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Abstract: The bacterial biofilm constitutes a complex environment that endows the bacterial com-
munity within with an ability to cope with biotic and abiotic stresses. Considering the interaction
with bacterial viruses, these biofilms contain intrinsic defense mechanisms that protect against phage
predation; these mechanisms are driven by physical, structural, and metabolic properties or governed
by environment-induced mutations and bacterial diversity. In this regard, horizontal gene transfer
can also be a driver of biofilm diversity and some (pro)phages can function as temporary allies in
biofilm development. Conversely, as bacterial predators, phages have developed counter mechanisms
to overcome the biofilm barrier. We highlight how these natural systems have previously inspired
new antibiofilm design strategies, e.g., by utilizing exopolysaccharide degrading enzymes and pepti-
doglycan hydrolases. Next, we propose new potential approaches including phage-encoded DNases
to target extracellular DNA, as well as phage-mediated inhibitors of cellular communication; these
examples illustrate the relevance and importance of research aiming to elucidate novel antibiofilm
mechanisms contained within the vast set of unknown ORFs from phages.

Keywords: biofilm; phage; bacterial–bacteriophage co-evolution; biofilm matrix protection mecha-
nisms; predator–prey arms race; antibiofilm mechanism; phage–host interaction

1. Introduction

Bacterial infections pose a serious threat to human health, which has fueled research
to conceive and establish new antibacterial strategies. The development of antibiotics,
dating back to the discovery of penicillin by Sir Alexander Fleming in 1929, provided a
revolutionary strategy to efficiently eradicate acute infections [1]; nevertheless, this resulted
in a more frequent occurrence of slow-progressing persistent infections, which were not
sensitive to common antibiotic treatments [2]. In 1978, Costerton et al. identified the
source of these chronic infections as aggregates of bacteria, later referred to as bacterial
biofilms [3]. Currently, it is recognized that about 65–80% of all infections are associated
with biofilms [4,5]. Inevitably, many researchers have devoted their efforts to gaining
a better understanding of this persistent bacterial life form and to the development of
effective anti-biofilm strategies.

A biofilm is a sessile community of bacteria embedded in a self-produced extracellular
matrix [6]. Although the matrix composition is strain-specific, it is generally composed of
exopolysaccharides, extracellular deoxyribonucleic acids (eDNA) and proteins, together
referred to as “extracellular polymeric substances” (EPSs) [7]. Biofilms commonly adhere to
biotic or abiotic surfaces, including lung tissue or medical implants, but they can also occur
independently of a surface, i.e., at the air–liquid interface [8,9]. The combination of the
matrix with the social and physical interactions among the residing bacterial species results
in a biofilm-specific phenotype that is distinct from free-floating planktonic bacteria [10,11].
While some researchers believe that biofilm is the default mode-of-growth, others believe
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that particular incentives, such as defense against different stressors, colonization of favor-
able environments or exploitation of the benefits of communal behavior, drive the switch
to this lifestyle [12].

Biofilm formation is generally regarded as a cyclic process that involves three general
stages: (1) attachment, (2) biofilm formation and maturation, and (3) detachment of cells
from the biofilm. In Staphylococcus epidermidis biofilms, attachment is mediated by different
factors depending on the type of substrate. Several bacterial surface components specifically
bind to host extracellular matrix components, which are deposited on the implant surface
soon after implantation of a medical device [13]. For example, serine-aspartate repeat
(Sdr) proteins mediate specific binding to fibrinogen and collagen, while the extracellular
matrix binding protein (Embp) binds fibronectin [14,15]; moreover, teichoic acids, which
are part of the cell wall, mediate adhesion to fibronectin [16]. On the other hand, eDNA
and the accumulation-associated protein (Aap) are recognized as mediators of the direct
attachment to abiotic surfaces, such as polystyrene and glass [17,18]. In Pseudomonas
aeruginosa, flagella allow the cells to reversibly contact a surface, which is subsequently
explored by surface-motility mechanisms, i.e., twitching and swarming [19,20]. Following
the suppression of the motility, irreversible surface attachment is achieved primarily by
the exopolysaccharide Psl and in less common cases by the Pel exopolysaccharide [20–23];
moreover, surface-associated fimbria have also been hypothesized to be involved in surface
attachment [24].

