
RESEARCH ARTICLE

Computer-aided identification of

degenerative neuromuscular diseases based

on gait dynamics and ensemble decision tree

classifiers

Luay FraiwanID
1,2*, Omnia Hassanin1

1 Department of Electrical and Computer Engineering, Abu Dhabi University, Abu Dhabi, UAE, 2 Department

of Biomedical Engineering, Jordan University of Science and Technology, Irbid, Jordan

* fraiwan@just.edu.jo

Abstract

This study proposes a reliable computer-aided framework to identify gait fluctuations associ-

ated with a wide range of degenerative neuromuscular disease (DNDs) and health condi-

tions. Investigated DNDs included amyotrophic lateral sclerosis (ALS), Parkinson’s disease

(PD), and Huntington’s disease (HD). We further performed a statistical and classification

comparison elucidating the discriminative capability of different gait signals, including verti-

cal ground reaction force (VGRF), stride duration, stance duration, and swing duration. Fea-

ture representation of these gait signals was based on statistical amplitude quantification

using the root mean square (RMS), variance, kurtosis, and skewness metrics. We investi-

gated various decision tree (DT) based ensemble methods such as bagging, adaptive

boosting (AdaBoost), random under-sampling boosting (RUSBoost), and random subspace

to tackle the challenge of multi-class classification. Experimental results showed that Ada-

Boost ensembling provided a 6.49%, 0.78%, 2.31%, and 2.72% prediction rate improve-

ment for the VGRF, stride, stance, and swing signals, respectively. The proposed approach

achieved the highest classification accuracy of 99.17%, sensitivity of 98.23%, and specificity

of 99.43%, using the VGRF-based features and the adaptive boosting classification model.

This work demonstrates the effective capability of using simple gait fluctuation analysis and

machine learning approaches to detect DNDs. Computer-aided analysis of gait fluctuations

provides a promising advent to enhance clinical diagnosis of DNDs.

1 Introduction

Human motion is controlled by the neuromuscular system, which comprises all muscles, sen-

sory neurons, and motor neurons [1]. Degenerative neuromuscular disease (DNDs) arises

from the degeneration or progressive loss of the function in efferent or afferent nerves. Efferent

nerves are responsible for controlling voluntary muscles, while afferent nerves communicate

sensory information back to the brain and the central nervous system [2]. Examples of
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common DNDs include amyotrophic lateral sclerosis (ALS), Parkinson’s disease (PD), and

Huntington’s disease (HD). ALS is a progressive condition attributed to the preferential

degeneration of upper and lower motor neurons [3, 4]. As such, the disease impacts nerve cells

controlling voluntary muscle control, leading to a debilitated state affecting breathing, motion,

speech, eating, and even cognition [5]. PD is caused by neuron loss in the substantia nigra, a

structure responsible for releasing the neurotransmitter dopamine and plays a vital role in

learning, reward, and movement [6]. PD is often associated with motor symptoms, including

muscle rigidity, posture instability, rhythmic resting tremors, bradykinesia, and gait festina-

tion, propulsion, and freezing [7]. HD is a genetic condition that also affects the basal ganglia

and occurs explicitly due to the loss of spiny projection neurons [3]. HD’s main characteristic

symptom is hyperkinesia, a state of excessive restlessness leading to involuntary chorea move-

ments. Other symptoms may include cognitive degeneration and psychiatric dysfunction

[8, 9].

Studying human locomotion to diagnose DNDs shows great promise [10]. The study of

human locomotion is traditionally performed using gait fluctuation analysis and aims to

extract useful spatial and temporal information to quantify human motion [11]. The data

recorded using typical gait measurement systems are of periodic nature. A single gait cycle

consists of a sequence of spatial events attributed to the timely foot-floor contact activity.

These events, namely stride, stance, and swing, can be marked from vertical ground reaction

force (VGRF) signals. Typically investigated temporal attributes of gait cycle events include

duration and rate. DNDs can pose significant locomotion abnormalities, reflecting on the

associated gait patterns during normal walking. Accumulated studies have shown that these

abnormalities are disease-specific, and thus, gait analysis can be an effective tool to differenti-

ate and diagnose DNDs [10, 12]. For example, Ren et al. [13] used phase synchronization and

conditional entropy as parameters to distinguish healthy subjects and subjects with three

neurodegenerative diseases: PD, ALS, and HD. These two parameters were calculated for five

pairs of time series rhythms: stance time, swing time, stride time, percentage of swing time,

and stance time percentage. Another work was done by Jian-Jun et al. [14] where the Hurst

exponent was used as an indicator of aging and neurodegenerative diseases. They found that

the Hurt exponent of stride intervals decreases with neurodegenerative diseases and aging. In

accordance, Huasdorff et al. [15] reported a significant correlation between stride interval,

aging, and HD. Older subjects and HD patients had reduced stride intervals compared to

healthy subjects.

