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Calculating the crude or adjusted annualized relapse rate (ARR) and its confidence

interval (CI) is often required in clinical studies to evaluate chronic relapsing diseases, such

as multiple sclerosis and neuromyelitis optica spectrum disorders. However, accurately

calculating ARR and estimating the 95% CI requires careful application of statistical

approaches and basic familiarity with the exponential family of distributions. When the

relapse rate can be regarded as constant over time or by individuals, the crude ARR can

be calculated using the person-years method, which divides the number of all observed

relapses among all participants by the total follow-up period of the study cohort. If the

number of relapses can be modeled by the Poisson distribution, the 95% CI of ARR

can be obtained by finding the 2.5% upper and lower critical values of the parameter

λ as the mean. Basic familiarity with F-statistics is also required when comparing the

ARR between two disease groups. It is necessary to distinguish the observed relapse

rate ratio (RR) between two sample groups (sample RR) from the unobserved RR

between their originating populations (population RR). The ratio of population RR to

sample RR roughly follows the F distribution, with degrees of freedom obtained by

doubling the number of observed relapses in the two sample groups. Based on this,

a 95% CI of the population RR can be estimated. When the count data of the response

variable is overdispersed, the negative binomial distribution would be a better fit than the

Poisson. Adjusted ARR and the 95% CI can be obtained by using the generalized linear

regression models after selecting appropriate error structures (e.g., Poisson, negative

binomial, zero-inflated Poisson, and zero-inflated negative binomial) according to the

overdispersion and zero-inflation in the response variable.

Keywords: annualized relapse rate (ARR), confidence interval, F-distribution, Poisson distribution, generalized

linear model (GLM), person-years method

INTRODUCTION

The annualized relapse rate (ARR) is among the most reported indices in clinical studies of chronic
relapsing diseases such as multiple sclerosis (MS) and neuromyelitis optica spectrum disorders
(NMOSD) (1–4). In many recent clinical studies that enroll patients with demyelinating diseases
in the central nervous system (CNS), crude or adjusted ARR is calculated and compared between

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://doi.org/10.3389/fneur.2022.875456
http://crossmark.crossref.org/dialog/?doi=10.3389/fneur.2022.875456&domain=pdf&date_stamp=2022-06-10
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:t-akaishi@med.tohoku.ac.jp
https://doi.org/10.3389/fneur.2022.875456
https://www.frontiersin.org/articles/10.3389/fneur.2022.875456/full


Akaishi et al. Annualized Relapse Rate and 95% CI

disease groups and treatment groups to assess relapse activity
by the respective diseases and treatments (3, 5–7). Although
the calculation of ARR is relatively simple when the follow-up
period is equal among all participants, careful consideration is
required when calculating ARR in a cohort with different follow-
up periods (5, 8). The calculation of ARR in a cohort with
different follow-up periods is facilitated by the concept of the
person-years method (9–11), which is one of the easiest and
most common ways of calculating crude ARR. In addition to
calculating ARR, the 95% confidence interval (CI) should be
reported, but the correct ways of estimating the range differ
by the distributional patterns of the relapse count data. In
these processes, researchers need to be familiar with the general
concept of the Poisson and negative binomial distributions, both
of which are discrete distributions that express the probability
of a specific number of events occurring under some specific
situations. Generally, these distributions of the exponential
family are used upon estimating the 95% CI, whereas the F-
distribution is applied when comparing ARR between different
treatment groups. Besides, the generalized linear model (GLM)
will be applied to calculate the adjusted ARR and estimate its 95%
CI, after selecting the appropriate error structure according to
the distribution of the response variable. This report summarizes
the basic concepts and simple methods for calculating crude
and adjusted ARRs and estimating the 95% CIs, along with
the prerequisites for fitting each distribution of the exponential
family to the obtained data.

METHODS

Prerequisites Before Calculating ARR and
Estimating CI
When we calculate ARR from a patient group based on the total
observed events and follow-up periods, the person-years method
(or person-time method) is among the easiest and most common
methods. However, this method requires the relapse rate not
to significantly differ between participants and throughout the
follow-up period. Consequently, if the cohort is comprised
of patients with remarkably different relapse frequencies or
apparent time-dependent changes in relapse activity, a simple
application of the person-years method may be inappropriate.
In such cases, a conceivable way to manage the individual-
based or time-dependent differences in relapse activity may
be to stratify the data according to the influential background
(e.g., individuals, treatment, disease duration, relapse history,
or disease stages). Another conceivable way would be utilizing
GLM to calculate the adjusted ARR as described in the
following sections.

