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Abstract
The evolution of body shape reflects both the ecological factors structuring organis‐
mal diversity as well as an organism’s underlying anatomy. For instance, body depth 
in fishes is thought to determine their susceptibility to predators, attractiveness to 
mates, as well as swimming performance. However, the internal anatomy influencing 
diversification of body depth has not been extensively examined, and changes in 
body depth could arise as a by‐product of functional changes in other anatomical 
structures. Using an improved phylogenetic hypothesis for a diverse set of Lake 
Malawi cichlid fishes, we tested the evolutionary association between body depth 
and the height of the pectoral girdle. To refine the functional importance of the ob‐
served substantial correlation, we also tested the coevolution of pectoral girdle 
height and pectoral fin area. The extensive coevolution of these traits suggests body 
depth in fishes like the Lake Malawi cichlids could diverge simply as a by‐product of 
being tightly linked to ecomorphological divergence in other functional morphologi‐
cal structures like the pectoral fins.
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1  | INTRODUC TION

Body depth, or the relative height of the dorsoventral body axis ad‐
justed for body length, could be a major axis of phenotypic diver‐
gence and functional adaptation in many organisms. For instance, 
changes in fish body depth are commonly associated with habitat 
specialization (Tobler et al. 2008; Weese, Ferguson, & Robinson, 
2012), trophic convergence (Krabbenhoft, Collyer, & Quattro, 2009; 
Ruber & Adams, 2001), and speciation (Elmer, Kusche, Lehtonen, & 
Meyer, 2010; Fruciano et al., 2016; Hendry & Taylor, 2004; Pfaender, 
Schliewen, & Herder, 2010). Changes in body depth could also influ‐
ence a number of behaviors that link morphology to organismal be‐
havior and functional abilities. For instance, the depth of the profile 

of the fish could determine susceptibility to predators (Abate, Eng, 
& Kaufman, 2010; Brönmark & Miner, 1992; Chivers, Zhao, Brown, 
Marchant, & Ferrari, 2008; Eklöv & Jonsson, 2007; Frommen et al., 
2011; Nilsson, Brönmark, & Pettersson, 1995; Price, Friedman, & 
Wainwright, 2015), detection by prey (Domenici, 2002; Seamone, 
Blaine, & Higham, 2014; Webb, 1984a, 1984b), sexual attractiveness 
to mates (Head, Kozak, & Boughman, 2013), and swimming perfor‐
mance (Webb, 1984a, 1984b; Svanbäck & Eklöv, 2004; Domenici, 
Turesson, Brodersen, & Brönmark, 2008; Blob et al. 2010). However, 
a better understanding of what internal structures are changing 
when fish diverge along a body depth axis could provide improved 
insight into the ecological, evolutionary, and functional mecha‐
nisms structuring adaptive changes in body depth. Additionally, 
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differences in body depth could simply arise as a “spandrel” or a phe‐
notypic characteristic that is a by‐product of the evolution of some 
other characteristic, rather than a direct product of adaptive selec‐
tion (Barel, 1983, 1984; Gould & Lewontin, 1979). Understanding 
whether particular internal anatomical traits are dictating body 
depth would allow us to better evaluate whether body depth might 
coevolve with or even arise as a by‐product of divergence in other 
traits. To examine one putative link between functional morphologi‐
cal changes underlying differences in fish body depth, we examined 
the evolutionary relationships between anatomical divergence in 
pectoral fin structure and body depth in Lake Malawi cichlid fishes.