Driven by the need for economic non-invasive clinical practices, the application of com-

puter-aided human locomotion analysis to diagnose DNDs has recently gained significant

research traction. Computer-aided diagnostic systems typically integrate artificial intelligence

algorithms. If the data is obtained and processed appropriately, and the detection algorithm is

well chosen and optimized, the elements of human expertise and error become less detrimen-

tal to the diagnosis process. On these grounds, an extensive class of previous studies was

directed towards the binary classification of normal vs. pathological conditions [16–23]. Stan-

dard procedures extracted features included statistics values [16–20], recurrence quantification

analysis parameters [17], fuzzy recurrence plots [18], topological motion analysis [21, 22], and

left/right-foot autocorrelation and cross correlation [23]. Employed machine learning and

deep learning methods included support vector machine (SVM) [16–18], least squares SVM

(LS-SVM) [18], k-nearest neighbors (KNN) [16, 21], naive Bayes [21], random forest (RF)

[22], decision trees [23], adaptive Neuro-Fuzzy Inference [20], multi-layer perceptron (MLP)

[16], probabilistic neural network (PNN) [17], and convolutional neural network (CNN) [19].

Worth noting, the three types of DNDs discussed earlier share over-lapping motor symp-

toms. Thus, as targeted in this study, an efficient approach would be needed to classify these
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conditions simultaneously. In accordance, a limited number of recent studies tackled multi-

class classification of DNDs. In [24], Beyrami et al. used a wide range of statistical and entropy

features alongside a non-negative least squares (NNLS) classifier. This approach was applied to

raw short-length VGRF signals only. Lin C-W et al. [25] investigated recurrence plot and prin-

cipal component analysis to transform time-domain VGRF signals into images. These images

were inputted as features to a CNN model for classification. On the contrary, Alaska et al. [19]

compared the performance of several classification models, namely artificial neural network

(ANN), KNN, linear SVM, and RF. In the feature transformation process, extracted temporal

and spectral features included independent reconstruction components, approximate entropy,

standard deviation, minimum, maximum, and mean values, and the ratio of peak-magnitude

to root-mean-square.

According to previous studies, deep learning-based models tend to exhibit a highly auspi-

cious performance when classifying DNDs in both binary and multiclass contexts. In most

cases, complicated preprocessing and feature engineering techniques were also used. Com-

pared to traditional machine learning and pattern recognition methods, training and validat-

ing a reliable deep learning architecture requires significant computational resources.

Typically, this process is iterative, involves multiple model parameters, and entails specialized

graphical processing units. The lack of sufficient, high-quality, and comprehensive clinical

data is also considered amongst the main limitations. To exploit the value of automated disease

detection systems in resource-constrained settings where only small datasets and low-cost

hardware devices are available, simplistic computational approaches to characterize and clas-

sify gait patterns are worth investigation.

To address the shortcomings of previous works, this study proposes a simple yet reliable

computer-aided framework that simultaneously detects a wide range of DNDs based on gait

dynamics. Our primary objective is to perform a comparative performance investigation for

different combinations of spatiotemporal gait patterns and ensemble classification methods.

To this end, we first proposed a new approach to derive spatiotemporal gait cycle time series

from VGRF signals. This approach was applied to derive parameters such as stride duration,

stance duration, and swing duration. Feature characterization of the VGRF signals and the

spatiotemporal gait signals was based on the statistical descriptors of root mean square (RMS),

variance, skewness, and kurtosis. These descriptors were applied to raw short-length signals to

maximize data availability and support the proposed framework’s computational efficiency.

Finally, we compared the performance of various DT ensemble models based on the concepts

of bagging, adaptive boosting (AdaBoost), random under-sampling boosting (RUSBoost), and

random subspace. Fig 1 illustrates the DNDs detection framework employed in this study.

This paper is organized as follows. Section 2 provides a complete description of the pro-

posed framework and the adopted methodology in this study. Section 3 presents some statisti-

cal observations on the features extracted for various disease conditions and gait signals.

Moreover, it compares the performance of the ensemble classification models as applied to

each of the investigated gait signals. In section 4, an in-depth discussion of the results obtained

compared to other recent studies in the literature is provided and the methodological limita-

tions of this work are highlighted. Finally, section 5 concludes this paper.

2 Materials and methods

2.1 Dataset description

In this study, we used the publicly available Physionet database for neurodegenerative diseases

gait patterns [26, 27]. This dataset comprised of a total of 48 recordings spanning three differ-

ent disease conditions: amyotrophic sclerosis (13 patients), Huntington’s disease (20 patients),
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and Parkinson’s disease (15 patients). The dataset also included 16 healthy control subjects.

