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Low-dose computed tomography (CT) reconstruction is a challenging problem in medical imaging. To complement the standard
filtered back-projection (FBP) reconstruction, sparse regularization reconstruction gains more and more research attention, as
it promises to reduce radiation dose, suppress artifacts, and improve noise properties. In this work, we present an iterative
reconstruction approach using improved smoothed 𝑙

0
(SL0) norm regularization which is used to approximate 𝑙

0
norm by a family

of continuous functions to fully exploit the sparseness of the image gradient. Due to the excellent sparse representation of the
reconstruction signal, the desired tissue details are preserved in the resulting images. To evaluate the performance of the proposed
SL0 regularization method, we reconstruct the simulated dataset acquired from the Shepp-Logan phantom and clinical head slice
image. Additional experimental verification is also performed with two real datasets from scanned animal experiment. Compared
to the referenced FBP reconstruction and the total variation (TV) regularization reconstruction, the results clearly reveal that the
presentedmethod has characteristic strengths. In particular, it improves reconstruction quality via reducing noise while preserving
anatomical features.

1. Introduction

X-ray computed tomography has been widely used clinically
for disease diagnosis, surgical guidance, perfusion imaging,
and so forth. However, the massive X-ray radiations during
CT exams are likely to induce cancer and other diseases in
patients [1, 2]. Therefore, the issue of low-dose computerized
tomography reconstruction has been raised and attracted
more and more research attention. As far as we know,
there are two low-dose strategies widely studied for dose
reduction: (1) lowering X-ray tube current values, measured
by milliampere (mA) or milliampere-seconds (mAs), or
lowering X-ray tube voltage, measured by kilovolt (KV),
and (2) lowering the number of sampling views during
CT inspection. The strategy of regulation by mA or KV
usually produces high noisy projection data. Thus, when the
exposure dose is reduced, the images reconstructed using

methods such as FBP suffer from increased artifacts and
noise [3]. Diagnostic mistakes may appear in this case.
The latter approach may also induce image artifacts due to
limited sampling angles. As a result, the diagnostic value
of the reconstructed images may be greatly degraded if
inappropriate reconstruction approaches are applied.

To solve these problems, statistical reconstruction algo-
rithms [4–9] attempt to produce high quality images by
better modeling the projection data and the imaging geom-
etry, which have shown superior performance compared to
FBP-type reconstructions. Another path has been recently
opened by compressed sensing (CS) with existing range
of applications in medical imaging, for example, magnetic
resonance imaging (MRI), bioluminescence tomography,
optical coherence tomography, and low-dose CT reconstruc-
tion [10–24]. The CS theory reveals the potential capability
of restoring sparse signals even if the Nyquist sampling
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theorem cannot be satisfied. Although the restricted isometry
property (RIP) condition is not often satisfied in practice,
CS-based reconstruction can yield more satisfying results
than the traditional FBP algorithms in CT reconstruction
[25]. Among several choices of sparse transforms, the gradi-
ent operator is motivated by the assumption that a preferable
solution should be of bounded variation. It is known as
total variation (TV) regularization, which favors solutions to
be predominantly piecewise constant. TV has been widely
used in the CT reconstruction community. However, TV-
regularized images may suffer from loss of detail features and
contrast, resulting in the staircasing artifacts. It is well known
that 𝑙
0
norm regularization can provide a sparser representa-

tion than the TV regularization (𝑙
1
norm) [26, 27]. However,

the application of 𝑙
0
norm in image reconstruction is often

a nondeterministic polynomial-time (NP) hard problem. In
addition, 𝑙

0
norm is a nonconvex function in discontinuous

form.
𝑙
0
norm is defined as the total number of its nonze-

ros elements and has stronger effects in promoting sparse
solutions, but this minimization issue is NP hard to solve
in general. Then, a spontaneous question can be whether
preferable results will be achieved if we use regularization
forms between 𝑙

1
normand 𝑙

0
norm. In thiswork, we present a

smoothed 𝑙
0
(SL0) norm regularizationmodel for sparse-view

X-ray CT reconstruction. This SL0 regularization permits a
dynamic regularization modulation and can achieve a good
balance between the regularizations based on 𝑙

1
norm and

𝑙
0
norm. The paper is organized as follows. In Section 2,

the SL0 norm model is firstly described and then the
detailed optimization algorithm and the parameters setting
are given. Section 3 includes the experiments conducted on
the projection data from the Shepp-Logan phantom, the
head slice image, and the scanned mouse. The reconstructed
results demonstrate that the proposed SL0 regularization
produces better images with legible anatomical features and
preferable noise characteristic compared to those using TV
regularization. Finally, the discussions and conclusions are
given at the end of this paper.