Not all phenotypic changes, even when found in adaptive ra‐
diations, are necessarily functional or adaptive. Body depth differ‐
ences are a major axis of shape divergence routinely observed in 
morphometric studies of fish body shape (Tobler et al.2008; Elmer 
et al., 2010; Recknagel, Elmer, & Meyer, 2014; Husemann, Tobler, 
McCauley, Ding, & Danley, 2017) and varies considerably in Lake 

Malawi cichlids (Figure 1). For instance, the anterior‐most insertion 
of both the dorsal fin and ventrally located pectoral fin are frequently 
used as external morphological landmarks that closely approximate 
body depth (Figure 2). However, unless fish are diverging to maxi‐
mize body depth itself, this measurement provides little mechanis‐
tic understanding of what advantages morphological differences in 
body depth confer. Body depth difference could be under strong 
selection, arise as the result of multivariate selection on several 
traits, or simply arise as a “constructional constraint,” a type of phe‐
notypic spandrel that has diverged as a by‐product of the way that 
the body is constructed (Barel, 1983). Importantly, constructional 
constraints are thought to influence the evolution of a huge diversity 
of traits including aquatic insect legs (Gorb, 1995), lobster acous‐
tic systems (Patek & Oakley, 2003), mollusk shells (Hickman, 2013; 
Thomas, 1988; Ubukata, Tanabe, Shigeta, Maeda, & Mapes, 2008), 
bryozoan colony structure (McKinney & McGhee, 2003), plant cells 
(Peters, Hagemann, & Tomos, 2000), and lizard skulls (Herrel, Aerts, 
& Vree, 2000). Constructional constraints have also commonly been 
invoked as mechanisms to explain divergence in the teleost and es‐
pecially cichlid trophic apparatus (Arbour & López‐Fernández, 2018; 
Barel, 1984; de Visser & Barel, 1996; Hulsey & Hollingsworth, 2011; 
Hulsey, Mims, & Streelman, 2007; Smits Witte, & Povel, 1996a; 
Smits Witte, & Veen, 1996b). However, the possibility that teleost 

F I G U R E  1  Lake Malawi cichlid representatives from three 
genera that display some of the diversity of body depths in this 
adaptive radiation

F I G U R E  2  Cichlid pectoral fin morphology. In the skeleton of 
a generalized cichlid (a), the location of the pectoral fin and girdle 
that are extensively embedded within the body are highlighted 
in dark gray. On an image of a Malawi cichld (b), the location of 
several of the measurements made for this study is highlighted. For 
instance, we measured body depth with calipers as the distance 
between the first dorsal spine (dorsal circle) and the most anterior 
external attachment site of the pelvic fin (ventral circle). The basic 
morphology and position of the pectoral girdle are depicted as 
seen if examined internally. Subsequently, we dissected and then 
cleared and stained the pectoral fin and pectoral girdle. Using a 
digital image, we measured the height of the pectoral girdle as the 
distance between the dorsal‐most point on the cleithrum (dorsal 
star) and the posterior point on the coracoid (ventral star)
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body depth diverges as a result of constructional constraints has not 
been extensively examined.

Body depth divergence must result from changes in internal 
structures and could diverge as a by‐product of a large number of 
traits. For instance, a deeper body could reflect a larger swim bladder, 
bigger ovaries, a bigger trophic apparatus, or more extensive lateral 
swimming muscles in the body wall (Blake, 2004; Camp, Roberts, & 
Brainerd, 2015; Camp, Scott, Brainerd, & Wilga, 2017; Campione & 
Evans, 2012; Carroll, Wainwright, Huskey, Collar, & Turingan, 2004; 
Heidhues, Swett, & Kiddy, 1961; Tytell et al., 2010; Wardle, Videler, 
& Altringham, 1995). However, in many teleosts groups like cichlid 
fishes, one obvious set of bony elements that span the dorsoven‐
tral axis of the body is the structure of the pectoral girdle (Hulsey, 
Roberts, Loh, Rupp, & Streelman, 2013; Thorsen & Westneat, 2005). 
The bones making up the pectoral girdle suspend the pectoral fin and 
are oriented in the same dorsoventral axis as body depth (Figure 2). 
The pectoral girdle often forms a rough “L”‐shaped structure with 
the dorsal tip located near the first dorsal spine and with the right 
angle of the L‐shaped pectoral girdle lying close to the ventral edge 
of the body (Thorsen & Westneat, 2005). Therefore, the height of 
the pectoral girdle that likely reflects the size of other pectoral fin 
structures could readily dictate body depth divergence in many fish.