Table 1 provides a characteristic and demographic summary of the subjects involved. The raw

VGRF gait signals, representing the force measured under each foot separately, were recorded

using eight distinct distributed force sensors under each foot (2 channels, left and right). The

VGRF signals were recorded at a sampling rate of 300Hz. All the subjects were instructed to

walk continuously at their average pace along a 77m hallway for 5min. When the hallway end

was reached, the subjects had to turn around and walk in the opposite direction. Before data

preprocessing, the data points corresponding to the first and last 15s were eliminated to

reduce artifacts caused by movement start or end, as recommended by the previous work of

Hausdorffet al. [26, 28]. Extreme spike values lead by the end of hallway turn-backs were cor-

rected using a median filter [21, 29]. To maximize the number of available training instances,

Fig 1. Illustration of the proposed degenerative neuromuscular disease detection framework.

https://doi.org/10.1371/journal.pone.0252380.g001
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we segmented the 5min signal recordings into multiple 30s windows without overlapping.

Excessively noisy data windows were identified and discarded by manual inspection. Each

window was then considered as an independent signal sample in the feature extraction and

classifier training-validation process. Table 1 shows the final number of signal samples associ-

ated with each disease category after preprocessing.

2.1.1 Extraction of spatiotemporal gait parameter signals. In addition to the raw VGRF

signals, other spatiotemporal gait parameters, such as stride duration, swing duration, and

stance duration, were derived for each left and right foot independently. According to the

GAITRite reference system, gait events are defined based on changes in foot-floor contact pat-

terns. A gait cycle starts with a stance phase, during which the foot remains in contact with the

ground [30, 31]. Thus, the stance duration parameter refers to the time elapsed between a

heel-strike action and a subsequent toe-off action. Following is the swing phase corresponding

to the stage where the foot is off-ground; the corresponding swing duration parameter bounds

the toe-off action and the next gait cycle’s heel-strike action. The stride combines both the

stance and swing phases and corresponds to a complete gait cycle. The stride duration parame-

ter estimates the time length of a single gait cycle marked by two successive heel-strike actions.

[32, 33]

Fig 2 illustrates the stride, stance, and swing phases on the VGRF signal marked by the

heel-strike and heel-off events. In order to facilitate the identification of heel-strike and toe-off

points, the VGRF signals were first approximated as bilevel waveforms using the histogram

methods described in [34]. At first, each VGRF signal was realized as a random variable, and

the underlying probability distribution was non-parametrically constructed by binning the sig-

nal to a uniform-bin-width histogram. The appropriate histogram range and number of bins

were adaptively determined for each signal. Let A be a VGRF signal with a maximum ampli-

tude Amax, a minimum amplitude Amin, the histogram range AR was calculated using:

AR ¼ Amax � Amin: ð1Þ

The optimal bin-width was determined using Scott’s normal reference rule [35]:

Pin Width ¼
3:49ŝ
ffiffiffi
n3
p ; ð2Þ

where ŝ is the standard deviation of the signal and n is the total number of time samples.

Accordingly, the total number of equal-sized bins was found as:

M ¼
AR

Pin Width
: ð3Þ

Table 1. Summary of subjects’ description (average ± standard deviation values across subjects).

Disease Condition No. of Subjects Age (years) Height (m) Weight (Kg) Gait Speed (m/sec) No. of Windows

CON 16 (2 M, 14 F) 39.31 ± 18.51 01.83 ± 00.08 66.81 ± 11.08 01.35 ± 00.16 160

ALS 13 (10 M, 3 F) 55.62 ± 12.83 01.74 ± 00.10 77.12 ± 21.15 01.05 ± 00.22 96

PD 15 (10 M, 5 F) 66.80 ± 10.85 01.87 ± 00.15 75.07 ± 16.90 01.00 ± 00.20 125

HD 20 (6 M, 14F) 46.65 ± 12.60 01.83 ± 00.11 72.05 ± 17.05 01.15 ± 00.35 166

CON: Control, ALS: Amyotrophic Lateral Sclerosis, PD: Parkinson’s Disease, HD: Huntington’s Disease, M: Male, F: Female.

https://doi.org/10.1371/journal.pone.0252380.t001
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The constructed histogram was further divided into two sub-histograms, a lower state his-

togram HL with L bins and an upper state histogram HU with U bins, according to the follow-

ing criteria:

Li j ilow < i <
1

2
ðihigh � ilowÞ;

Ui j ilow þ
1

2
ðihigh � ilowÞ < i < ihigh;

where ilow is the lowest index and ihigh is the highest index in the main histogram. The lower

and upper state levels were then estimated as the mode of HL and HU, respectively. Finally, to

identify the gait events of interest, a 10% reference was set above the lower level estimated

from HL. For a lower bilevel SL and an upper bilevel SU, the 10% reference level was set as:

SL þ
10

100
ðSU � SLÞ:

The heel strike point was estimated as the time instant when the positive-going transition of

the VGRF signal crosses the 10% reference. Similarly, the toe-off point was estimated as the

time instant when the negative-going transition crosses the same 10% reference level. Fig 3

Fig 2. Illustration the stride, stance, and swing phases on the vertical ground reaction force signal marked by the heel-strike and toe-off events.

https://doi.org/10.1371/journal.pone.0252380.g002
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illustrates the estimated upper and lower histogram bilevels, the 10% reference level, and the

corresponding heel-strike and toe-off points for a sample VGRF signal.