2. Methods

2.1. Problem Formulation. The idea of SL0 norm originates
from the effort ofminimizing a concave function that approx-
imates 𝑙

0
norm [26]. In order to address the discontinuity of

𝑙
0
norm, we then try to approximate this discontinuous func-

tion via a feasible continuous one and minimize it by means
of a minimization algorithm for continuous functions (e.g.,
steepest decent method). The continuous function which
is used to approximate 𝑙

0
norm should have a modulation

parameter (say 𝜎), which determines approximation degree.
Then the family of the cost functions is defined as

𝑓
𝜎 (𝑠) = 1 − 𝑒

−|𝑠|/2𝜎
, (1)

noting that

lim
𝜎→0

𝑓
𝜎
(𝑠) =

{

{

{

0 if 𝑠 = 0

1 if 𝑠 ̸= 0,

(2)

or it can be approximately expressed as

𝑓
𝜎 (𝑠) ≈

{

{

{

0 if |𝑠| ≪ 𝜎

1 if |𝑠| ≫ 𝜎.

(3)

Then SL0 norm is defined as

𝐹
𝜎
(𝑠) =

𝑁

∑

𝑖=1

𝑓
𝜎
(𝑠
𝑖
) . (4)

In (4),𝑁 is the length of reconstructed signals. From (2) and
(3), we can obviously observe that when 𝜎 → 0, the SL0 norm
tends to be equivalent to 𝑙

0
norm. Therefore, we can find the

minimal 𝑙
0
norm solution via minimizing 𝐹

𝜎
(𝑠) (subject to

𝐴𝑠 = 𝑝) with a very small 𝜎 value. As can be seen, the value
of 𝜎 determines the smoothness of the function 𝐹

𝜎
(𝑠). The

larger the value of 𝜎 is, the smoother 𝐹
𝜎
is, resulting in worse

approximation to 𝑙
0
norm; and the smaller the value of 𝜎 is,

the closer the performance between 𝐹
𝜎
and 𝑙
0
norm is.

Now, we recall the total variation (TV) norm of a 2-
dimensional array (𝑥

𝑖,𝑗
), 1 ≤ 𝑖, 𝑗 ≤ 𝑛, which is defined as 𝑙

1

norm of the magnitudes of the discrete gradient:

‖𝑥‖TV = ∑

𝑖,𝑗


(𝐷𝑥)
𝑖,𝑗


, (5)

where (𝐷𝑥)
𝑖,𝑗

= (𝑥
𝑖+1,𝑗

−𝑥
𝑖,𝑗
, 𝑥
𝑖,𝑗+1

−𝑥
𝑖,𝑗
); 𝑥 is the attenuation

coefficients to be reconstructed. If we use the proposed SL0
norm to enhance the sparsity of the image gradient, then the
superior reconstruction behaviormay be achieved.Therefore,
to reconstruct the discrete X-ray linear attenuation coeffi-
cients, we consider the following constrained optimization
problem:

𝑥
∗
= arg min

𝑥

𝐹
𝜎
(𝑥) = arg min

𝑥

∑

𝑖,𝑗

(1 − 𝑒
−‖(𝐷𝑥)𝑖,𝑗‖/2𝜎) ,

s.t. 𝐴𝑥 − 𝑝
 ≤ 𝜀,

𝑥
𝑖,𝑗

≥ 0,

(6)

where 𝐴 is the system matrix, used to model the CT imaging
system; 𝑝 is the log-transformed projection measurements; 𝜀
is the tolerance used to enforce the data fidelity constraint,
and it refers to X-ray scatter, electronic noise, scanned
materials, and a simplified data model. Sidky and Pan [11]
have indicated that the best image root-squared-error is
achieved when chosen 𝜀 is around the actual error in the
projection data. In practice, the real noise level of a system is
usually unknown.Therefore, the optimal value of 𝜀 is selected
when the reconstructed image with less artifacts and clearer
anatomical structures is achieved.