The putative association between pectoral fin anatomy and 
body depth is important because pectoral fin phenotypic diver‐
gence has been suggested to play a role in the adaptive divergence 
of cichlids and other fishes. For instance, pectoral fin shape in many 
fishes determines swimming speeds (Bellwood & Wainwright, 2001; 
Fulton, Bellwood, & Wainwright, 2001; Wainwright, Bellwood, & 
Westneat, 2002). Pectoral fin shape is also evolutionarily correlated 
with a number of other external phenotypes that could be adaptive 
(Feilich, 2016; Larouche, Cloutier, & Zelditch, 2015). Critically, in 
both Malawi and Tanganyikan cichlids, larger pectoral fin muscles 
and fin areas are correlated and are convergently associated with 
feeding from the substrate as opposed to feeding in the water col‐
umn (Colombo, Indermaur, Meyer, & Salzburger, 2016; Hulsey et al., 
2013). Additionally, it has been experimentally shown that the num‐
ber of pectoral fin beats closely tracks the number of bites Malawi 
cichlids take when scraping algae (Rupp & Hulsey, 2014). If body 
depth changes closely track the functional morphological divergence 
in cichlid pectoral fin morphology that has previously been shown 
to play a role in both trophic and habitat divergence in Malawi, this 
would be consistent with body depth arising merely as a construc‐
tional by‐product of adaptive pectoral fin divergence (Barel, 1983, 
1984; Hulsey et al., 2007). A constructional evolutionary association 
between the pectoral fin morphology and body depth differences 
would provide a novel nonadaptive explanation for a ubiquitously 
measured aspect of fish morphological diversification.

To test the relationship between body depth and characteristics 
of Lake Malawi cichlid pectoral fins, we quantified several morpho‐
logical traits within a comparative phylogenetic framework. First, 
we used ultra‐conserved elements to generate an improved phylo‐
genetic hypothesis of the relationships among the 28 Malawi species 
examined. Then, we quantified body depth as well as pectoral girdle 

structure in these Lake Malawi species. Finally, we used phyloge‐
netic independent contrasts (PICs) to determine whether changes in 
the musculoskeletal structure of the pectoral fins are evolutionarily 
associated with changes in body depth.

2  | MATERIAL AND METHODS

2.1 | Field collections

For morphological and phylogenetics analyses, 28 species were col‐
lected using permits from the Malawi Parks Service from a number 
of locations in Lake Malawi during the summer of 2010. Fish were 
caught using SCUBA and barrier nets. Our collections of one to five 
individuals per species were focused on adult males that we could 
diagnose based on their anatomy and coloration. Following capture, 
caudal fin clips were obtained and stored in 95% ETOH for subse‐
quent DNA sequencing. Cichlid specimens were then preserved in 
formalin in the field and transferred to 70% ethanol in the laboratory 
until we could make additional dissections and measurements.

2.2 | Phylogeny reconstruction

We combined newly generated ultra‐conserved element (UCE) 
sequences for eight Malawi cichlid species with data from 20 spe‐
cies sequenced previously (Hulsey, Zheng, Faircloth, Meyer, & 
Alfaro, 2017a; McGee et al., 2016). To generate the genetic data, 
we extracted DNA from tissues using DNEasy kits (Qiagen Inc., 
Germantown, MD, USA), treated extracts with RNase, and fol‐
lowed RNase treatment with column‐based cleanup. We then 
generated sequences of ultra‐conserved elements from libraries 
produced using a slightly modified version of the Nextera (Epicentre 
Biotechnologies, Madison, WI, USA) library preparation protocol 
for solution‐based target enrichment as detailed previously (Hulsey, 
Zheng, et al., 2017a). Briefly, the library preparation protocol used 
in vitro transposition followed by PCR to shear DNA and attach in‐
dexed sequencing adapters. Following library preparation, species‐
specific libraries (500 ng) were incubated with synthetic SureSelect 
(Agilent Technologies, Santa Clara, CA, USA) RNA probes for 24 hr 
at 65°C. We followed the standard SureSelect protocol to enrich 
DNA libraries following hybridization and then quantified the en‐
riched, indexed libraries using qPCR (Kapa Biosystems, Wilmington, 
MA, USA). Subsequently, libraries were pooled for sequencing.