2.2 Feature extraction

The features extracted in this study included the RMS, variance, kurtosis, and skewness. These

linear features provide a simple way to statistically quantify temporal changes in the amplitude,

structure, and regularity of the gait signals, thus, making them an ideal option for computer-

aided diagnostic tools and real-time disease detection applications.

The root-mean-square statistic (RMS) is defined as the square root of the arithmetic means

of the squared of a signal A:

RMS ¼
1

N

XN

i¼1

Ai
2; ð4Þ

where N is the number of time samples making up the signals A. The variance (var) in statistics

measures the spreadness of the signal’s amplitude around its mean and is mathematically

Fig 3. Bilevel waveform estimation of the vertical ground reaction force signal to identify the heel-strike and toe-off actions

time points.

https://doi.org/10.1371/journal.pone.0252380.g003
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defined as:

Var ¼
1

N � 1

XN

i¼1

ðAi � mAÞ
2
; ð5Þ

where μs is the mean of A given by:

mA ¼
1

N

XN

i¼1

Ai: ð6Þ

The skewness (Sk) is used as a measure of amplitude asymmetry around the mean and can

be computed as:

Sk ¼

1

N

XN

i¼1
ðAi � mAÞ

3

Var
3

2

ð7Þ

The kurtosis (Ku) measures the degree to which the signal distribution is prone to outliers

and is calculated as:

Ku ¼

1

N

XN

i¼1
ðAi � mAÞ

4

Var2

ð8Þ

The statistical temporal features were then extracted independently from each sample sig-

nal, i.e., left and right raw VGRF signals or gait parameter signals (stride, stance, and swing).

The final feature vectors were formed by concatenating the statistical metrics extracted from

each signal type separately. Accordingly, four distinct feature vectors, each is of size 1 × 8, were

considered for classification.

2.3 Classification models

Decision Tree (DT) is a popular supervised machine learning algorithm and is amongst the

most simplistic and intelligible predictive modeling approaches. As its name suggests, a DT

can be thought of as a tree with root nodes, internal leaf nodes, and branches. The root nodes

represent the features, the leaf nodes represent the class labels, and the branches represent the

conjunctions connecting features to their class labels. The model performance depends on

how well the tree is constructed from the training data. In this work, the classification and

regression tree (CART) algorithm was employed to construct the DT models at the training

stage [36, 37]. The Gini’s diversity index was employed as the root node split criterion [38].

Different DT ensemble variations were also employed for classification, namely bagging,

AdaBoost, RUSBoost, and random subspace. All investigated models were implemented fol-

lowing their binary realizations, and the multi-class classification problem was handled

through a one-versus-all error-correcting output code ensembling. In this approach, the

multi-class classification decision is made by combining the predictions of multiple base classi-

fiers. Each base classifier performs a single binary classification task targeted towards detecting

a single class from the rest [39]. The mathematical formulation of these classification methods

is detailed in [40–44].

Before model training, a 10% sample subset was randomly selected from the overall dataset

for tuning the classifiers’ parameters. Hyperparameter tuning was done via Bayesian optimiza-

tion with a cross-validation loss cost function. Table 2 summarizes the parameters selected for
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each classification model and feature vector after optimization. The complete training and val-

idation analysis was performed via Matlab software (R2020a, Natick, Massachusetts, USA).

2.4 Classification performance evaluation

To get a robust estimation of the overall classification performance, the models were trained

and tested using 10-folds cross-validation. To account for data imbalance, the folds were

divided using an equi-stratified approach. The folds had the same number of samples (without

repetition) with a class distribution following the overall dataset. The performance evaluation

metrics included accuracy, sensitivity, specificity, F1-score, and Cohen’s kappa coefficient (κ).

Provided below are the confusion matrix-based definitions for each of these metrics:

Accuracy ¼
TPþ TN

TP þ TN þ FP þ FN
ð9Þ

Sensitivity ¼
TP

TP þ FN
ð10Þ

Specificity ¼
TN

TN þ FP
ð11Þ

F1 � Score ¼
2TP

2TPþ FPþ FN
ð12Þ

k ¼
Po � Pe
1 � Pe

; ð13Þ

where the true positives (TP) and the true negatives (TN) represent the count of correctly clas-

sified audio signals, while the false positives (FP) and false negatives (FN) represent the num-

ber of signals incorrectly classified. Po is the relative agreement between raters, and it is

equivalent to the classification accuracy, while Pe is the hypothetical probability of agreement

by chance and can be calculated as [45]:

Pe ¼
ðTP þ FPÞðTP þ FNÞ þ ðTN þ FNÞðTN þ FPÞ

ðTP þ TN þ FP þ FNÞ2
ð14Þ

Table 2. Values of the parameters used for each classification model.