2.2. Optimization Algorithm. In order to address the optimal
solution of the proposed minimization problem, we try to
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assess the optimality of the solutions by analyzing theKarush-
Kuhn-Tucker (KKT) conditions of (6) [28], which are the nec-
essary conditions for optimality in nonlinear programming
and can be derived through Lagrangian theory:

𝑥
∗
= arg min

𝑥

𝐿 (𝑥, 𝜆, 𝜂)

= arg min
𝑥

{𝐹
𝜎
(𝑥) + 𝜆 (

𝐴𝑥 − 𝑝
 − 𝜀) −

𝑛

∑

𝑖=1

𝜂
𝑖
𝑥
𝑖
} ,

(7)

and the partial derivative of the above Lagrangian function
can be expressed as

𝜕𝐿 (𝑥, 𝜆, 𝜂)

𝜕𝑥
= 0 ⇐⇒

∇𝐹
𝜎 (𝑥) + 𝜆

𝐴
𝑇
(𝐴𝑥 − 𝑝)

𝐴𝑥 − 𝑝


−
⇀
𝜂 = 0,

(8)

where the complimentary slackness is

𝜆 (
𝐴𝑥 − 𝑝

 − 𝜀) = 0,

𝜂
𝑖
𝑥
𝑖
= 0

(9)

and the nonnegativity is

𝜆 ≥ 0,

𝜂
𝑖
≥ 0.

(10)

In conclusion, the optimal solutions can be firstly satisfied
with the projection data fidelity constraint, and then corre-
sponding 𝜆 should satisfy 𝜆 > 0. Meanwhile, we intend to
acquire the nonzero values of 𝑥

𝑖
, and then corresponding 𝜂

𝑖

should satisfy 𝜂
𝑖
→ 0. To obtain the solutions meeting the

above conditions, we need to solve the following optimization
problem:

𝜂
∗
= arg min{



∇𝐹
𝜎
(𝑥) + 𝜆

𝐴
𝑇
(𝐴𝑥 − 𝑝)

𝐴𝑥 − 𝑝




}

s.t. 𝜆 > 0.

(11)

Sidky and Pan [11] present an optimization approach
composed by an iterative projection operator called
projection-onto-convex-sets (POCS) and adaptive steepest
descent procedure, which is suitable for dealing with large
size constrained optimization problems. In this paper,
a similar strategy is applied here. We choose POCS to
be the iterative operator, which is an efficient iterative
algorithm that can find images that satisfy the given convex
constraints. POCS combines the ART technique and the
image nonnegativity enforcement, and the proposed SL0
regularization is minimized via an iterative gradient descent
of the cost function. The images are updated sequentially
through the alternation of the POCS and gradient descent
until the Karush-Kuhn-Tucker (KKT) conditions are

satisfied. In practice, in order to reduce the computation
time, we relax the KKT conditions or stop after a predefined
iterative number. Under the current version of the proposed
reconstruction algorithm, there is no rigidly theoretical
proof on the convergence properties of the optimization
procedure. However, the reconstructed results in the
following experiments show that they are actually close to
the optimal solution.

2.3. Parameters Selection. The implementation of the pro-
posed SL0 regularization algorithm involves the choices of
a series of parameters shown in Figure 1. The regularization
parameter 𝜎 plays a crucial role in improving reconstruction
quality. While we take a small value of 𝜎, the function 𝐹

𝜎
is

highly unsmooth and includes many local minimums; hence
finding its minimization is not easy. However, as 𝜎 increases,
𝐹
𝜎
becomes smoother and includes less local minimums, and

hence it is easier to minimize 𝐹
𝜎
. In general, if we use a larger

value of 𝜎 during the whole iterative process, the smoother
reconstruction results can be achieved but the tissue details
are worse. On the other hand, if we use a smaller value
of 𝜎 during the whole iterative process, the optimization
process may get trapped into local minimum, which will
lead to artifacts and noisy reconstructions. Hence, our idea
is to solve a sequence of optimization problems. At the first
step, we solve (6) using a larger value of 𝜎 (such as 𝜎

0
).