We sequenced each pool of enriched DNA using single‐end 
100 bp Illumina Genome Analyzer (GAIIx) runs. After sequencing, we 
trimmed adapter contamination, low‐quality bases, and sequences 
containing ambiguous base calls using a custom pipeline. Following 
assembly, the PHYLUCE software package (Faircloth, 2016) was im‐
plemented to align the resultant species‐specific contigs to the UCE 
probes used for enrichment (Faircloth, Sorenson, Santini, & Alfaro, 
2013; McGee et al., 2016). After generating the relational database 
of matches to enriched sequences and genome‐enabled taxa, we 
used additional components of PHYLUCE (get_match_counts.py) to 
call the most common SNP for each UCE locus.
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We reconstructed SNP trees using a data set that was fil‐
tered to only include the highest quality SNP per UCE locus, re‐
sulting in 1,015 SNPs. We then converted the SNP data format 
to FASTA via the R packages “gdsfmt” and “SNPRelate” (Zheng 
et al., 2012). Then, we created a Phylip interleaved alignment file 
using MUSCLE (Edgar, 2004) and ran the file through the PHYLIP 
program DNAML to infer a maximum likelihood species tree 
(Felsenstein, 2005). Subsequently, 1,000 non‐parametric boot‐
strap replicates of the maximum likelihood tree were generated 
using the bootstrap.pml function in the R package “phangorn” (Lee, 
Guo, & Wang, C. Kim, A. H. Paterson, 2014; Schliep, 2011). Then, 
100 trees were randomly chosen to examine the phylogenetic cor‐
relations between traits.

2.3 | Morphometrics

Upon capture in the field, the standard length (SL) of the fish was 
determined using dial calipers and measured to the nearest 0.1 mm. 
Although preservation and allometry can influence morphometric 
studies (Barel, 1984; Lleonart, Salat, & Torres, 2000; McCoy, Bolker, 
Osenberg, Miner, & Vonesh, 2006), all subsequent measurements 
implicitly assumed that preservation had proportionally similar ef‐
fects on all individuals and that there was no substantial allometric 
changes across the approximately 40‐mm size range of specimens 
examined. We next measured in the laboratory the body depth to 
the nearest 0.1 mm as the length between the first dorsal spine and 
the anterior attachment of the pelvic fins using dial calipers. For the 
pectoral fin morphometrics, the right pectoral girdle of all individu‐
als was examined. To isolate the girdle from the body, the cleithra 
were first separated and the right pectoral girdle freed after sepa‐
rating the postemporal bone from the neurocranium. The pectoral 
girdle was then skinned and pectoral muscles were separated from 

the girdle using forceps while examining the pectoral girdle under a 
dissecting microscope.

To measure the height of the pectoral girdle and pectoral fin 
area, the entire pectoral girdle connected to the fin was first placed 
for one day in a digestion of 5% trypsin, 30% aqueous saturated so‐
dium borate, and 65% water. This digestion made the fins pliable. The 
fins were then placed for one hour in a 1% KOH aqueous solution 
combined with 20 mg of alcian red stain. This allowed us to read‐
ily visualize all of the pectoral fin morphology. The fins were then 
pinned into a naturally splayed position using water‐proof paper. A 
digital image of the fin with a ruler in frame for calibration was then 
obtained and subsequently imported into ImageJ. Using this digital 
image, we first measured the height of the pectoral girdle as the 
distance between the dorsal‐most point on the cleithrum and the 
posterior point on the coracoid (Figure 2). To measure fin area, a line 
was digitally traced from the proximal end of the dorsal‐most leading 
fin ray along the tips of the fin rays and then lengthwise across the 
radials from the proximal end of the final lagging fin ray and finally 
back to the proximal end of the leading fin ray. The outline enclosed 
the roughly circular fin, and the area thus encircled was measured as 
the pectoral fin area.