Concept of Poisson Distribution
The probability mass function of a Poisson distribution, with the
discrete variable k denoting the number of observed occurrences
(k = 0, 1, 2, . . .), is given as follows:

fpoisson
(

k, λ
)

= Pr
(

X = k
)

= λke−λ

k!
,

where the distribution parameter λ is equivalent to the expected
number of events (X) in a fixed length of time, typically
obtained from previously accumulated data. Because of the
characteristics of the Poisson distribution, the parameter λ is
also equal to the variance of the probability mass function of
f (X, λ). Here, we consider the frequency of event occurrence
following a Poisson distribution with parameter λ during a
specific time period t. The expected number of events occurring
during the time period 5t can be regarded as following the
Poisson distribution with a parameter of 5λ. However, this
is only the case if λ is known based on past accumulated
data. In most clinical studies, λ is initially unknown, hence
the need to estimate it together with the 95% CI from the
sample data. When estimating the CI, Poisson distributions
with different values of λ (mean and variance) are considered
to determine the critical values of λ for a two-tailed test
with α = 0.05. However, as a presumption of a Poisson
distribution, the expectation [E (X)] and variance [Var (X)] are
assumed to equal with λ, and Poisson distributions may underfit
to overdispersed count data. Selecting inappropriate error
structures for sample data may result in incorrect predictions
of the 95% CI for ARR and linear predictor function upon
using GLMs. Thus, when the sample variance of the number
of event occurrences is found to be significantly larger than the
sample mean (known as overdispersion), other distributions of
the exponential family may be better fitting models. The test
to determine the presence of overdispersion can be performed
using R Statistical Software (R Foundation, Vienna, Austria)
with the “dispersiontest” function of the AER package. The
package can be installed by running each of the following
R scripts:

>> install.packages(“AER”)
>> library(AER)
>> GLM object name <-glm(formula = ∗∗∗∗∗, data = data
frame name, family= Poisson)
>> dispersiontest(GLM object name)

As the error structures, normal distribution is supposed
in the classical linear regression models and binomial
distribution is supposed in logistic regression models,
but these distributions are usually not good fits for
counting data like the numbers of relapses. Rather than
these, the negative binomial distribution would be a
better alternative fit as described in the next section.
When there are too many data with the outcome
event occurrence of zero (i.e., no relapse during the
observation period), zero-inflated Poisson regression
or zero-inflated negative binomial regression would
better fit than normal Poisson or negative binomial
regression. Zero-inflated models require installing the
package “pscl” with “zeroinfl” function when using the
R Statistics.

Concept of Negative Binomial Distribution
When the count data of relapses is found to be overdispersed, a
conceivable good fit would be the negative binomial distribution.
The general formula of the distribution is shown below, using the
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FIGURE 1 | Poisson and negative binomial distributions with different parameters. Poisson and negative binomial (NB) distributions with different parameters that

generate E (x) = 1, 5, 10, 20, and 30 are shown. The function for NB distributions [f (x, k, p)] denotes the probability mass of x failures by the time of k successes

in trials with the successing probability of p in each attempt. This can be also expressed as X ∼ NB (k, p). As can be seen, negative binomial distribution can produce

distributions with larger variance (dispersion) than Poisson distribution with appropriate parameters. In Poisson distributions, the expected values [E (x)] correspond to

the rate parameter λ. In NB distributions, E (x) corresponds to k(1−p)

p
.

expectation µ (mean) and size parameter θ :

Pr
(

X = k
)

=
Ŵ

(

θ + k
)

k! Ŵ (θ)

(

θ

µ + θ

)θ (

µ

µ + θ

)k

Ŵ (θ) =
∫ ∞

0
tθ−1e−tdt

where X is counting k failures that occur for a given number
of θ successes. Then, the part of θ

(µ+θ)
in the above formula

corresponds to the probability of success (p) in each trial.
With the negative binomial distribution, the skewness of the
probability mass function can be modified by adjusting the size
parameter θ . Thus, the negative binomial distribution is a good
fit for dataset with event occurrence outcomes that appears
right-skewed with high probability mass for event occurrence
with 0. To visually confirm the difference in the distributions
of Poisson and negative binomial distributions, these two
distributions with different parameters are shown in Figure 1.
As can be seen, when the expected values [E (x)] are equal,
negative binomial distributions with appropriate parameters can
express distributions with larger variance (dispersion) than the
Poisson distribution.

Comparing ARR Between Groups and
Calculating Rate Ratio
When comparing the ARR between two groups with different
diseases or treatments, a relapse rate ratio (RR) and its 95% CI
can be obtained by using the F-distribution. Let the total follow-
up period in each of the two groups (Group A and Group B) be
denoted as {TA, TB}, and the observed total number of relapses in

each group be denoted as {NA, NB}. Using these values, a sample
RR can be defined as follows:

Sample RR = Sample ARR in group A

Sample ARR in group B
=

NA
TA
NB
TB

Next, we assume that the actual population ARR in each group,
denoted as λA and λB, are already known. The actual population
ratio between the two groups can then be described as follows:

Population RR = λA

λB

If the number of observed events (i.e., NA and NB) is sufficiently

large, the ratio of
(

Population RR
Sample RR

)

is known to approximately

follow the F-distribution with 2NA and 2NB degrees of freedom
(12, 13).