Subsequently, we reduce 𝜎
0
by multiplying a small factor 𝜌

and then solve (6) again using 𝜎
1

= 𝜌𝜎
0
. This time we

initialize the reconstruction acquired in the last iteration.
Due to the fact that 𝜎 decreases gradually, for each value of
𝜎, the minimization algorithm starts with an initial solution
close to the previous optimal value of 𝐹

𝜎
(this is because

both 𝜎 and 𝐹
𝜎
have only slightly varied and consequently

the minimization of new 𝐹
𝜎
is potentially close to previous

𝐹
𝜎
). Hence, it is sufficient that the optimization algorithm is

capable of escaping from getting trapped into local optimality
and reaching the real minimum value for the small 𝜎 values,
which offers the proximate 𝑙

0
norm solution. In our tests,

we select 𝜎
0

= 0.7 and 𝜌 = 0.9 for all cases studied in
this work. At the same time, the selection of 𝜎 should satisfy
𝜎min ≥ 0.01.

The parameters that control ART and the steepest gra-
dient descent of objective function involve ART relaxation
factor 𝜆, which starts at 1.0 and slowly decreases to 0 as the
iteration progresses; the steepest gradient descent relaxation
factor Δ starts at 0.2 and slowly decreases to 0 as the iteration
progresses. The decreasing factors 𝛼 and 𝛽 are the keys to
control the respective step lengths for ART and SL0 steepest
descent. In the following experiments, we select 𝛼 = 0.95

and 𝛽 = 0.98. The stopping criterion is reached if ‖𝑥𝑘+1 −
𝑥
𝑘
‖
2
/‖𝑥
𝑘
‖
2

< 0.01 or the iterative process is stopped after
a predefined maximum iteration number. In this paper, the
maximum iterations of POCS are set to 30 and the maximum
iterations of SL0 steepest descent are set to 20.

The above values are determined via experimental results,
but we do not guarantee them to be optimal. However, the
test results below demonstrate that the above parameters are
satisfactory.
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Stop criterion

Yes

Δ := 𝛽 · Δ

𝜆 := 𝛼 · 𝜆

dg > dp and xc not feasible?

POCS descent step

ART: x := x + 𝜆 ·

Nonnegativity: xi = 0 if xi < 0

Image update: dp =

Store current image: xc = x

If iteration = 1 Δ := Δ · dp

If iteration = 1 𝜎 = 𝜎0 else 𝜎 = 𝜎 · 𝜌

Image update: dg =

dx = ∇xF𝜎(x), dx = dx/‖dx‖, x := x − Δdx

SL0 descent step

Return xc

Initialize parameters
x = 0, 𝜆 = 1, Δ = 0.2, 𝛼 = 0.95, 𝛽 = 0.98, 𝜎0 = 0.7, 𝜌 = 0.9

‖xnew − xold‖

‖xnew − xold‖

Ai((pi − Ai · x)/(Ai · Ai))

Figure 1: Flowchart of the proposed SL0 algorithm.

3. Experiments and Results

3.1. Data Acquisition. In order to characterize the superiority
of the proposed SL0 regularization, we first study the perfor-
mance of the proposed constrained optimization using the
Shepp-Logan phantom and human head slice image.We used

the Shepp-Logan phantom 𝐼: [0, 256]× [0, 256] → [0, 2]with
several ellipses standing for various anatomical tissues (see
Figure 2(a)). The phantom was forward projected by MAT-
LAB’s radon routine with 720 projections over 2𝜋 rotation,
yielding an angular spacing of 0.5∘.The second sample dataset
was a human head slice obtained from a clinical diagnostic
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(a) (b)

Figure 2: From left to right are Shepp-Logan phantom and human head slice image, respectively, which are the ground truth for
reconstructions comparison. And the display windows are [1.0 1.1] and [−200 200]HU, respectively.

CT device in our cooperative hospital (see Figure 2(b)). The
projection data were generated according to the fan-beamCT
geometry. The forward projection parameters were defined
as follows: the source-to-axis distance was 42.5 cm and the
distance of source-to-detector was 82.1 cm. The projection
data of each view included 874 bins and the size of each
element was 0.5mm × 0.5mm. And a total of 720 views were
simulated during 2𝜋 rotation.The images to be reconstructed
were composed by 512 × 512 pixels with 0.4mm × 0.4mm.
Furthermore, in order to evaluate the performance under
noisy projection data, we simulated the noisy measurements
according to the following model [29, 30]:

