nonparametric data were utilized
for comparisons between 2 groups. GraphPad Prism 7.04
(GraphPad Software, San Diego, CA, USA) was used for all
statistical analyses. p value < 0.05 was considered statistically
significant.

3. Results

3.1. Identification of Differentially Expressed lncRNAs and
mRNAs. In total, 56 lncRNAs and 298 mRNAs were signifi-
cantly differentially expressed in BV2microglial cells exposed
to LPS. The top 30 most significantly differentially expressed
lncRNAs (Figure 1(a)) and mRNAs (Figure 1(b)) were shown
on heat map.

3.2. GO and Pathway Enrichment Analyses. DEGs were
mainly enriched in the following functions: immune system
process, innate immune response, inflammatory response,
and response to lipopolysaccharide (Figures 2(a)–2(c)). Our
results also suggested that DEGs were mainly enriched in the
following pathways: Herpes simplex infection, NF-kappa B
signaling pathway, TNF signaling pathway, Toll-like receptor
signaling pathway, and NOD-like receptor signaling pathway
(Figure 2(d)).

3.3. PPI Network Analysis. To identify hub genes of microglia
cell activation, we used STRING to look for interactions of
DEGs in BV2 microglial cells stimulated with LPS. In the
present study, we constructed a PPI network of 210 nodes and
1842 interaction pairs (Figure 3). In the PPI network, the top
10 most significantly hub genes were Tnf, Il6, Stat1, Cxcl10,
Il1b, Tlr2, Irf1, Ccl2, Irf7, and Ccl5.

3.4. TF Regulatory Network Analysis. The TFs of the top 30
hub genes in the PPI network were predicted.With NES > 10,
nine TFs (Irf1, Irf2, Irf4, Irf5, Irf8, Irf9, Stat1, Nfkb1, and Rela)
were predicted in the TF regulatory network (Figure 4).

3.5. LncRNA-mRNA Coexpression Network. We constructed
the lncRNA-mRNA coexpression network of 26 differentially
expressed lncRNAs and 127 interacting DEGs to predict
the functions and mechanisms of differentially expressed
lncRNAs in BV2 microglial cells treated with LPS (Figure 5).

http://david.ncifcrf.gov
http://string-db.org
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Figure 1: Hierarchical clustering of differentially expressed lncRNAs (a) andmRNAs (b). Red and blue columns refer to high and low relative
expression, respectively.

The top 5 hub lncRNAs were Gm8989, Gm8979, Gm8995,
AV051173, and Gm7609 in the coexpression network.

3.6. Real-TimePCR. Five lncRNAs (6530402F18Rik,AV051173,
Gm8979, Gm8989, and Gm18853) and IL6 mRNA were
selected to determine their relative expression levels by real-
time PCR (Figure 6). Our results showed that Gm8979,
Gm8989, AV051173, 6530402F18Rik, and IL6 were upreg-
ulated. The expression of Gm18853 showed no significant
change.

4. Discussion

Neuropathic pain seriously increases healthcare costs and
impairs patients’ quality of life with an incidence of 7–10%
worldwide [3, 4]. Microglia cell activation is essential to the
progression of neuropathic pain in vivo [6, 7].The research of
microglia cell activation provides opportunities to reveal the
molecular and cellular basis of neuropathic pain [6–8].

It has shown that lncRNAs participate in most essential
biological processes at the levels of posttranscription, tran-
scription, and epigenetics [12–15, 31]. Over the past decade,
there have been several lncRNA transcriptome researches
in chronic pain. Differentially expressed lncRNAs were
identified in SNI-induced neuropathic pain using high-
throughput sequencing techniques, revealing a series of
potential therapeutic targets of neuropathic pain [17]. Unlike
the previous study, which made the spinal cord as a whole,
we downloaded and analysed raw data of GSE103156, which
established microglia cell activation model by stimulating

BV2 microglial cells with LPS. In addition to common prop-
erties of immortalized cell lines (e.g., increased proliferation
and adherence), BV2 cells retain most crucial functions of
microglia in immune response and inflammation [32, 33].
BV2 cells stimulatedwith LPS in vitro resemble themicroglial
response in vivo to some extent.

In the present study, we identified 56 differentially
expressed lncRNAs and 298 DEGs in BV2 microglial
cells stimulated with LPS. DEGs were mainly enriched in
the following functions: immune system process, innate
immune response, inflammatory response, and response to
lipopolysaccharide. Pathway analysis results showed that
DEGs mainly involved in Herpes simplex infection, NF-
kappa B signaling pathway, TNF signaling pathway, Toll-like
receptor signaling pathway, and NOD-like receptor signaling
pathway.The experimentalmodel was successfully developed
since the mRNA expression levels of Il6, Il1a, Il1b, Tnf, and
Cxcl10 increased in BV2 microglial cells stimulated with
LPS [34, 35]. The expression levels of IL6 mRNAs in the
microarray were similar to those detected by real-time PCR.