Classification Model Parameter Gait Signal

VGRF Stride Stance Swing

Decision Tree Min Leaf Size 1 15 6 11

Max Splits No. 50 50 20 11

Bagging Learning Cycles No. 485 96 18 33

AdaBoost Learning Cycles No. 485 87 289 90

RUSBoost Learning Rate 0.434 0.802 0.397 0.953

Learning Cycles No. 337 449 48 484

Random Subspace Learning Rate 0.500 0.900 0.700 0.700

Learning Cycles No. 150 410 220 380

AdaBoost: Adaptive Boosting, RUSBoost: Random Under-sampling Boosting.

https://doi.org/10.1371/journal.pone.0252380.t002
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3 Experimental results

3.1 Features distribution

A one-way analysis of variance (ANOVA) was conducted to assess the significance of each sta-

tistical feature derived from each gait signal separately. The compared ANOVA levels corre-

sponded to the disease conditions, namely control, ALS, PD, and HD. Since the feature

distributions were non-normal, as revealed by the Kolmogorov-Smirnov test, a non-paramet-

ric Kruskal-Wallis ANOVA was employed. Moreover, the post-hoc Dunn-Sidák approach was

used to perform pairwise comparisons between disease conditions. The tests were performed

with a 95% confidence interval to verify the statistical significance of the extracted features. It

is worth noting that for each feature type, uniform sample size was maintained between disease

levels. A 130 sample size was selected to match the ALS category having the smallest number

of samples.

Figs 4–7 visualize the features distribution for the VGRF, stride, stance, and swing signals,

respectively. The P and chi-square (x2) values on the plots represent the results of the Kruskal-

Wallis test. The asterisks represent the pairwise comparison results between disease classes

after applying Dunn-Sidák correction (�:p� 0.05, ��: p� 0.01, ���:p� 0.001). In general, the

results positively confirmed statistical significance between different disease conditions. The

investigated statistical features were highly sensitive to changes in gait dynamics between dis-

ease conditions, thus providing a promising outlook into using them for the classification

analysis.

3.2 Classification results

Table 3 compares the performance of the investigated classification models as applied to the

features derived from the VGRF, stride, stance, and swing signals independently. The tabu-

lated values represent the average of the classification accuracy, sensitivity, specificity, F-score,

and Cohen’s kappa coefficient over validation folds.

3.2.1 VGRF-based features. Using the statistical features derived from the left and right

VGRF signals, the results show that the base DT model performed poorly compared to the

other ensemble classifiers with an overall average accuracy of 93.13%, sensitivity of 98.23%,

specificity of 99.43%, F1-Score of 85.97% and Cohen’s kappa coefficient of 81.43%. Using the

AdaBoost ensemble approach, the overall performance notably improved, providing an aver-

age classification accuracy of 99.17%. Using the same classification model, the sensitivity, spec-

ificity, F1-score, and Cohen’s kappa coefficient metrics reached 99.17%, 98.23%, 99.43%,

98.28%, and 97.73%, respectively. Slightly lower classification accuracies were observed for the

random subspace (97.30%), Bagging (96.57%), and Boosting (96.66%) ensembles.

3.2.2 Stride-based features. As shown in Table 3, the AdaBoost model provided the high-

est detection accuracy for the stride-based feature set at an overall average of 97.68%. The DT

and random subspace models a relatively lower classification accuracy of 79.06%. The highest

sensitivity (58.65%), specificity (86.26%), F1-Score (58.10%) and Cohen’s kappa coefficient

(44.60%) were also obtained by the AdaBoost classifier. On the contrary, the Bagging ensemble

model provided the worst performance, as demonstrated by its classification accuracy of

78.53%. All other metrics dropped to 56.31%, 85.34%, 55.17%, and 41.09% for the sensitivity,

specificity, F1-score, and Cohen’s kappa coefficients, respectively.

3.2.3 Stance-based features. The best classification performance for the stance-based fea-

ture set was attained using the AdaBoost classifier at an accuracy of 81.98%. Concurrently, the

highest sensitivity of 63.54%, specificity of 87.81%, F1-score of 63.18% and Cohen’s kappa

coefficient of 51.18% were obtained using the same model. The Random substance ensemble
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Fig 4. Box plot and violin feature distributions for the (a) left and (b) right vertical ground reaction force signal.