Population RR

Sample RR
∼ F (2NA, 2NB)

For reference, the probability density function of the F-
distribution with 2NA and 2NB degrees of freedom is expressed
as follows:

f (F) =

(

NA
NB

)NA

· F(NA−1)

B (NA, NB) ·
(

1+ NA
NB

F
)(NA+NB)

B (NA, NB) =
∫ 1

0
t(NA−1) · (1− t)(NB−1) dt

Frontiers in Neurology | www.frontiersin.org 3 June 2022 | Volume 13 | Article 875456

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Akaishi et al. Annualized Relapse Rate and 95% CI

The peak, mean, and variance of an F-distribution can change
according to the degrees of freedom; however, the formula below
is always true and serves as a characteristic of F-distributions:

f (NA, NB)α = 1

f (NB, NA)1−α

,

where f (NA, NB)α are random variables following F (NA, NB),
for which the corresponding upper or lower cumulative
probability (e.g., 0.025 or 0.05) is equivalent to α. Thus, the same
results with the F-test upon comparing ARR between two groups
can be obtained even after exchanging sample data between the
two groups. These are the bases to obtain the RR between two
groups and its 95% CI.

GLM for Obtaining the Adjusted ARR
In clinical studies with relapsing diseases, it is important to
adjust for baseline differences in critical covariates that are
not dealt with by randomization (3, 5, 6). To counter this
problem, it is important to obtain the adjusted ARR, in addition
to the aforementioned crude ARR. Adjusted ARR is the ARR
adjusted for several critical covariates, such as age, sex, disease
duration, baseline disease severity, relapse activity in the last
several years, activity on brain MRI, and the status of relapse
preventions. When the dependent variable is measurement data
like examination scores or body weight, a multiple regression
analysis may be utilized. Or, when the dependent variable is
binary data like survived/not survived, a logistic regression
analysis may be useful. Meanwhile, upon calculating the adjusted
ARR and estimating its 95% CI, the dependent variable is a
count data of the number of relapses during a specific length
of time. Generally, some distributions of the exponential family,
such as Poisson distribution or negative binomial distribution,
are known to be a good fit for counting data. GLM allows
these exponential families to be used as the error structure.
GLM is comprised of the following three important parts:
(1) linear predictor (linear combination of response variable
and independent variables), (2) link function, and (3) error
structure (as probability distribution for the response variable).
The general structure of GLM can be described as below with
Yi as the response variable and

(

X1, i, X2, i, . . . , Xk, i

)

as the
explanatory variables from an individual (i):

g (λi) = b0 + b1X1, i + b2X2, i + . . . + bkXk, i

Yi ∼ Error structure with parameter λi
(

e.g., Poission (λi)
)

where g−1 is the link function (i.e., logarithmic function
in Poisson and negative binomial). For example, the Poisson
regression model can be expressed as below:

λi = exp
(

b0 + b1X1, i + b2X2, i + . . . + bkXk, i

)

Yi ∼ λi
Yie−λi

Yi!

By searching for a coefficient (slope) of each explanatory variable
that maximizes the following log-likelihood L, the parameters

(

b0, b1, b2, . . . , bk
)

can be determined:

L
(

b
)

=
n

∑

i=1

log
(

p
(

Yi|g
(

b0 + b1X1, i + b2X2, i + . . . + bkXk, i

)))

Then, the adjusted ARR, based on GLM like Poisson regression
or negative binomial regressionmodels, can be obtained, together
with the 95% CI.

RESULTS

ARR Based on Person-Years Method
Calculating the crude (unadjusted) ARR is simple when the
follow-up period is equal among study participants, as shown
in Figure 2A. Most clinical trials that use ARR as a primary
endpoint, such as those enrolling patients with relapsing
demyelinating diseases in the CNS, correspond to this case as
far as the number of dropout cases is negligibly small. In this
scenario, averaging the individual-based ARR yields the same
result as the person-years calculation; thus, both are appropriate.
However, the situation differs when the follow-up periods differ
between the study participants, as shown in Figure 2B. In this
case, two methods for calculating the ARR can be conceived:
averaging the individual-based ARR (Plan A) or calculating using
the person-years method (Plan B) (12). In Plan A, the individual
weighting to account for the different follow-up periods was
totally ignored. In contrast, Plan B applies the procedure of
weighted summing adjusted for each participant’s follow-up
period (i.e., ti

T ). The general formula for Plan B is expressed
as follows:

ARR =
∑

i

(

ri

ti
× ti

T

)

=
∑

i ri
∑

i ti
.