After attachment to the surface, bacteria further proliferate and establish intercellular
connections to form aggregates, eventually developing into multicellular 3D-like biofilm
communities embedded in an extracellular matrix [6]. In S. epidermidis, intercellular con-
nections are mediated by released factors, such as eDNA and the EPS polysaccharide
intercellular adhesin (PAI), and surface proteins Embp and Aap [18,25–27]. Interestingly,
these intercellular adhesins are not all present at the same time, but rather function redun-
dantly. Depending on the environmental conditions, the S. epidermidis biofilm matrix is
either PIA-dependent or protein/eDNA-dependent [28,29]. In P. aeruginosa, cell-to-cell
connections are established by released eDNA and the EPSs Psl and Pel [30–32]. Having a
positive charge, Pel is able to cross-link eDNA by ionic interactions [33,34]. Analysis of a
collection of 20 laboratory, clinical, and environmental P. aeruginosa strains suggested that
the proportions of Pel and Psl are highly variable in mature 3D-like biofilms [23]. A third
EPS, alginate, is the dominant matrix EPS in mucoid P. aeruginosa variants [35]. In a mature
biofilm, the extracellular matrix will account for over 90% of the biofilm’s dry mass. The
extracellular matrix does not solely form a protective shield around bacteria, but also acts
as a reservoir of metabolic substances and nutrients, and thus promotes growth [7].

While biofilms are often associated with highly persistent infections [2], due to their
recalcitrance towards antimicrobials and ability to evade the action of the immune sys-
tem [36–38], we here focus on the environmental role of biofilms, and more specifically
in their interaction with bacteriophages. Bacterial viruses are traditionally perceived as
bacterial predators, eliciting anti-phage defense mechanisms within the host. Yet, just like
all predator-prey relationships in nature, phages can also co-exist within (as prophages)
or around bacteria in a biofilm; this long-term interaction has resulted in a co-evolution
that led to the emergence of diverse antibiofilm mechanisms within the phage that could
potentially be utilized in antibiofilm design strategies.

2. Biofilms as a Defense Mechanism against Phage Predation

In the most general sense, a biofilm provides a cellular protection mechanism against
environmental hazards [39,40], comprising abiotic as well as biotic hazards [41]. Abiotic
hazards include hydration and salinity fluctuations, UV light, heavy metals, acidity and oxi-
dizing agents. On the other hand, biotic hazards refer to predator attacks [42–48]. Matz et al.
(2009) referred to biofilm formation as a “refuge against predation” by phagocytosis [48];
however, biofilms protect bacteria also against their viral predator—bacteriophages [48,49].
The biofilm protection mechanisms against phage attack are multifactorial, yet can be
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perfectly aligned with cellular phage-resistance mechanisms including toxin–antitoxin
system, retrons, the loss or masking of viral receptors, CRISPR-Cas and other mechanisms
to invading phage DNA [50–55].

2.1. The EPS Matrix as a Phage Adsorption Trap

The biofilm matrix can contain “adsorption traps”, which are elements to which
phages bind, preventing them from reaching their host cells (Figure 1a). Phages may
interact with proteins in the matrix, as well as lipopolysaccharides, polysaccharides and
teichoic acids as part of the receptor recognition process [56]. Biofilms also contain dead cells
or outer membrane vesicles that may possess phage receptor molecules to which phages
can bind and hence get neutralized [57]. Generally, the number of dead cells increases
with age, impeding cell infection in old biofilms [57–64]. In addition, the production of
outer membrane vesicles is upregulated in biofilms, which further increases the number of
‘host-free’ receptors in the matrix [57,65].
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Figure 1. Biofilm defense mechanisms against phage predation: (a) Absorption traps. The biofilm
matrix can contain several absorption traps for phages, including dead cells, vesicles andin various
macromolecules (in blue) recognized by the phage particles; (b) Diffusion inhibition. Bulk flow is
restricted in the biofilm environment due to the presence of the extracellular matrix and high cell
densities. Therefore, diffusion becomes the main transport mechanism of solutes in the biofilm
environment, which is much slower. Phages can infect the cells that are close to the surface, but reach
the dense bacterial clusters that are surrounded by the thick layer of the extracellular matrix (gradient
background) much more slowly; (c) Metabolic refuges. Phage replication efficacy depends on the host’s
metabolic state. Cells deep within the biofilm and in the bacterial clusters have low metabolic activity
(grey colored cells), hence phage replication in these cells is inhibited. Cells that are deep within
the biofilm or at the center of the bacterial clusters will not be reached by phage progeny because
phage proliferation is inhibited by the metabolically less active neighboring cell; (d) Wall effect. The
interior-located non-resistant bacteria (green) are protected from phage predation by phage-resistant
bacteria (purple). The phage-resistant bacteria form a protective shield around non-resistant bacteria
and hence, phage exposure will not eliminate its host.
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2.2. Diffusion Inhibition