The P and chi-square (x2) values on the plots represent the results of the Kruskal-Wallis test. The asterisks represent

the pairwise comparison results between disease classes (�:p� 0.05, ��: p� 0.01, ���:p� 0.001).

https://doi.org/10.1371/journal.pone.0252380.g004
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Fig 5. Box plot and violin feature distributions for the (a) left and (b) right stride signal. The P and chi-square (x2)

values on the plots represent the results of the Kruskal-Wallis test. The asterisks represent the pairwise comparison

results between disease classes (�:p� 0.05, ��: p� 0.01, ���:p� 0.001).

https://doi.org/10.1371/journal.pone.0252380.g005
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Fig 6. Box plot and violin feature distributions for the (a) left and (b) right stance signal. The P and chi-square (x2)

values on the plots represent the results of the Kruskal-Wallis test. The asterisks represent the pairwise comparison

results between disease classes (�:p� 0.05, ��: p� 0.01, ���:p� 0.001).

https://doi.org/10.1371/journal.pone.0252380.g006
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Fig 7. Box plot and violin feature distributions for the (a) left and (b) right swing signal. The P and chi-square (x2)

values on the plots represent the results of the Kruskal-Wallis test. The asterisks represent the pairwise comparison

results between disease classes (�:p� 0.05, ��: p� 0.01, ���:p� 0.001).

https://doi.org/10.1371/journal.pone.0252380.g007
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performed second to AdaBoost, followed by RUSBoost, then Bagging ensembles with average

accuracies ranging between 80.96% − 80.35%. On the contrary, the base DT model provided

the worst performance as evidenced by its accuracy (80.13%), sensitivity (59.60%), specificity

(86.57%), F1-score (59.54%), and Cohen’s kappa coefficient (46.37%).

3.2.4 Swing-based features. The swing-based features displayed a similar pattern to that

obtained using the stride and stance features. The AdaBoost model provided a superior overall

performance with an accuracy of 79.30%, sensitivity of 55.97%, specificity of 85.71%, F1-score

of 56.19%, and Cohen’s kappa coefficient of 42.51%. Following, the RUSBoost and random

subspace ensembles demonstrated a slightly worse performance with overall overage accuracy

of 77.73% and 77.71%, respectively. The worst performance among all classification models

and feature sets was obtained using the bagging ensemble as evidenced by the obtained accu-

racy (77.20%), sensitivity (49.56%), specificity (84.08%), F1-score (47.42%), and Cohen’s

kappa coefficient (33.38%).

Considering that AdaBoost yielded the best improvement, it was used to gauge the effec-

tiveness of detecting particular disease conditions. Fig 8 compares the class-specific results

associated with the best performing AdaBoost model for each gait time-series signal. For the

VGRF feature set, the highest class-specific accuracy was achieved for the HD classes at an

average of 99.4%. The CON, ALS, and PD classes were associated with the classification accu-

racy of 98.8%. For the stride, stance, and swing feature sets, the highest accuracies, F1-scores,

and Cohen’s kappa coefficients were associated with the ALS class at the ranges of 83.75%–

82.29%, 70.68%–67.68%, and 59.45%–55.49%, respectively.

Table 3. Achieved classification performance evaluation metrics for different gait signals using decision trees and different ensemble models.

Gait Signal Model Performance Criteria

Accuracy (%) Sensitivity (%) Specificity (%) F1-Score (%) Kappa κ(%)

VGRF Decision Tree 93.13 86.36 95.37 85.97 81.43

Bagging 96.57 92.95 97.64 93.09 90.80

AdaBoost 99.17 98.23 99.43 98.28 97.73

RUSBoost 96.26 92.25 97.44 92.40 89.90

Random Subspace 97.30 94.25 98.13 94.52 92.72

Stride Decision Tree 79.06 57.42 85.74 55.98 42.35

Bagging 78.53 56.31 85.34 55.17 41.09

AdaBoost 79.68 58.65 86.26 58.10 44.60

RUSBoost 78.54 57.52 85.66 54.77 41.11

Random Subspace 79.06 57.42 85.74 55.98 42.35

Stance Decision Tree 80.13 59.60 86.57 59.54 46.37

Bagging 80.35 59.62 86.68 59.31 46.29

AdaBoost 81.98 63.54 87.81 63.18 51.18

RUSBoost 80.43 60.92 86.97 58.26 45.82

Random Subspace 80.96 60.75 87.04 60.60 47.95

Swing Decision Tree 77.20 51.38 84.33 51.02 36.17

Bagging 77.20 49.56 84.08 47.42 33.38

AdaBoost 79.30 55.97 85.71 56.19 42.51

RUSBoost 77.73 53.80 84.89 53.45 38.78

Random Subspace 77.71 52.21 84.63 51.83 37.28

VGRF: Vertical Ground Reaction Force, AdaBoost: Adaptive Boosting, RUSBoost: Random Under-sampling Boosting.

https://doi.org/10.1371/journal.pone.0252380.t003
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4 Discussion

This work aimed to provide an efficient computer-assisted approach for identifying gait

dynamics associated with healthy versus various DND conditions. To this end, we propose a

simple yet effective framework incorporating two main stages: (1) extracting statistical tempo-

ral features from different types of gait signals and (2) and performing multi-class classification

using supervised machine learning approaches. We investigated the efficiency of using ensem-

ble learning systems, namely bagging, AdaBoost, RUSBoost, and random subspace. Moreover,

we carried out a detailed statistical and classification comparison between the features

extracted from different gait signals, namely left and right ground reaction force, stride, stance,

and swing signals.