In the above formula, the subscript i represents each individual, ri
is the number of relapses during follow-up in each individual, ti is
the length of follow-up in each individual, and T is the total sum
of follow-up periods within the cohort. This formula illustrates
the general concept of the person-years method for calculating
ARR. To ensure accurate results, we recommend checking in
advance before using the person-years method whether the
prerequisites listed in the Methods section (i.e., relapse frequency
does not differ between participants, by time, or by preceding
relapse status) can be regarded to be fulfilled.

Crude ARR Before Starting Relapse
Prevention
Upon calculating AAR, additional careful consideration is
required when the observation follow-up periods are censored
at the time of event occurrence, as shown in Figure 2C.
For example, this occurs when a clinical study evaluates
ARR during the untreated period before initiating long-term
relapse prevention treatments, which typically begin immediately
following a relapse (e.g., relapse prevention in neuromyelitis
optica spectrum disorder, anticonvulsant in epilepsy, and
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FIGURE 2 | Schemes of clinical studies with different types of the follow-up period. Three different scenarios of clinical observational studies with different follow-up

periods for each participant are shown. (A) The follow-up period was fixed and equal among the study participants. (B) The follow-up period varied among the

participants, in which case averaging only the individual relapse rate (Plan A) is insufficient, and applying the person-years method (Plan B) is more appropriate. This is

because the person-years method can weigh different follow-up periods in each participant. (C) The follow-up period in many participants is censored by the

occurrence of an event, and each participant’s follow-up period could be influenced by the occurrence of an event.
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antiplatelet in stroke). A conceivable approximation can be
obtained by simply applying the aforementioned person-years
method for the time period before starting treatments. However,
strictly speaking, the obtained ARR will be somewhat higher
than the actual rate unless the observed number of events in
each participant is sufficiently large enough for the truncated
fractions of the follow-up period to be negligible. Therefore, it
is preferable for each report to record the number of cases that
were censored by the end of the study, and specify those who
were censored by the initiation of relapse prevention immediately
after relapses. With this information, the reported data will be
interpreted more correctly.

Estimating 95% CI of ARR
Here, a disease is considered in which the number of event
occurrences (X) during the follow-up period of T person-
years follows the Poisson distribution of the unknown mean
λ. If a clinical study observed k event occurrences during T
person-years, the 95% CI for λ will be expressed as follows
using the probability mass function of the Poisson distribution
(fpoisson (X, λ )):

λ− [95% CI] ≤ λ ≤ λ+ [95% CI]

∞
∑

X=k

fpoisson
(

X, λ− [95% CI]

)

= 0.025

k
∑

X=0

fpoisson
(

X, λ+ [95% CI]

)

= 0.025

where

λ−[95% CI]: 2.5% lower critical value for the observation of
k events
λ+[95% CI]: 2.5% upper critical value for the observation of
k events

To estimate the α% confidence interval with a Poisson
distribution, the above formulae can be generalized as follows:

λ− [α% CI] ≤ λ ≤ λ+ [α% CI]

∞
∑

X=k

fpoisson
(

X, λ− [α% CI]

)

=
(

100− α

100

)

× 1

2

k
∑

X=0

fpoisson
(

X, λ+ [α% CI]

)

=
(

100− α

100

)

× 1

2

This range can be easily determined using the R Statistical
Software with the following script, where X denotes the number
of observed event occurrences:

>> Poisson.test(X)
WithX = k and the average number of event occurrences λ being
the number during the follow-up period of T person-years, the
95% CI of the ARR (= λ

T ) can be approximated as follows:

λ−[95% CI]

T
≤ λ

T
≤ λ+[95% CI]

T

When two studies yield the same crude ARR but involve
different total follow-up periods, the estimated 95% CI will
be different between them. Consider Case 1, where a total of
10 relapses (X = 10) were observed during 20 person-years
of follow-up, and Case 2, where a total of 50 relapses (X =
50) were observed during 100 person-years of follow-up. In
both cases, the crude ARR is equal to 0.50. For Case 1, the
Poisson distributions with mean values 4.80 and 18.39 yield the
upper and lower cumulative probability of 0.025, respectively
(Figures 3A,B). As the total follow-up period was 20 person-
years, the 95%CI approximation will be provisionally acquired as
0.24–0.92. In Case 2, the Poisson distributions with mean values
37.11 and 65.92 yield upper and lower cumulative probabilities
of 0.025 (Figures 3C,D). As the follow-up period was 100
person-years, the 95% CI approximation is 0.37–0.66. Poisson
distribution is not bilaterally symmetrical unless X is extremely
large (i.e., normal approximation to Poisson distribution), and
the estimated 95% CI of λ will also be bilaterally asymmetrical
from X (Figure 4, error bars with broken lines).