2.4 | Phylogenetic comparative analyses

To perform the comparative analyses, we size standardized all 
measurements as their ratio to the measurements of individual 
SL. The linear body depth and pectoral girdle depth were read‐
ily analyzed using the linear measurements of SL. Because areas 
should increase as the second power of length, the square root 
of the fin areas was divided by each individual’s SL. Using the 100 
randomly chosen phylogenies, the function “pic” available in the 
APE package (Paradis, Claude, & Strimmer, 2004) in R was used to 

F I G U R E  3  Phylogeny of 28 Malawi 
species reconstructed using UCE markers. 
The major clades of nonmbuna and mbuna 
are highlighted. Bootstrap values above 
50% are placed behind relevant nodes. 
The morphometric data for each species 
are shown to the right of the species 
names. The average values of standard 
length (SL) for examined specimens are 
given first. Then, the pectoral fin area 
(FA) following square root transformation, 
pectoral girdle height (GH), and body 
depth (BD) is provided as a percentage 
of SL
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generate independent contrasts for the individual size‐corrected 
pectoral fin areas, pectoral fin height, and body depth. This func‐
tion uses a Brownian motion model of trait evolution to infer char‐
acter change. Finally, we used the function “cor.test” to examine 
the PIC correlations and their statistical significance among the 
three traits.

3  | RESULTS

As has been recovered in a number of other studies (Hulsey et al., 
2007; Hulsey, Zheng, et al., 2017a; Joyce et al., 2011; McGee et 
al., 2016; Salzburger, Mack, Verheyen, & Meyer, 2005), the spe‐
cies examined fell into two major groups (Figure 3). The first group 
(100% bootstrap support) corresponds to a division known as the 
“mbuna” that includes rock‐dwelling genera like Maylandia and 
Melanochromis. The second major group (100%) includes nonmbuna 
sand‐dwelling genera like Mchenga conophorus and Nimbochromis 
polystigma. For the genera Taeniolethrinops (100%), Melanochromis 
(95%), Tropheops (73%), the two species sampled in each genus were 
recovered as monophyletic. The two Labidochromis species exam‐
ined were closely related but recovered as paraphyletic with respect 
to Melanochromis.

Species that have evolved smaller fin areas also generally 
have evolved smaller pectoral girdle lengths and body depths 
(Figure 3). Species scattered across the Malawi cichlid phylog‐
eny such as Tyrannochromis nigriventer, Mchenga conophoros, 
Stigmatochromis woodi, and Melanochromis auratus had some of 
the shallowest body depths, relatively small pectoral girdles, and 
smallest fin areas. Alternatively, disparate species such as Cyrtocara 
moorii, Tropheops “Boadzulu,” and Maylandia zebra displayed some 
of the greatest body depths, longest pectoral girdles, and largest 
pectoral fins once adjusted for SL. Following phylogenetic correc‐
tion with 100 randomly chosen phylogenies to generate standard 
errors of estimates, the values of these three measurements were 
all found to be significantly correlated. Fin area evolution was highly 
correlated with the length of the pectoral girdle (r = 0.70 ± 0.04; 
p < 0.0001 ± 0.0001). Greater body depth evolution (Figure 4) 
was highly correlated with the evolution of both larger fin areas 

(r = 0.69 ± 0.06; p = 0.0003 ± 0.0010) and greater pectoral girdle 
height (r = 0.80 ± 0.03; p < 0.0001 ± 0.0001).