Fig 8. Class-specific evaluation of the best performing AdaBoost ensemble model for the (a) VGRF signal, (b) stride signal, (c) stance signal, and

(d) swing signal.

https://doi.org/10.1371/journal.pone.0252380.g008
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The prospect of machine learning usually requires extensive data transformations to pro-

vide the best possible training set to the learner. Amongst the main aspects related to data

transformation is feature extraction. Optimal feature extraction provides a better representa-

tion of patterns under investigation and improves the models’ predictive performance. In our

proposed framework, gait signals were characterized based on statistical features, including the

RMS, variance, kurtosis, and skewness. One of the main strengths of the proposed framework

is using a limited number of simple features to characterize gait dynamics. These features were

derived directly from raw and short-length gait singles without applying extensive preprocess-

ing or complex filtering or transformation techniques. Such characteristic adds to the compu-

tational efficiency of the proposed framework and facilitates its application in real-time

settings. Despite the simplicity, our statistical analysis showed that these features positively

represented characteristic variations between disease groups. Post-hoc comparisons revealed

that the features derived from the raw VGRF signals corresponded to more significant pair-

wise group differences.

For DND detection, we employed four types of ensemble classifiers: bagging, AdaBoost,

RUSBoost, and random subspace. In order to highlight the significance of ensembled predic-

tions, we also considered the performance of the base decision tree model. In line with the

statistical analysis results, the classification analysis showed that the models’ predictive perfor-

mance was influenced by variability in the gait feature. Evaluation of classification perfor-

mance further emphasized that the VGRF-based feature set exhibited a notably higher

predictive efficiency than the other three feature sets, regardless of the classification model

used. Our target of achieving a high-performance detection framework was accomplished

using the AdaBoost classifier in conjugation with the VGRF-based feature set, with an average

classification accuracy of 99.17%. Correspondingly, the class-specific accuracies of 98.8%,

98.8%, 98.8%, and 99.4% were achieved for the control, ALS, PD, and HD groups, respectively.

Similarly, using the features extracted from the gait parameter signals, the AdaBoost model

generally provided superior performance. However, we obtained a lower overall accuracy of

81.98% for the stance-based feature set, 79.68% for the stride-based feature set, and 79.30% for

the swing-based feature set.

Worth noting, the classification results provided empirical evidence suggesting that ensem-

ble classifier systems are better performers than their constituent base models. Using the base

decision tree model, the VGRF-based features set provided the best classification performance,

but ultimately, all ensemble techniques improved classification results to varying degrees of

success. The AdaBoost yielded the most considerable improvement in all metrics, with an

improvement percentage of 6.49%, 13.74%, 4.26%, 14.32%, 20.02% for the accuracy, sensitiv-

ity, specificity, F1-score, and Cohen’s kappa coefficient, respectively. Following Adaboost, ran-

dom subspace performed best with a 4.48% increment in the accuracy, 9.14% in the sensitivity,

and 2.89% in the specificity. Slightly lower performance improvements were associated with

bagging and RUSBoost models. For the gait parameter signals, the AdaBoost model showed

the most notable performance improvement. The associated percentage increase in detection

accuracy, sensitivity, and specificity ranged between 0.78%–2.72%, 2.14%–8.93%, and 0.61%–

1.64%, respectively.

The physionet gait database was used in a few recent studies to perform a multi-class classi-

fication of neurodegenerative diseases. Table 4 provides a comparative summary of these

works. In agreement with our proposed framework, adopted literature approaches generally

integrated a wide range of feature extraction methods with supervised machine learning classi-

fication. The feature extraction methods for the VGRF signals included statistical amplitude

quantification, detrended fluctuation analysis, and fractal dimension. The features characteriz-

ing gait parameter signals were based on statistical amplitude quantification and recurrent

PLOS ONE CAD system for ND classification based on gait dynamics

PLOS ONE | https://doi.org/10.1371/journal.pone.0252380 June 4, 2021 17 / 22

https://doi.org/10.1371/journal.pone.0252380


analysis. For the classification task, a limited range of standard algorithms was explored, i.e.,

adaptive boosting trees, random forests (RF), support vector machines, and sparse non-nega-

tive least squares (NNLS) coding. Athisakthi et al. reported the highest accuracy for the param-

eter gait signal through using Wavelet transform-based statistical features and RF classifier