With a sufficiently large number of observed relapses, a
normal approximation of the Poisson distribution is possible
(14). Then, the 95% CI of the average number of event
occurrences (λ) can be approximated as follows:

k− 1.96×
√
k ≤ λ ≤ k+ 1.96×

√
k,

where k is the number of events that occurred during the entire
follow-up period of T for all participants. As a simplified estimate
of the 95% CI of the ARR (= λ

T ), the following inequality
expression is also permissible:

k− 1.96×
√
k

T
≤ λ

T
≤ k+ 1.96×

√
k

T
.

As this method approximates the Poisson distribution to a
normal distribution, it is not strictly accurate. The 95% CI ranges
obtained by the Poisson distribution do not exactly overlap with
those approximated by the normal distribution, especially for the
upper critical values (Figure 4).

Relapse Rate Ratio (RR) Between Two
Disease Groups
The significance of the difference in RR between two groups
can be evaluated by assuming the population RR to be exactly
1.0 (null hypothesis: H0). Then, the inverse number of the
sample RR ( 1

Sample RR
) can be regarded as roughly following

F (2NA, 2NB). By fitting the calculated F-statistics ( 1
Sample RR

)

to the F-distribution with (2NA, 2NB) degrees of freedom, a
one-tailed p-value is obtained as the upper or lower cumulative
probability. Since statistical comparisons in most clinical studies
are performed with a two-sided test, the p-value for rejecting the
null hypothesis can be obtained by doubling the one-tailed p-
value. For example, if the observed sample RR was 1.380 between
two groups with 50 and 80 observed events, the calculated F-
statistics based on ( 1

Sample RR
) would be approximately 0.7246,

which roughly follows F (100, 160). The lower cumulative
probability at the cut-off level of F = 0.7246 is ∼0.0406. Thus,

Frontiers in Neurology | www.frontiersin.org 6 June 2022 | Volume 13 | Article 875456

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Akaishi et al. Annualized Relapse Rate and 95% CI

FIGURE 3 | Poisson distributions of different means and 95% CIs for the parameter λ. Poisson distributions of different means that realize an upper or lower

cumulative probability of 0.025, with the number of observed events (X ) at 10 (A,B) or 50 (C,D), are shown. To be noted, the ranges for horizontal axis are different

between (C,D).

FIGURE 4 | Ninety five percentage confidence interval for the parameter λ with Poisson distribution and with normal approximation. The estimated 95% confidence

intervals (CIs) for the mean λ with a different number of observed events (X ) between 0 and 50, based on the Poisson distribution (accurate version; error bars with

broken lines) or normal approximation (approximate version; gray color filled area), are shown. The estimated CIs for mean λ are not bilaterally symmetrical from X with

the accurate version, whereas they are bilaterally symmetrical from X with normal approximation.
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the two-tailed p-value typically sought in clinical studies will
be ∼0.0812. Consequently, the null hypothesis (H0) that “the
population RR is 1.0” cannot be rejected with an alpha level
of 0.05. The same results were obtained even when groups A
and B were exchanged, in which case the F-statistic based on
( 1
Sample RR

) was 1.38, which roughly follows F (160, 100). The

upper cumulative probability at the cutoff level of F = 1.380 was
∼0.0406, which yields the same p-value of 0.0812.

The approximated 95% CI of the relapse rate ratio (RR)
between two groups can be estimated using F-distribution with

(2NA, 2NB) degrees of freedom, where {NA, NB} are the total
number of relapses observed in each group. When {NA, NB} are
sufficiently large (e.g., >10 events for each), the approximate

(100− 2α)% CI of the actual population RR can be estimated
using the following expression from the observed sample RR:

Sample RR × F− (2NA, 2NB) ≤ Population RR ≤ Sample RR

× F+ (2NA, 2NB) ,

where

F− (2NA, 2NB) : lower α% point of F with (2NA, 2NB) degrees
of freedom
F+ (2NA, 2NB) : upper α%point of F with (2NA, 2NB) degrees
of freedom

For example, when determining the 95% CI of the RR, α = 2.5
will be applied to the above expression. In the example with a
sample RR of 1.380 and sample sizes of 50 and 80, the upper and
lower critical levels of 95% CI (i.e., the 2.5 and 97.5 percentiles)
for the F distribution with 100 and 160 degrees of freedom are
0.696 and 1.416, respectively. Thus, the estimated 95% CI for the
population RR is 0.96–1.95. As estimated from a p-value above
0.05 (i.e., 0.0812), the estimated 95% CI for the population RR
includes 1.0.