4  | DISCUSSION

Body depth evolution in Malawi cichlids is highly correlated with 
divergence in pectoral morphology. Deeper bodied Malawi cich‐
lids generally have greater pectoral girdle heights, and this greater 
pectoral girdle height is also associated with larger pectoral fins. 
Importantly, Malawi pectoral fin divergence is related to ecologi‐
cal divergence since fish that feed from the benthos generally have 
larger fin areas and muscles and use their pectoral fins intensively 
when feeding from the substrate (Hulsey et al., 2013; Rupp & Hulsey, 
2014). Although there are undoubtedly other internal structures that 
contribute to body depth, the ecological opportunities and selec‐
tive environments operating on the mechanical and hydrodynamic 
forces influencing pectoral fin diversity are likely a major determi‐
nant of body depth divergence in Malawi cichlids. Future studies 
of body depth divergence in this and other groups of fishes should 
at least consider the possibility that body depth has little adaptive 
value in itself and might simply reflect a constructional spandrel as‐
sociated with internal anatomical structures like the pectoral girdle.

There are several potential reasons for the observed evolution‐
ary correlation between body depth and pectoral fin ecomorphol‐
ogy. As seems to be the most common inference in the literature, 
body depth could almost always be selected for directly and provide 
a performance advantage for the organism that is independent of its 
association with pectoral fin ecomorphology. Many studies of ad‐
aptation and selection have in the past focused on single traits like 
body depth (Lande, 1984; Schluter, 1996). Alternatively, body depth 
could be the result of correlated selection on pectoral fin morphol‐
ogy, but still provide a performance benefit such as in swimming abil‐
ities. This type of correlational selection could potentially facilitate 
rapid adaptation to particular hydrodynamic regimes where a more 
streamlined body and smaller fins would be advantageous (Higham, 
2007a; Van Wassenbergh, Potes, & Adriaens, 2018). Because cor‐
related selection provides multiple simultaneous targets for selec‐
tion, this type of integration has been suggested to play a role in the 

F I G U R E  4  Phylogenetic independent contrast correlations of (a) pectoral fin area as well as (b) pectoral girdle height with body depth. 
All values were standard length size‐adjusted prior to comparative analyses on 100 randomly chosen phylogenetic reconstructions. 
Representative results from a single randomly chosen phylogenetic reconstruction are depicted above. Both traits were strongly correlated 
with body depth which is consistent with a pectoral fin‐driven constructional hypothesis for Malawi cichlid body depth divergence
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rapid evolution of structures like jaws, teeth, and a number of other 
traits in cichlids and other adaptively diverging groups (Albertson, 
Streelman, Kocher, & Yelick, 2005; Hulsey, Machado‐Schiaffino, et 
al., 2017b; Husemann et al., 2017). However, body depth could also 
be nonadaptive, provide no direct advantage to fish, and arise simply 
as a constructional constraint. Traits ranging from mollusk shells to 
the legs of waterbugs to aspects of the trophic apparatus of cichlids 
have all been suggested to diverge as a physical by‐product of adap‐
tive changes in other structures (Barel, 1983, 1984 ; Gorb, 1995; 
Ubukata et al., 2008). It is also possible that in many cases, a fish’s 
body depth is maladaptive such that changes in the trait come at a 
cost to the organism. Greater body depth could result in hydrody‐
namic costs for sustained swimming that arise as a by‐product of 
the enhanced efficacy conferred by larger fins when grazing from 
the substrate. The functional consequences of body depth coupled 
with a clearer conception of its anatomical underpinnings and their 
shared functional consequences for organismal performance should 
continue to be investigated to better understand the explicit roles of 
these traits during fish diversification.