One of the main protective mechanisms of the biofilm is its diffusion inhibition. In
planktonic cultures, solutes, including phages, are carried along with the fluid bulk flow.
Only close in proximity to a cell, this flow is restricted, and diffusion becomes the principal
transport mechanism, which is typically much slower. In contrast, the flow is highly
restricted in the proximity of and within the biofilm due to the presence of the thick
extracellular matrix and high cell densities, making diffusion the only driving force of
solute transport (Figure 1b) [66]. Consequently, diffusion by any component including
phage through biofilm requires much more time, delaying any bactericidal effect. Apart
from the size of the phage, the diffusion is also influenced by its hydrophilicity [66–68].
Phage virion movement into the interior of biofilms is also dependent on its adsorption
rate. Phages with a reduced, more reversible adsorption capacity are able to reach deeper
into biofilms. Phages with a high rate of adsorption, on the other hand, bind to bacterial
cells in their close proximity and therefore have a higher chance of multiple infections,
i.e., multiple phages infecting one bacterial cell simultaneously. Consequently, less phage
progeny is released at the same moment; a higher adsorption rate is therefore correlated
with lower productivity in biofilms [69].

2.3. Physiological Refuges

Biofilms should not simply be considered a homogenous pile of microorganisms, but
rather a structurally and metabolically heterogenous community. The biofilm architecture
creates nutrient and oxygen gradients within the biofilm, which lead to differences in the
physiological state of bacteria depending on their location [70,71]; this can be explained by
the fact that oxygen and nutrients are consumed faster than they can diffuse into the biofilm,
leading to the establishment of deficits in the deeper biofilm layers [72,73]. As such, cells
deep inside the biofilm, as well as in the middle of cellular clusters, have lower metabolic
activity [74]. A second smaller subpopulation of slow- and non-growing biofilm cells are
the persisters. Their metabolic inactivity does not result from nutrient limitations, but
rather is thought to be a bet-hedging strategy that results from stochastic gene expression
or induction by specific stimuli [75,76].

The slow- and non-growing biofilm subpopulations provide “physiological refuges”
from phage predation since phage infection and replication characteristics depend on the
growth state of its host: the faster the bacteria grow, the faster the phage replicates [55,74,77].
The principle of a physiological refuge is depicted in Figure 1c. Planktonic cells grow more
rapidly than cells within a biofilm, hence the phage burst size in the biofilm is several-fold
smaller and the infection cycle takes longer [40,55,74,78–83]. The older the biofilm, the lower
the nutrient and oxygen densities are available to the biofilm bacteria; therefore, the phage
burst sizes decrease with the age of the biofilm [79,84,85]. Nevertheless, some phages have
a natural ability to infect persisters and proliferate when the host becomes metabolically
active again [84,86,87]. During planktonic growth, phages can also go into a state of
“hibernation” in which the host is in a reversible dormant state, the virus development
passes through to the middle-stage of infection (host DNA is often broken down, and some
of the phage enzymes are made), but stays on halt until the nutrients become available
again. Phages can also have a “scavenger” response in low nutrient environments, in which
small quantities of progeny are produced after longer period of time [88].