Different 95% CIs for ARR With Poisson vs.
Negative Binomial
Next, the influence of selecting incorrect error structures
(Poisson vs. negative binomial) for an overdispersed count data
on the estimated 95% CI range for ARR will be described.
Here, two different datasets presenting different distributions
of event frequency as the outcome measure, with exactly the
same numbers of overall relapse observations (162 relapses)
and enrolled patients (n = 35), are considered. The two
distributions are shown in Figure 5; the left distribution is
less dispersed with a smaller variance [Var (x)] than the right
one, but both distributions have the same numbers of overall
relapses and enrolled patients. As can be seen, fitting with
Poisson distributions yielded the same 95% CI of the expectation
[E (x)] with the two different distributions, whereas fittings with
negative binomial distributions successfully yielded two distinct
95% CI ranges for the two distributions. This finding can be
understood from the aforementioned background of Poisson
distributions that the parameter λ (expectation or mean) is equal
to the variance of the probability mass function. As far as the
overall relapse time is constant, Poisson distributions can only
produce a single 95% CI range even with different patterns of

distribution. This fact emphasizes the importance of selecting
a correct error structure with GLM according to the type and
distribution of the response variable.

Adjusted ARR
Currently, there is no established international guideline in the
way of calculating the adjusted ARR. Most of the previous
studies reporting adjusted ARR and the 95% CI utilized the
negative binomial regression model (3, 5–7). Certainly, the
Poisson regression model or negative binomial regression model
is a promising way of obtaining the adjusted ARR adjusted for
some critical covariates. An example of the process of obtaining
adjusted ARR and the 95% CI is shown in Figure 6. The
exponential of the shown estimate for intercept does not equal
the so-called “adjusted ARR.” Rather, the value being derived
from the intercept has the interpretation of the relapse rate
of a fictitious individual with all covariates equal to zero both
for the continuous and dummy variables. However, in actual
cases, supposing a fictitious case with an onset age of 0 years is
unrealistic. A simple conceivable solution would be substituting
the means of the whole population for the explanatory variables
in the obtained generalized linear regression model.

For example, a clinical study by Buron et al. reported the
adjusted ARR and the 95% CI in patients with relapsing-
remitting MS stratified by the type of relapse prevention
(teriflunomide vs. dimethyl fumarate) is reviewed here (5). When
discussing “adjusted” ARR, researchers often have a particular
exposure of interest in their minds. The interest was the type of
relapse prevention (teriflunomide vs. dimethyl fumarate) in the
previous study. In their attempt to examine the predicted mean
ARR for each treatment subgroup (n = 1,469 with teriflunomide
and n = 767 with dimethyl fumarate), adjusted for the potential
confounding variables, Buron et al. set the confounding variables
as the mean values of the whole population (n = 2,236). By
doing this, covariates between exposure groups can be balanced,
and the adjusted ARR in each exposure group can be obtained
and safely compared. SAS software can be used to obtain the
95% CI for the mean ARR upon substituting the mean values
for the confounding variables, using SAS PROC GENMOD with
the LSMEANS statement. In summary, when obtaining adjusted
ARR and the 95% CI, the first step is to perform a Poisson or
negative binomial regression model. The second step will be to
obtain the mean ARR and 95% CI for each exposure of interest
by setting the rest of the confounding variables as themean values
of the whole population.

Comparing the Estimated ARR Between
Different Approaches
Lastly, by using actual data from a previously published clinical
study that enrolled patients with anti-aquaporin-4 antibody-
positive NMOSD (8), the obtained ARR and the 95% CI
are compared between the aforementioned different statistical
approaches. The used cohort was comprised of 31 patients with
NMOSD, who were not treated by relapse preventions during the
observation period of 2 years from the onset. A total of 16 relapses
were observed during the overall follow-up period of 62 person-
years. This cohort had no particular exposure of interest, and
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FIGURE 5 | Estimated 95% CI with different dispersions of dataset by Poisson and negative binomial models. Two different distributions with the same numbers of

overall events (162 total relapses as outcome measure) and participants (n = 35), but with different distributions of event frequency showing distinct dispersion levels

[V (X ) =17.65 for Pattern A vs. 58.30 for Pattern B], are considered. The follow-up period is regarded to be the same (e.g., 1 or 2 years) among 35 patients. The

Poisson model can yield only a single 95% CI for both distributions because of the characteristics of the Poisson distribution, and the information regarding the

skewness could not be accounted for. Meanwhile, negative binomial distributions can yield two distinct 95% CI for the two distributions, reflecting the different

skewness. The overdispersion test by R Statistics revealed that the estimated dispersion levels from these two distributions were both larger than 1.0, suggesting that

negative binomial models would be a better fit than Poisson for them.

the ARRs were obtained for the whole population. As potential
covariates to calculate the adjusted ARR, data regarding the onset
of age and administration of acute treatment with high-dose
intravenous corticosteroid therapy were further collected. The
average onset age was 39.9 years and the frequency of acute
treatment was 0.42 in the whole population, and these values
were substituted for the confounding variables to obtain the
adjusted ARR. The obtained ARR (95% CI) for each of the
introduced statistical approaches is listed in Table 1. As can be
seen, the estimated 95% CI for ARR differed between the applied
statistical approaches. Moreover, the expected means of ARR
differed between unadjusted and adjusted ARR, according to the
list of selected covariates.