Previous hypotheses of the adaptiveness of body depth might 
benefit from reinterpretation in light of constructional con‐
straints, but differences in body depth could still be advantageous 
in groups like Malawi cichlids for several reasons (Wainwright, 
Alfaro, Bolnick, & Hulsey, 2005). Increased body depth could func‐
tion as an impediment to gape limited predators as has been sug‐
gested for many other species (Domenici et al., 2008; Magnhagen 
& Heibo, 2004; Price et al., 2015). But, it would be interesting to 
document whether predation differs substantially between closely 
related species only due to body depth or whether pectoral fin 
morphology might simultaneously influence their predation rates. 
Decreased body depth could also streamline fish and result in less 
drag for high‐performance swimming needed to outrun predators, 
obtain prey, or win aggressive encounters among individuals (Fryer 
& Iles, 1972; Rincón, Bastir, & Grossman, 2007; Svanbäck & Eklöv, 
2004; Webb, 1984a, 1984b). However, the limited cruising ranges 
of many Malawi cichlids suggest drag reduction during high‐speed 
swimming might not be very critical for many of these highly ter‐
ritorial and microendemic species. Locomotory influences of pec‐
toral fins during feeding, navigating complex environments, and 
mating might be much more important to the fitness of these or‐
ganisms (Higham, 2007a, 2007b; Hulsey et al., 2013). Regardless, 
body depth is likely a multifunctional trait that is in part related 
to pectoral fin divergence but also has its own ecological conse‐
quences (Andersson, Johansson, & Söderlund, 2006; Blake, 1983; 
Wainwright et al., 2005). Simultaneous testing of the effects of 
pectoral fin and body depth divergence across species or within 
phenotypically admixed individuals that can be created in hy‐
brid crosses (Husemann et al., 2017; McGee, Reustle, Oufiero, & 
Wainwright, 2015) would allow a stronger parsing of the individual 
functional ramifications of these clearly correlated phenotypes.

Sexual selection is another area where the link between body 
depth and pectoral fin morphology could be important to diversifi‐
cation. For instance, body depth has been suggested to be a “magic” 

trait in sticklebacks where divergence in the presumably adaptive 
trait of body depth is subject to both natural and sexual selections 
(Head et al., 2013). Although female choice on body depth has not 
been examined in the Malawi radiation, female cichlids are known 
to show preferences for even subtle phenotypic differences in color 
and patterning of males (Ding et al., 2014). Therefore, it would be 
interesting to simultaneously test whether female Malawi cichlids 
show a preference for obvious phenotypic differences like deeper 
bodied males and/or for different sizes of pectoral fins. Preferences 
for ecologically relevant traits like pectoral fin size and/or body 
depth could provide a way to link divergent natural selection with 
mate preferences that should facilitate the type of ecological spe‐
ciation thought to characterize Malawi cichlids (Gavrilets, 2005; 
Schluter & Conte, 2009; Servedio, Doorn, Kopp, Frame, & Nosil, 
2011). However, these tests would be all the more effective if there 
was a clear link between the exact phenotypes that are mechanis‐
tically responsible for ecological divergence and the traits explicitly 
preferred by females.

Both body depth and pectoral fin morphology could com‐
monly influence critical aspects of organismal diversification such 
as habitat specialization (Geerlink, 1983; Gerstner, 1999; Bellwood 
& Wainwright., 2001; Fulton et al., 2001; Higham, 2007a, 2007b; 
Tobler et al. 2008; Weese et al., 2012; Hulsey et al., 2013; Colombo et 
al., 2016), trophic convergence (Collar, Wainwright, & Alfaro, 2008; 
Krabbenhoft et al., 2009; Ruber & Adams, 2001; Rupp & Hulsey, 
2014), and speciation (Elmer et al., 2010; Hendry & Taylor, 2004; 
Husemann et al., 2017; Pfaender et al., 2010). What also seems likely 
is that each trait individually influences a number of both indepen‐
dent and correlated behaviors across species that link morphology to 
species interactions (Brönmark & Miner, 1992; Bakker & Mundwiler, 
1999; Hechter, Moodie, & Moodie, 2000; Wainwright et al., 2002; 
Pigliucci, 2003; Domenici et al., 2008; Blob et al. 2010; Monteiro 
& Nogueira, 2010; Head et al., 2013; Price et al., 2015). Further ex‐
aminations of the evolutionary associations and functions of both 
external and internal traits will be necessary to fully understand the 
phenotypic bases of adaptive radiation.
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