2.4. Shielding Sensitive Bacteria by the ‘Wall Effect’

EPS plays a crucial role in coaggregation [89,90], which is the intercellular attachment
of genetically distinct bacteria via specific molecules (Figure 2) [89]. The best known
coaggregation-enabling EPS is DNA [47]. Coaggregation promotes multi-species biofilm
formation that ultimately leads to better defense against species-specific antimicrobials
and phages through the wall effect [89]. Since phages are highly specific, some even strain-
specific, one type of phage is usually unable to kill all the cells within a given (mixed
strain and/or species) biofilm [91]. The presence of non-sensitive species limits the phages’
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ability to lyse its target cells, even though there is less resistance appearance in mixed-
strain biofilms, indicating a so-called wall effect [92,93]. The wall-effect is defined as a
phenomenon where different bacterial strains or species with unequal ecological fitness
form a biofilm and the resistant bacteria are located around the sensitive bacteria as a
protective wall [64,83,94]. The theory of the wall effect is depicted in Figure 1d. Weiss
et al. (2009) highlighted this wall effect as an explanation for why T7 was unable to kill
infectious Escherichia coli from the mouse gut. The authors proposed that the target bacteria
were protected by commercial microflora or by resistant bacteria, since the resistance
appeared only for 20% of the targeted host. The wall effect can emerge by phage-resistance
mutations in a single strain biofilm, enabling native non-resistant bacteria to survive:
The phage resistance emerges at the edge of a colony where phage titers are the highest
and cellular growth the fastest. In the middle of the colony, phage-sensitive cells that
remain are protected by phage-resistant bacteria [93]; moreover, phage exposure can
boost superior bacterial proliferation thanks to the specific environment being created and
nutrients by lysing bacteria. Hence, phage exposure may cause an increase in biofilm
formation [63,83,95].
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Figure 2. Coaggregation. During coaggregation, genetically distinct bacteria (here depicted in purple
and green) can form aggregates by physically binding to each other through specific molecules,
including exopolysaccharides, proteins and eDNA (depicted in orange). The physical interaction is fa-
cilitated by cellular appendages including pili, flagella and fimbriae, as well as extracellular molecules.

2.5. Phage Receptor-Driven Aggregation

Cells within a biofilm are bound to each other either by aggregation elements or
through direct attachment. Bacteria may use phage receptors to bind to another bacterium,
which consequently inhibits phage attack [62]; this type of escape from phage attack
through cell–cell binding was observed by Darch et al. (2017) when a P. aeruginosa mutant
lacking exopolysaccharides was able to survive phage attacks when it formed cellular
aggregates [96]; however, P. aeruginosa with exopolysaccharides formed microcolonies that
had better survival rates. Similarly, Lacqua et al. (2006) discovered E. coli MG1655 phage-
resistant mutants that survived phage attack through fimbria-mediated cell clumping [53].

2.6. Environment-Induced Mutations and Horizontal Gene Transfer as Drivers for
Biofilm Diversity

In biofilms, mutations occur at high rates due to the stress caused by the biofilm’s
architecture [97]; indeed, biofilm buildup creates nutrient depletions and waste accumu-
lations that trigger mutagenesis through various mechanisms, most notoriously through
oxidative stress-break repair mechanisms. Oxidative stress can damage DNA and cause
double-stranded DNA breaks, which will trigger SOS-responses and RpoS-dependent
responses. The SOS-response activates DNA polymerases that are prone to cause errors;
moreover, oxygen stress can also inactivate the DNA repair system, which drives cells into
a highly mutable state, thereby creating so-called hypermutators [97–99]. Some antibiotics
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also cause oxidative stress, suggesting that treating biofilms with these substances can
give an extra spur for mutagenesis. The endogenous mutations lead to the appearances of
phenotypic variants, making the biofilm more heterogenous and more resistant to phages.
The mutations that make cells resistant to phages are the ones which change phage re-
ceptors and the expression of DNase [53–55,70]. The phage-resistant phenotypes already
emerge within the first 24 h. Resistance to antibiotics, nevertheless, appear even ten times
faster [70,79].

Bacteria in biofilm exchange their genetic material by three general mechanisms of
horizontal gene transfer: conjugation (direct cell-cell contact), transformation (DNA uptake
by competent cell) and transduction (bacteriophage-mediated DNA transfer) [100]. The ge-
netic material exchanges do not involve just small DNA fragments, but also larger elements
such as plasmids, including those plasmids that do not carry mobilization genes [101–103].
As biofilms favor plasmid stability and plasmids often promote at the same time biofilm
formation, transformation is probably induced and biofilm formation is stabilized at the
same time [100]. Interestingly, all conjugative plasmids that were studied by Ghigo (2001)
also initiated biofilm formation by providing surface–adhesive properties [104]. Besides
plasmids with antibiotic-resistance genes [100], many phage-defense mechanisms, such as
restriction-modification systems, are transferred horizontally within biofilms [105]. The
host range of the mobile genetic elements can become broader in heterogeneous biofilms;
this makes the horizontal transfer of resistance mechanisms between different strains or
even species possible in a biofilm [100,106]. In addition, an abortive infection system is
often carried by mobile genetic elements, including plasmids; these abortive infection
systems lead to death of the phage-infected cell to protect sister cells in the colony from
phage predation [54].