DISCUSSION

In this report, the simple methods for calculating the crude
ARR in a study group and approximating its 95% CI, as well
as that of the relapse rate ratio between two study groups and
the adjusted ARR, were outlined with specific examples. With
the understanding of the general concepts and prerequisites
for these statistical methods, the subsequent procedures can
be performed using suitable calculation software, such as R
Statistical Software. All of the statistical procedures described

in this study can also be performed by using other statistical
software such as SAS, SPSS, JMP, and Stata. As for the R Statistics,
it should be noted that additional R packages such as AER,
stats, MASS, and pscl are required to be installed in advance to
perform overdispersion test, zero-inflation test, and multivariate
GLMs. When the obtained count data are not overdispersed,
the classical or zero-inflated Poisson model can be applied.
When the obtained dispersion level by dispersion test is large
enough to suggest an overdispersion, the classical or zero-inflated
negative binomial distribution would be a better fit. Although
the negative binomial distribution is an extended version of
the Poisson distribution, it is not a generalized version of the
Poisson. For count data without overdispersion, Poisson is a
better fit of GLM than negative binomial in many cases. This
can be known by checking the level of the obtained Akaike’s
Information Criterion to be lower with the Poisson regression
model than that with the negative binomial regression model
with such datasets.

When estimating the 95% CI of the ARR based on count data
of relapse, careful attention is needed not to mistakenly estimate
the CI for the population “proportion” based on the central
limit theorem with binomial distribution. Consider a situation
in which 50 relapses were observed during 100 person-years.
As described in the Results section, the correct way to estimate
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FIGURE 6 | Process of applying the generalized linear model to calculate adjusted ARR. A fictitious dataset from 35 patients with a relapsing disease is used in the

analysis. To select an appropriate general linear regression model, overdispersion and zero-inflation of the response variable (relapse count in the dataset) should be

checked in advance. By performing the generalized linear regression analyses with appropriate error structures, the coefficient for each critical covariate in the linear

predictor function can be obtained together with the 95% CI. By utilizing the obtained prediction expression, the expectation of the response variable adjusted for the

covariates (typically set as the means of the whole population) can be estimated.

the 95% CI for ARR involves applying a Poisson distribution
to produce a bilaterally asymmetric CI with 0.371–0.659. In
contrast, if the range is mistakenly estimated by applying the
“Wald method” as described below to estimate the “proportion”
(i.e., 50 successes in 100 attempts), the obtained 95% CI for the
“proportion” will be 0.402–0.598:

p̂− z ×

√

p
(

1− p
)

n
≤ p ≤ p̂+ z ×

√

p
(

1− p
)

n
,

where z is the (100−α)
2 %point of the standard normal distribution

(15, 16). Rate and proportion are different mathematical
concepts. When considering two phenomena A and B, rate
measures the change in A (e.g., measurements or counts) against
the change in B (e.g., time). Since ARR is a rate, it can
theoretically take any positive integers or zero (i.e., 0 ≤ λ < ∞),
when the criterion to define relapses regarding the minimum
relapse interval is ignored. For example, if 200 relapses were
observed during a 50-person-year follow-up period, the point
estimation for λ̂ is 4.0. Meanwhile, the proportion between
the two phenomena is the ratio of B against A, where B is
incorporated into A. When k patients out of a total of n (0 ≤
k ≤ n) have exhibited relapses during the follow-up period, the

point estimation for the proportion of patients with relapses (p̂)

will be k
n , which must be always between 0 and 1 (0 ≤ p̂ ≤ 1).

Finally, to understand the general concept of statistical
methods for estimating the 95% CI with focused parameters

such as mean, rate, and ratio, it would be helpful to
clearly distinguish whether the expressed parameters in the

calculation process are for the observed samples (sample
parameters; usually expressed with Latin alphabets) or for
the unobserved populations (population parameters; usually
expressed with Greek alphabets). In most clinical studies,
sample parameters are available from the collected data. The
main purposes of the statistical analyses in these studies
include the estimation of population parameters, such as whole
patient populations, ethnic groups, or the entire country,
from the sample datasets. For example, when applying the
Poisson distribution to estimate the 95% CI of ARR, the
number of observed events (X) is a sample parameter
and the estimated mean (λ) is the unknown population
parameter, which the estimation aims to reach. In the
case of 50 relapses observed during 100-person-years, the
obtained crude ARR of 0.50 is a sample parameter and
does not guarantee that the average population ARR is
also 0.50.
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TABLE 1 | ARR and 95% CI with different statistical approaches.