(stride 91.75%, stance 93.74%, and swing 93.7%) [46]. However, the best overall accuracy of

98.45% was obtained through statistical characterization of VGRF signals alongside NNLS

coding classification [24]. Thus, it can be noted that our proposed framework significantly

improved the neurodegenerative disease recognition rate in comparison to the state-of-the-art

methods in the literature. Potential advantages of such an accurate diagnostic system include

aiding in smart long-term monitoring. This also supports clinicians and care providers with

noninvasive and low-cost tools to aid in making diagnostic decisions. A possible explanation

for the relatively lower accuracies obtained using the stride, stance, and swing parameters sig-

nals might be due to the small-length raw VGRF signals used to derive these signals. However,

this approach was followed since the available dataset is not large enough to perform multiple

fold validation.

There may exist several methodological limitations in this study. Patient-specific factors

such as age, gender, and disease severity were incongruent between different disease groups.

Inconsistencies in such subject-specific factors could have a direct effect on the classification

model’s predictive performance. The availability of a more comprehensive dataset is essential

to investigate the impact of these factors and, therefore, support the generalization ability of

the proposed framework.

Table 4. Comparative summary to state-of-art literature on multi-class classification of neurodegenerative diseases.

Study Features Classifier(s) Gait Signal Performance Evaluation (Best Classifier)

Accuracy Sensitivity Specificity

Beyrami et al.

(2020) [24]

Standard Deviation, Mean, Kurtosis, Approximate

Entropy, Skewness

NNLS Coding VGRF 98.45% _ _

Begum et al.

(2020) [47]

Recurrence Analysis: Determinism, Average Diagonal

Line, Recurrence Rate Entropy. Fast Hadamard

Transform: Variance, Co-Variance, Energy, Mean,

Standard Deviation

RF, SVM Stride 91.40% (RF) 82.50% (RF) 94.30% (RF)

Islam et al.

(2019) [48]

Age, Weight, Height, Sex, Speed, Signal Maximum,

Minimum, Mean, Variance, Standard Deviation, Duration

Variation Coefficients, Approximate Entropy

RF Stride,

Stance,

Swing

92.39% 90.18% 92.61%

Najafabdian et al,

(2018) [49]

Independent Component Analysis: Detrended

Fluctuation Analysis, Fractal Dimension, Petrosian Fractal

Dimension

AdaBoost VGRF 92.34% 92.34% 91.34%

Athisakthi et al.

(2017) [46]

Wavelet Transform: Energy, Mean, Standard Deviation,

Variance, Co-variance

RF, SVM Stride 93.75% (RF) 91.67% (RF) 91.67% (RF)

Stance 93.74% (RF) 87.50% (RF) 96.15% (RF)

Swing 93.75% (RF) 87.50% (RF) 96.15% (RF)

Proposed Work Root Mean Square, Variance, Kurtosis, Skewness DT, Bagging, AdaBoost,

RUSBoost, Random

Subspace

VGRF 99.17%

(AdaBoost)

98.23%

(AdaBoost)

99.43%

(AdaBoost)

Swing 79.68%

(AdaBoost)

58.65%

(AdaBoost)

86.26%

(AdaBoost)

Stride 81.98%

(AdaBoost)

63.54%

(AdaBoost)

87.81%

(AdaBoost)

Stance 79.30%

(AdaBoost)

55.97%

(AdaBoost)

85.71%

(AdaBoost)

NNLS: Non-Negative Least Squares, RF: Random Forests, SVM: Support Vector Machines, DT: Decision Tree, AdaBoost: Adaptive Boosting, RUSBoost: Random

Under-sampling Boosting.

https://doi.org/10.1371/journal.pone.0252380.t004
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5 Conclusion

This paper investigates the application of ensemble classification to identify different DNDs.

Based on normal-paced gait fluctuations, healthy and disease conditions were characterized

using spatiotemporal statistical features derived from VGRF signals. For the classification task,

several ensemble classification approaches were investigated based on a base decision tree

classifier. A data-driven hyperparameter tuning approach using Bayesian optimization was

employed to select the most proper parameter for all classification methods. The obtained

results demonstrated the promising capability of detecting common DNDs, with the highest

overall classification rate of 99.17%. Thus, the proposed framework is applicable to aid in diag-

nostic decisions while considering computing hardware resource-restricted environments.

This framework can be extended in future work to include other types of DNDs and spatio-

temporal gait patterns. However, this requires further experimentation spanning a broader

range of subjects and disease conditions. Moreover, the investigation of other feature extrac-

tion approaches and deep learning classification models is expected to improve classification

performance.
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