3. Co-Existence of Bacteria and Phages within Biofilms

The predator–prey interaction can generally be displayed as a spatial game in which
predators try to overlap their spatial distribution with their prey [107,108]; hence, phages
must co-exist with their prey in biofilms in order to propagate. Strictly lytic and temperate
phages follow different modes of co-living. While lytic phages exist in biofilms by being
trapped within the extracellular matrix or in cells with little metabolic activity, as discussed
in the previous section, temperate phages truly co-habitate with their host. Indeed, many
prophages promote biofilm production to increase the survival of itself and its hosts; they
also contribute to colonizing new sites after biofilm dispersal [91,109,110].

Carrying a prophage costs energy for the host. As such, there is an evolutionary pres-
sure on temperate phages to provide a selective advantage to their hosts [111]. Temperate
phages are known to carry or improve bacterial virulence factors, including biofilm forma-
tion [112–126]; genes of temperate phages are highly upregulated in biofilms, most of them
provide a positive impact on biofilm formation at different maturation stages [127–132].

At the onset of biofilm formation, some prophages induce biofilm formation by reduc-
ing cell motility, whereas others regulate bacterial metabolism in a way that cells will start to
release extracellular polysaccharides to begin forming the biofilm matrix [125,133,134]. As
the biofilm matures, stress caused by nutrient and oxygen depletion activates prophage re-
lease [124,129,135–137]. In the mature biofilm, temperate phage release from a few cells can
be beneficial for the neighboring cells because bacterial lysis releases nutrients and DNA,
providing nutrients and supporting the structural integrity by adding eDNA to the matrix.
It has been discovered that prophage-mediated cell lysis is so beneficial for the biofilm that
it even can actively be induced by quorum sensing; this programmed-cell-death-like action
triggers a bacterial SOS response which can induce prophages [124,138–144]. Prophages
can take advantage of Toxin/Antitoxin-systems to trigger prophage induction or express
their own genes [129,130]. Secondly, prophages are known to induce slow-growth bacterial
persistence, which helps their host to survive in the stressful environment of the mature
biofilm [130].
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At the late biofilm maturation step, prophage release helps to disrupt cell–cell bindings and
biofilm breakdown, which further promotes dispersal [61,124,125,129,131,135–137,144–149].
The dispersed cells colonize new sites together with the infective prophages [109,110];
furthermore, these phages drive the formation of small colony variants [126,129,135,136].
Small colony variants (SCV) are a bacterial slow-growing subpopulation with atypical
colony morphology and unusual biochemical characteristics. Infections caused by SCV
are more challenging to treat than their wild-type counterparts because they persist better
in mammalian cells and they are less susceptible to antibiotics [150]. Webb et al. (2004)
showed that the activity of filamentous phage Pf4 in Pseudomonas aeruginosa biofilms are
linked to the appearance of subpopulations with SCV phenotype from biofilm runoff [132];
these cells are densely covered with filamentous phages which improve their adhesion
and microcolony development and hence colonization of new surfaces following biofilm
dispersal [87,136].

Biofilms can also be viewed as temperate bacteriophage reservoirs, in which phage re-
lease is a frequent event and where phages are protected from environmental hazards [136];
however, it should be noted that cells which do not carry prophages can also release their
DNA into the surroundings by vesicles. Staphylococcus species even produce autolysins
which trigger cell lysis and subsequent eDNA release [18]. Consequently, prophage-
induced lysis is not necessarily essential for biofilm maintenance [90,151]. A mature biofilm
can also prevent phage release and it is even speculated that phage-infected cells can enter
apoptosis before releasing their progeny [77,110,136]. Fernández et al. (2018) observed
that spontaneous prophage induction was slowed down in mature biofilm cells. Highest
phage induction rates occurred at the beginning of biofilm formation (around 5–8 h); these
released phage particles become part of the extracellular matrix together with the secreted
cell contents and ultimately strengthen the biofilm. As a consequence, these phages become
trapped in the biofilm matrix [136,152]. The later the stage of biofilm development that
prophage release happens, the more likely the phages will become trapped [64,77]. To
potentially avoid being trapped within the biofilm matrix, some prophages also seem to
inhibit biofilm formation. Uhlich et al. (2013) e.g., showed that temperate phages often
utilize an insertion site close to the mlrA coding region (encoding a transcriptional regulator)
in E. coli serotype O157:H7 strains, thereby directly limiting curli expression and biofilm
formation [153].