𝐼
𝑖
= Poisson{𝐼

0
⋅ exp(−∫

𝐿 𝑖

𝜇 (𝑙, 𝐸
𝑘
) 𝑑𝑙)}

+Normal (0, 𝜎2
𝑒
) ,

(12)

where 𝐼
𝑖
was the measured X-ray intensity in bin 𝑖 and 𝐼

0

was the incident intensity. 𝜇(𝑙, 𝐸
𝑘
) was the energy-dependent

attenuation map; 𝜎
2

𝑒
was the background electronic noise

variance. In the simulation, we selected 𝐼
0

= 5.0 × 10
5 and

𝜎
2

𝑒
= 10. A monochromatic spectrum was assumed and the

photon energy was set to 80 keV. Then the noisy projection
data were obtained via logarithm transform.

In the second study, we evaluate the performance using
two actual datasets from the scanned mouse experiments in
our lab. The X-ray tube voltage and tube current were set
to 50 kV and 1mA, respectively. The projection data were
acquired under fan-beam mode. The distance between the
detector and the center of rotation was 436.6mm, while the
source-to-axis distance was set to 221.9mm. A total of 360
projections were acquired over 2𝜋 rotation. The number of
radial bins per view was 880, and the size of each bin was 0.15
× 0.15mm2. The reconstructed image size was 512 × 512 with
an isotropic pixel size of 95.7𝜇m2.

3.2. Results. We first start our evaluation with the Shepp-
Logan phantom dataset, where the ground truth image is
available. The images of the reconstruction are shown in
Figure 3, where (a), (b), and (c) are for FBP, TV regularization,
and SL0 regularization, respectively. Among them, FBP is
applied to the entire projection data. However, we only
select 120 views (equally spaced over 2𝜋 rotation) for TV
regularization and SL0 regularization. As can be seen in
(a), (b), and (c) in Figure 3, we cannot observe significant
difference between the reconstructions. In order to make the
otherness of reconstructed results highlighted, the differences
between the reconstructed images and the original image
(OI) of the Shepp-Logan phantom are calculated. We can
see in Figure 3 ((d), (e), and (f)) that the proposed SL0
regularization algorithm leads to the best image quality with
effectively preserved margin details.

For the head slice dataset, the reconstructed images are
shown in Figure 4 for all three reconstruction methods. The
total of 720 views is completely selected for FBP recon-
struction, and only 180 views of them are used for TV
and SL0 regularization reconstruction. (a), (b), and (c) in
Figure 4 illustrate the reconstructed results through FBP, TV,
and SL0 using noiseless projections. Compared to the head
slice sample, FBP reconstruction produces obvious image
artifacts, but TV and SL0 reconstructions well reflect the
sample image even with apparently undersampled measure-
ments. (d), (e), and (f) in Figure 4 show the reconstructed
results through FBP, TV, and SL0 using simulated noisy
projections. When compared to the head slice sample, FBP
and TV reconstructions introduce significant artifacts and
the images appear to be very noisy. In this case, SL0 is
superior to FBP and TV with vastly suppressed artifacts
and better preserved image structures. Furthermore, we also
compute the difference between the reconstructed image and
the original image (OI) of the human head slice and the
results are illustrated in Figure 5. It can be observed from
Figure 5 that the SL0 produces minor differences between
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FBP

(a)

TV

(b)

SL0

(c)

FBP

(d)

TV

(e)

SL0

(f)

Figure 3: The results of Shepp-Logan phantom study. In (a), (b), and (c), from left to right, the reconstruction images are FBP, TV
regularization, and SL0 regularization, respectively. And the display window is [1.0 1.1]. In (d), (e), and (f), the difference images between
FBP, TV, and SL0 reconstructions and the ground truth are shown. And the display window is [−0.01 0.01].

the reconstructed images and the reference image when
compared to those of FBP and TV, which agrees with the
observations from Figure 4.