PPI network analysis results showed that many differ-
entially expressed genes, such as Irf1, Irf7, Stat1, and Tlr2,
acted as hub genes in microglia cell activation. Recent studies
have revealed a crosstalk between Tlr2 and microglia cell
activation [6, 36]. Although further experimental validation
was needed, our results suggested new directions for future
experimental research. We predicted 9 TFs (Irf1, Irf2, Irf4,
Irf5, Irf8, Irf9, Stat1, Nfkb1, andRela)mapping to 32 hug genes
in PPI network. Notably, IRF1, IRF9, Stat1, and Nfkb1 were
significantly upregulated in BV2 microglial cells exposed to
LPS in the microarray analysis results.
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Figure 2: GO and KEGG enrichment analyses of differentially expressed mRNAs (Top 20, p < 0.05). GO functional analysis includes three
categories: biological process (BP) (a), cellular component (CC), (b) and molecular function (MF) (c). Red to green colors indicate high to
low -log (p value) levels. Point size indicates the number of differentially expressed genes in the corresponding pathway.

Many studies have indicated that interferon regulatory
factor (IRF) family was involved in the pathophysiology of
microglial activation and neuropathic pain [37–39]. IRF8,
interacted with IRF1 and IRF5, played an important regu-
latory role in the progression of neuropathic pain [40–42].
Recent studies have shown that Stat1 and Nfkb1 were closely
related to neuropathic pain [43–46]. However, the regulatory
mechanisms of the IRF family and other transcriptional
factors in microglia cell activation should be further studied
to determine their therapeutic effects in neuropathic pain in
vivo.

Based on fold change and degree in the lncRNA-mRNA
coexpression network, five lncRNAs (AV051173, Gm8979,
Gm8989, 6530402F18Rik, and Gm18853) were selected to
evaluate the expression levels using real-time PCR. The
relative expression levels of selected lncRNAs, except for
Gm18853,were consistentwith these trends in themicroarray.
The variation between real-time PCR and microarray may
relate to differences between the methods [47].

LncRNAs often transcribed together with their adjacent
or overlapping target genes and regulate their expression
through cis-regulation. Integrated bioinformatics analysis
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showed that AV051173 was coexpressed with Prdx1, with its
location next to the Prdx1 gene on the same chromosome.
Notably, Prdx1 was upregulated in BV2 microglial cells
exposed to LPS. Prdx 1 regulated NF-𝜅B-mediated microglial
activation as an antioxidant [48]. AV051173might be involved
in microglia cell activation by cis-regulatory role in the
expression of Prdx1.

In contrast to cis-regulating lncRNAs, trans-regulating
lncRNAs regulate gene expression far away from the site
of primary locus of transcription [49, 50]. Gm8979 and
Gm8989 are Gvin1 pseudogene, located on Chromosome 7.
In the lncRNA-mRNA coexpression network, Gm8979 and
Gm8989 were significantly coexpressed with mRNAs (Stat1
and Tlr3) via trans-acting mechanism. Stat1 and TLR3 played
an important regulatory role in BV2 cell activation [44, 51].
Gm8979 and Gm8989 might be involved in microglial cell
activation by regulating the expression of Stat1 and Tlr3
through a trans-acting mechanism.

Despite the results obtained above, there were some
limitations in this study. Firstly, even with the similarity to
primary microglia, BV2 microglial cells contain oncogenes
which render them different from primarymicroglia in some
ways, such as proliferation, adhesion, and the variance of

morphologies. Secondary, the vitro model of microglia cell
activation has limitations because the condition is encom-
passed bymultiple cell types and responses in vivo.Therefore,
it needs to be considered with caution about the association
between the findings and the microglial cells activation of
neuropathic pain in vivo.

5. Conclusions

In conclusion, we downloaded raw data of GSE103156
from the GEO data repository and identified differentially
expressed lncRNAs and DEGs in BV2 microglia cell acti-
vation. The findings suggested that differentially expressed
lncRNAs may regulate the expression of target genes acting
as cis-acting or trans-acting factors. The findings may pro-
vide relevant information for the development of promising
targets for the microglial cells activation of neuropathic pain
in vivo in the future.

Data Availability

The data used to support the findings of this study are
available from the corresponding author upon request.
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