In natural environments, where biofilms are usually built up by more than one bacterial
species, an induced prophage will probably be surrounded by non-susceptible bacteria and
their EPS, that a given phage may not be able to degrade [64,77]. To not become trapped in
mixed-species biofilms, prophage induction is upregulated if their host begins to form a
biofilm in co-culturing conditions [154]. A phage may potentially also not be able to escape
from its starving host in the lower layer of a biofilm due to a lack of nutrients, thereby
severely slowing down cell metabolism rates. It can develop pseudolysogeny where its
nucleic acid is in an inactive, unstable state. In pseudolysogeny, the phage is unable to lyse
or become truly lysogenic; on the other hand, this might enable the phage to survive the
extreme starvation [155].

4. Phage Mechanisms to Overcome the Biofilm Barrier

Phages encode specific mechanisms by which they overcome the biofilm barrier; these
include EPS-degrading enzymes, peptidoglycan hydrolases and quorum sensing inhibitors,
as detailed below.

4.1. Virion-Associated Exopolysaccharide Degrading Enzymes

Exopolysaccharides such as capsules or the polysaccharide portions of the biofilm
matrix are generally considered as inhibitors of infection, since they mask phage receptors
on the bacterial cell envelope; however, these exopolysaccharides play a double role when
it comes to phage predation in biofilms; this layer can also be targeted by some phages
utilizing it as a “secondary receptor” for phage adsorption [156,157].
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To gain access to the cell envelope, several phages have evolved and carry
exopolysaccharide-depolymerases on their tail spikes [71,96,158–160]. By local hydrolyza-
tion, these enzymes enable a deeper diffusion of the phages into the biofilm and enable the
degradation of thick biofilms [55,70,79,82,91,161,162]. There is a great diversity of phage
exopolysaccharide depolymerases, marked by an enormous specificity, shown in Table 1.

Table 1. Phage exopolysaccharide depolymerases. Phages carry two types of depolymerases: lyases
and hydrolases; this table explains the differences between these two classes with some exam-
ples [163–186].

Class Biochemical Activity

Lyases

Break the bonds between carbon with another atom (such as oxygen, sulfur, or another carbon atom) by means
other than hydrolysis and oxidation. Phages can contain several different lyases, which break down different
exopolysaccharides. Identified lysases include:
•→polysaccharide lyases (act on various polyanionic substrates, cleave a hexose-1,4-alpha- or beta-uronic acid
sequence by beta-elimination, yielding products in which the non-reducing terminus is modified to an
unsaturated uronic acid);
•→alginate lyases (catalyze the alginate degradation by a beta-elimination mechanism, in which the glycosidic
bond between the monomers gets broken, resulting in unsaturated oligosaccharides with a double bond
between the C4 and C5 carbons of the sugar rings);
•→exopolygalacturonic acid lyases;
•→guluronan lyases;
•→hyaluronate lyases/hyaluronidases (degradation of hyaluronate);
•→pectate/pectin lyases.

Hydrolases

Cleave a covalent bond by using a water molecule. Bacteriophage hydrolases degrade both bacterial cell walls
and exopolysaccharides. Examples of hydrolases of bacteriophages:
•→endorhamnosidases (hydrolysis of O-polysaccharide chain);
•→endosialidases (glycosyl hydrolases that specifically cleave polysialic acid);
•→amylases (glycoside hydrolases);
•→galactosidases (galactoside hydrolases);
•→glucosidases (hydrolases of complex carbohydrates, resulting in monosaccharides);
•→pullulanases (hydrolyses glycosidic bonds of polysaccharides);
•→dextranases (glucosidase);
•→cellulases (hydrolyzes β(1→ 4)-d-glucoside bond of cellulose);
•→sialidases (hydrolyzes the α-linked sialic acid from a variety of molecules, such as oligosaccharides
and glycoproteins);
•→xylosidases (catalyze the hydrolysis of α- or β-glycosidic linkages);
•→levanase (hydrolysis of (2→ 6)-beta-D-fructofuranosidic bond in (2→ 6)-beta-D-fructans (levans)).