To further quantify the performance of the proposed SL0
method with FBP and TV methods, there are two criterions
to evaluate the reconstructed image. One is the normalized
mean absolute deviation (NMAD), defined as

NMAD (%) =

∑
𝑖,𝑗


𝑥
𝑖,𝑗

− 𝑥
truth
𝑖,𝑗



∑
𝑖,𝑗


𝑥
truth
𝑖,𝑗



× 100. (13)

And the other one is the signal-to-noise ratio (SNR), defined
as

SNR = 10 × lg(
∑
𝑖,𝑗

(𝑥
truth
𝑖,𝑗

)
2

∑
𝑖,𝑗

(𝑥
𝑖,𝑗

− 𝑥
truth
𝑖,𝑗

)
2
) . (14)

The values of the two criterions are presented in Table 1.
Among these three algorithms, FBP produces the worst
results with highest NMADs and lowest SNRs. In Shepp-
Logan phantom experiments, both TV and SL0 generate
the superior performances with teeny NMADs, which indi-
cate that the reconstructions are comparatively close to
the ground truth. In head slice image experiments, the
quality of all the reconstructions is decreased with the
simulated Poisson noise. However, in comparison to FBP
and TV, SL0 generates the optimal results under all the
situations, which are consistent with the observations in
Figures 3, 4, and 5.

Finally, in Figure 6, we present the reconstructed results
for scannedmouse data.Thewhole projection data are chosen
for FBP reconstruction and only half of them are used for TV
and SL0 regularization reconstruction. The reconstruction
images are shown in Figure 6 for all the three reconstruction
algorithms. A small area of interest is highlighted with
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FBP

(a)

TV

(b)

SL0

(c)

FBP

(d)

TV

(e)

SL0

(f)

Figure 4: The results of human head slice simulation study. In (a), (b), and (c), from left to right, the reconstruction images are FBP,
TV regularization, and SL0 regularization using noiseless projections. And the display window is [−200 200]HU. In (d), (e), and (f), the
corresponding reconstructed images with simulated noisy projection data are shown. And the display window is [−200 200]HU.

Table 1: Comparing criterions of the results reconstructed by different algorithms (Shepp-Logan and head slice).

FBP TV SL0
NMAD (%) SNR (dB) NMAD (%) SNR (dB) NMA (%) SNR (dB)

Shepp-Logan phantom 1.23 36.49 3.6𝑒 − 02 67.70 6.1𝑒 − 04 93.87
Head slice image (noiseless) 3.13 28.09 0.27 47.68 0.25 49.98
Head slice image (Poisson) 3.36 27.75 0.95 38.47 0.47 42.20

a magnification factor of 2, and the zoomed images of this
region are shown in the corresponding upper right corner. As
can be seen, severe noise can be observed in the FBP results
and the images appear to be blurry near to margin details.
Compared to FBP, better preserved soft tissue edges and
obviously reduced noise level can be observed in TV results.
We can see in Figure 6 that the proposed SL0method leads to
the significantly improved image quality with effective noise
suppression and tissue structure preservation in comparison
to FBP and TV.

4. Discussion

In this paper, we propose smoothed 𝑙
0
norm optimization

algorithm that exploits the gradient sparseness for low-dose
CT imaging. The results demonstrate that the proposed
method can effectively reduce noise and produce significantly
improved images. Compared to TV regularization method,
it is advantageous in terms of improved tissue edge prop-
erties, as well as lower level artifacts and image noise. The
approximation of 𝑙

0
norm scheme via a family of continuous



8 BioMed Research International

FBP

(a)

TV

(b)

SL0

(c)

FBP

(d)

TV

(e)

SL0

(f)

Figure 5: The difference between the reconstructed image and the original image (OI) of the human head slice. From top to bottom, there
are noiseless and simulated noisy scenarios in turn. From left to right, the reconstruction algorithms are FBP, TV, and SL0, respectively. The
display window is [−70 70]HU.

functions allows us to fully exploit the sparse assumption
imposed on image gradient (IG) and generate a feasible
method for sparse-view CT reconstruction.

The sequentially updated 𝜎 values originate from the
effort to find a measure that better approximates 𝑙

0
norm

than the traditional TV regularization method (𝑙
1
norm).

By altering parameter 𝜎, we can obtain better control of the
IG sparsity, which produces the superior anatomical features
over the TV minimization. The regularization parameter 𝜎

plays a vital role in improving reconstruction quality. In order
to acquire the better 𝜎 selection, we perform a series of
reconstruction experiments with different 𝜎 values. As can be
seen through Figures 7(a)–7(e), when we take 𝜎 = 0.01, the
cost function 𝐹