ARR (95% CI) Notes

Crude ARR (person-time method;

95% CI by fitting Poisson

distributions)

0.258 (0.148–0.419) A total of 16 relapses during an overall follow-up of 62 person-years: crude ARR = 16/62 = 0.258.

The 95% CI is simply estimated from the two values of “16” (relapses) and “62” (person-years).

Crude ARR (person-time method;

95% CI based on a normal

approximation to the Poisson)

0.258 (0.132–0.385) The 95% CI was approximated by using:
k−1.96×

√
k

T
≤ λ

T
≤ k+1.96×

√
k

T
,

where k is the observed number of relapses, λ is the Poisson parameter, and T is the overall follow-up

period [person-years]. Here, k is 16 (relapses) and T is 62 (person-years).

Unadjusted ARR (Poisson

regression; not adjusted for

covariates)

0.258 (0.151–0.406) Poisson regression model is applied to the data of the number of relapses (n = 31). This method is

applicable when the distribution is (1) not overdispersed and (2) without an excess of zero counts.

Unadjusted ARR (NB regression;

not adjusted for covariates)

0.258 (0.143–0.445) NB regression model is applied to the data of the number of relapses (n = 31). This method is

applicable when the distribution is (1) overdispersed and (2) without an excess of zero counts.

Unadjusted ARR (zero-inflated

Poisson regression; not adjusted for

covariates)

0.303 (0.097–0.669) Zero-inflated Poisson regression model is applied to the data of the number of relapses (n = 31). This

method is applicable when the distribution is (1) not overdispersed and (2) with an excess of zero

counts.

Unadjusted ARR (zero-inflated NB

regression; not adjusted for

covariates)

0.258 (0.000–0.636) Zero-inflated NB regression model is applied to the data of the number of relapses (n = 31). This

method is applicable when the distribution is (1) overdispersed and (2) with an excess of zero counts.

Adjusted ARR (Poisson regression;

adjusted for age and acute treatment)

0.247 (0.145–0.421)* Poisson regression model is applied to the data of the number of relapses (n = 31), adjusted for the

onset age and administration of acute treatments after the onset.

Adjusted ARR (NB regression;

adjusted for age and acute treatment)

0.246 (0.129–0.472)* NB regression model is applied to the data of the number of relapses (n = 31), adjusted for the onset

age and administration of acute treatments after the onset.

Incorrect application of Wald method

for “proportion”

0.258 (0.166–0.379) This is an incorrect approach with a misunderstanding that “16 successes out of 62 attempts,” not “16

relapses during 62 person-year follow-up.”

The listed ARR and the 95% CI are obtained from data of 31 patients with anti-aquaporin-4 antibody-positive neuromyelitis optica spectrum disorders, who were not treated by relapse

preventions during the observation period of 2 years after the onset. A total of 16 relapses were observed during the overall follow-up period of 62 person-years. Crude ARR and 95%

CI can be obtained from the two values of “16” and “62.” Meanwhile, unadjusted/adjusted ARR and 95% CI, obtained by applying the generalized linear regression models, require raw

data (n = 31) of relapse numbers from each patient.

*For calculating the adjusted ARR and 95% CI, the explanatory variables were set as the mean of the population (i.e., 39.9 years were substituted for the onset age and 0.42 were

substituted for the administration of acute treatments).

ARR, annualized relapse rate; CI, confidence interval; NB, negative binomial.

A potential limitation of this study is the fact that ARR may
not be the ideal primary endpoint in future clinical trials of MS,
as interest has gradually shifted from suppressing the relapse
rate to suppressing the chronic progression of neurological
deterioration and brain atrophy (17). Moreover, some recent
clinical studies and computer-based simulations that focus on
the relapse frequency in MS utilized the time to first relapse,
rather than ARR, as the primary endpoint (18–20). Nonetheless,
ARR can be a promising primary endpoint for chronic
relapsing diseases without progressive clinical deterioration free
of relapses, such as NMOSD (8, 21, 22).

CONCLUSION

Regardless of whether the follow-up period varies between study
participants, the crude ARR can be obtained using the person-
years method so long as the relapse rate does not remarkably
vary between participants, the rate is not influenced by the time
lapse from enrollment, and each participant’s follow-up period
is not influenced by the occurrence of an event. A 95% CI for
ARR in each data series can be estimated by applying appropriate
error structures (e.g., Poisson, negative binomial, zero-inflated
Poisson, and zero-inflated negative binomial) according to the
distributions of the count data for relapses, whereas a 95% CI
for the ARR ratio between two data series can be estimated

using an F-distribution with (2NA, 2NB) degrees of freedom.
Adjusted ARR and the 95% CI can be obtained by using GLMs
by selecting appropriate error structures and relevant sets of
covariates to be adjusted for demographics, treatments, and
baseline relapse activities.
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