Even though the polysaccharide depolymerases are highly specific and rarely degrade
more than one type of polysaccharide, phages with robust enzymes are not only killing their
susceptible cells in biofilm but also release non-susceptible cells from the biofilm towards a
planktonic state [79,187]. Furthermore, it is speculated that some phages induce their hosts
to synthesize EPS-degrading enzymes (either from the phage or host genome) which will
be released after phage propagation to enhance the ability of virions released from biofilm
cells to penetrate deeper into the biofilm, although this is not proven yet [165,188]. EPS
degrading enzymes that are released after bacteriolysis could also benefit other phages
in the environment; this means that while the cost of carrying the beneficial gene is on
one phage, the benefit of the gene is available to all unrelated phages in the surrounding
environment. If carrying the gene encoding such an enzyme is very costly, it will be lost in
evolution [189].

4.2. Peptidoglycan Hydrolase Release

Phage enzymes that target host cell walls can also degrade biofilm exopolysaccharides
after release [70,71,165,187,190–194]. Such lytic enzymes are virion-associated peptidogly-
can hydrolases (VAPGHs) and endolysins. VAPGHs introduce a small hole within the
bacterial cell wall toward the injection of phage genetic material into the cell [71,195]. It is
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hypothesized that heterogeneous phages with substantial numbers of VAPGHs can have
non-specific hydrolase activity on unrelated hosts when applied at high MOI. In Duarte
et al. [196], E. coli phage UFV13 prevented biofilm formation of Trueperella pyogenes. They
hypothesized that the phage’s VAPGH disrupted bacterial cell wall components that were
required for biofilm buildup. Endolysins or simply lysins, are enzymes that function along
with holins to lyse the bacteria at the end of the lytic infection cycle to release the progeny
of the phage [71]. Endolysins have even been shown to kill persisters when applied from
without (termed lysis from without) [194].

4.3. Phage-Mediated Inhibition of Cellular Communication

To inhibit cellular communication, some phages possess quorum-quenching (QQ)
properties. Considering the critical role of various quorum-sensing (QS) systems in biofilm
formation for both Gram-negative and Gram-positive bacteria, as recently reviewed [197],
a phage-mediated regulation is not unexpected. In Gram-negative bacteria, N-acyl ho-
moserine lactone (AHL)-based QS systems are abundant, with AHL molecules activating
transcriptional regulatory proteins [198]. By contrast, Gram-positive bacteria utilize se-
creted peptides and two-component regulatory systems to trigger gene expression.

The sequencing of presumably strictly lytic phage phiPLPE indicated the presence
of a putative AHL acylhydrolase gene [199]. The host of phiPLPE, Iodobacter sp. CDM7,
expresses a violacein-like purple pigment which is controlled by an AHL-based QS system.
The authors speculate whether the phage enzyme has a role in the degradation of either its
own host’s AHLs or those from other environmental sources. If the phiPLPE acylhydrolase
selectively targets the AHLs of other bacteria that can compete for resources with its
Iodobacter host, then, by the phage interfering with the growth of the competitors, progeny
production of the phiPLPE-infected cell could be advantaged [199]; however, the true
biological reason why phiPLPE encodes this acylase remains unknown. A second example
is Vibrio phage VP882, which encodes a QS receptor homolog that directs the lysis-lysogeny
decision [200]; moreover, the Pseudomonas phage DMS3 has a QS anti-activator protein,
Aqs1, inhibiting the LasR transcriptional regulator [201]. As a last example, Hendrix et al.
recently discovered that a strictly lytic phage can also interfere with QS [202]. They showed
that the LUZ19 enzyme Qst directly binds to the Pseudomonas quinolone signal (PQS)
QS system. One of the targets of Qst is PqsD, which is the catalyzing enzyme for the
biosynthesis of 4-hydroxy-2-heptylquinoline (HHQ), which itself has been studied as an
antibiofilm target; this gives a hint that phages may be able to manipulate biofilm formation
through QQ [199,203].