𝜎
tends to give the closer behavior to 𝑙

0
norm,

but the reconstructed image is the worst with severe artifacts
and noise. However, as 𝜎 increases, the reconstruction images
appear to improve gradually with obviously reduced noise
level. In Figures 7(a)–7(e), we can also observe that the

reconstructions with singular 𝜎 value during the whole
iterative process cannot adequately suppress artifacts and
preserve tissue structures (see the regions indicated by the
red circles). In order to obtain the preferable reconstruction,
the motivation of solving a sequence minimization strategy
through orderly decreased 𝜎 value seems to be a suitable
choice if both artifacts and noise suppression and margin
details preservation are pursued. In the test, we select the
initial value of 𝜎 as 0.7 and the decreased factor 𝜌 as 0.9. In
Figures 7(a)–7(f), we can clearly observe that the sequential
optimization via 𝜎 = 𝜌𝜎 can lead to the optimal image quality
with effectively suppressed artifacts and significant improved
edge properties. Additionally, we also show line profiles along
the marked yellow lines for ROIs of 𝜎 = 0.01, 0.5, and 1.0
and proposed scenarios in Figures 8(a) and 8(b). It can be
observed from Figure 8 that the proposed 𝜎 selection can
produce image with less artifact and noise, which agrees with
the observation in Figure 7.
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Figure 6: Results of scanned mouse datasets. From top to bottom, there are two different slices reconstructions. From left to right, the
reconstruction images are FBP, TV regularization, and SL0 regularization, respectively. The red arrows denote a small area of interest and
corresponding zoomed images of ROI are placed at the top right. And the display window is [0 1.5].

A limitation of the proposed SL0 approach lies in
the sparsity assumption on the IG, which is an ordinary
problem for all the sparsity-driven iterative methods in CT
reconstruction. For most numerical or physical phantoms,
the reconstructed images are piecewise smooth and the
sparsity assumption on the IG is valid. However, this will
affect SL0 for human or animal slice reconstruction when
images only have a merely low level of sparseness on the
IG. Fortunately, the parameter 𝜎 allows us to expediently
control the aggressiveness in encouraging sparsity with TV
as 𝜎 regulates. Another potential problem is that when a
512 × 512 image is to be reconstructed, the SL0 algorithm
takes around 65 s to finish one loop on a 2.67GHz PC with
4GB RAM under MATLAB R2011a. There are several ways
to improve computational efficiency. One way is to select the
conjugate gradient (CG) method to solve the reconstruction
problems [28]. The CG algorithm is an improved steepest
descent algorithm, with the descent direction determined
by the current descent direction as well as the previous
searching direction. In addition, the proposed algorithm can

be accelerated via GPU-based technique to fulfill the clinical
requirements [31].

5. Conclusion

In this work, we studied sparse regularization for X-ray
low-dose CT imaging using a smoothed 𝑙

0
norm (SL0)

model. We investigated SL0 and compared its results with
TV regularization and FBP on a numerical phantom and
a clinical head slice as well as on two real datasets from
scanned animal experiments. From the results, we have seen
that the proposed SL0 regularization has yielded improved
reconstructionswith better performance in edge preservation
and noise suppression compared to the other two methods.
Nevertheless, practical application of the proposed approach
still needs further validation using more actual clinical data.
In the future, we will focus on addressing the limitations of
our research described above. Furthermore, we will try to
extend the SL0 regularization to handle other incomplete data
reconstruction problems [32].



10 BioMed Research International

(a) 𝜎 = 0.01 (b) 𝜎 = 0.1 (c) 𝜎 = 0.5

(d) 𝜎 = 0.7 (e) 𝜎 = 1.0 (f) 𝜎 = 𝜌𝜎

Figure 7: Results of reconstruction using different 𝜎 parameters. (a)–(e) are the reconstructions with singular 𝜎 value during the whole
iterative process. (f) is the reconstructed image with the decreased 𝜎 value. The red circles denote a small area of interest and corresponding
zoomed images of ROI are placed at the top right. The initial 𝜎 equals 0.7 and 𝜌 equals 0.9. And the display window is [0 1.5].

Proposed
𝜎 = 0.01

𝜎 = 0.5

𝜎 = 1.0

0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

10 20 30 40 50 60 70 800

(a)

10 20 30 40 50 60 70 800

Proposed
𝜎 = 0.01

𝜎 = 0.5

𝜎 = 1.0

0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

(b)

Figure 8: Line profiles of ROI in Figure 7. (a) Transversal profiles of ROI. (b) Vertical profiles of ROI.
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