4.4. The Untapped Potential of Phage-Encoded DNases

The natural potential and biotechnological utilization of DNase enzymes should also
be considered. While it has not been reported that phages actively pursue degradation
of eDNA, several hypotheses can be formulated towards this: (1) phages are not strongly
sequestered by eDNA in biofilms. As such, the production of DNases, either virion-
associated or released at the end of the infection cycle, does not offer a selective advantage;
(2) phage-encoded DNases that are hypothesized to provide nucleotide building blocks
for phage replication are active upon host lysis and contribute to degradation of eDNA
after being released. Assuming that these phage nucleases are evolutionary optimized
to act quickly and genome-wide, it can be hypothesized that they constitute a promising
source of matrix-degrading enzymes to target eDNA biofilms when released together with
progeny phage.

5. The Search for Undiscovered Bacteriophage Antibiofilm Mechanisms

Phages are known to manipulate their host on multiple levels: (1) they change host
transcription, translation, metabolism and normal molecular-signaling pathways; and
(2) they can turn bacteria into phage-producing factories within minutes [204,205]; however,
only a fraction of phage ORFans (phage-encoded genes without predicted function) have
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been described, leaving around 80% of the phage-sequenced genes in the pool of “viral
dark matter” [206,207]. Most of the known phage proteins are part of the phage virion,
or have a function in the phage DNA replication. The functions of the uncharacterized
ORFans are often missed due to simplified large-scale screenings that are set to select
toxic or essential proteins. Under regular laboratory conditions, many of these ORFans
are non-essential, but they may become essential or improve fitness of the phage under
specific environments, such as in biofilms [208]. Most bacteria live within biofilms and as
discussed earlier, biofilms protect bacteria from phage infection, and phage proliferation
success is strongly influenced by their hosts living in biofilms; hence, phages have evolved
mechanisms to enhance host infection within a biofilm.

We hypothesize that phages may encode mechanisms that influence the host biofilm
after infection. Phages would benefit greatly if they could disrupt their host biofilm
using the bacterium’s own metabolism; their host would be metabolically more active and
able to produce more phage progeny; their phage progeny would have better access to
new host cells which are also metabolically more active and last but not least, the phage
progeny would not get trapped in the biofilm matrix that may be largely built up with
polymers of non-host bacteria, which they cannot degrade. In 2020, our research group
published three homologous PB1-like P. aeruginosa phage-encoded c-di-GMP interfering
peptides, termed YIPs, that increased host c-di-GMP levels through binding to diguanylate
cyclase YfiN, which resulted in a decrease in motility and increased of biofilm biomass;
however, the normal biofilm morphology development was impacted by reduced twitching
motility [209]. The recent identification of phage proteins that influence intracellular
communication (c-di-GMP) and consequently biofilm formation could just be the first of
many phage biofilm-inhibiting molecular mechanisms that function after infection. In this
case, YIP was discovered by a growth inhibition screen [209]. Similarly, Ko and Hatfull
(2020) screened 193 diverse mycobacteriophage genes from 13 different genomes and found
that about 23% of them were toxic when expressed in Mycobacterium smegmatis [210]; this
set of phage ORFans could easily be queried for biofilm impact.

However, screening for antibiofilm phage proteins is much more demanding than
screening for toxic genes; therefore, a more target-based screening is preferred in this
regard. As phage capsids limit the number of nucleotides carried by a phage, phage
proteins often function by interacting with host proteins, which allows phages to encode
smaller proteins [211,212]. Around 90% of phage proteins that are involved in protein-
protein interactions with the host are smaller than 250 amino acids [213]; these small
proteins influence the functions of host multiprotein complexes such as transcription
protein complexes, which will redirect the host physiology as dramatically as turning
normal bacteria into phage-producing factory [213,214]; therefore, it is plausible to identify
antibiofilm proteins of phages when screening small proteins with unknown function.
Finding a phage protein that shuts down bacterial biofilm formation or drives formed
biofilms towards dispersal by interacting with its host protein could provide us with a “key”
to synthesizing new small molecules that would mimic its action by fitting to the same “lock”
(Figure 3) [215]; these mimicking molecules could be used as novel medicines to combat
biofilm-related infections. As described before, antibacterial efficacy from pharmaceuticals
is reduced in biofilms, yet these new mimicking molecules could enhance their efficacy.
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