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Background: Fine needle aspiration (FNA) cytology, a diagnostic test central to thyroid

nodule management, may yield indeterminate results in up to 30% of cases. The Afirma®

Genomic Sequencing Classifier (GSC) was developed and clinically validated to utilize

genomic material obtained during the FNA to accurately identify benign nodules among

those deemed cytologically indeterminate so that diagnostic surgery can be avoided. A

key question for diagnostic tests is their robustness under different perturbations that

may occur in the lab. Herein, we describe the analytical performance of the Afirma GSC.

Results: We examined the analytical sensitivity of the Afirma GSC to varied input RNA

amounts and the limit of detection of malignant signals with heterogenous samples

mixed with adjacent normal or benign tissues. We also evaluated the analytical specificity

from potential interfering substances such as blood and genomic DNA. Further, the

inter-laboratory, intra-run, and inter-run reproducibility of the assay were examined.

Analytical sensitivity analysis showed that Afirma GSC calls are tolerant to variation in

RNA input amount (5–30 ng), and up to 75% dilution of malignant FNAmaterial. Analytical

specificity studies demonstrated Afirma GSC remains accurate in presence of up to 75%

blood or 30% genomic DNA. The Afirma GSC results are highly reproducible across

different operators, runs, reagent lots, and laboratories.

Conclusion: The analytical robustness and reproducibility of the Afirma GSC test

support its routine clinical use among thyroid nodules with indeterminant FNA cytology.

Keywords: thyroid cancer, RNA-Seq, genomics, analytical verification, molecular diagnostics, lab developed test,

clinical robustness, Afirma GSC
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INTRODUCTION

The pre-operative testing of thyroid nodules to differentiate
benignity from malignancy is primarily based on fine needle

aspiration (FNA) biopsy followed by cytological examination
of the collected specimen. While several cytological reporting
systems exist and share broad similarities, perhaps the most

common is The Bethesda System for Reporting Thyroid
Cytopathology (1). About 20–30% of sufficient FNA biopsies are

considered neither benign nor malignant and collectively are
labeled as cytologically indeterminate (2). Given the possibility
of thyroid cancer, patients with an indeterminate FNA are
often advised to undergo an invasive surgical procedure to
remove part, or all, of the thyroid gland. However, about three-
quarters of cytologically indeterminate nodules are found to be
benign upon surgical pathology evaluation. Several studies have
documented the significant impact of unnecessary diagnostic
surgery including direct and indirect medical costs, surgical
complications, and impaired patient quality of life (3). Thus,
we have developed a molecular test that utilizes genomic
information from the thyroid nodule, coupled with machine-
learned algorithms, to safely avoid unnecessary diagnostic
surgery among patients with indeterminate FNA cytology.

Previously, a microarray-based gene expression classifier
(GEC) was developed to classify FNAs with indeterminate
FNA cytology, for the goal of achieving a high sensitivity
and high negative predictive value performance (4, 5). GEC
utilized FNA specimens and reduced unnecessary surgeries (6).
More recently, the Afirma GSC was developed using next-
generation RNA-sequencing data with improved specificity while
maintaining both high test sensitivity and negative predictive
values (7). The Afirma platform migration provided broader
genomic content for assay improvement compared to the GEC:
(1) the measurement of RNA expression via RNA sequencing
rather than microarray enabled enhanced detection of transcript
levels of nuclear/mitochondrial RNAs and changes in genomic
copy number, including loss of heterozygosity; (2) the benign
vs. malignant (BM) classifier now consists of an ensemble
of machine learning classifiers leveraging global expression
patterns of a large number of genes and includes Hürthle
and Neoplasm cassettes to improve specificity among Hürthle-
containing samples (8); (3) In addition to the BM classifier, the
Afirma GSC suite includes three other genomic classifiers: a
parathyroid (PTA) classifier, a medullary thyroid cancer (MTC)
classifier, and a BRAF V600E classifier. Finally, the presence of
RET/PTC1 and RET/PTC3 fusions, which are highly associated
with malignancy, are reported when detected. Each of the
components is integrated into the GSC diagnostic flow to
provide a GSC benign vs. suspicious result (7). These technical
improvements result in substantially improved specificity while
maintaining >90% sensitivity (7). The improved test specificity
of Afirma GSC results in substantially more patients receiving
a benign genomic result which facilitates further reductions
in unnecessary surgery (9, 10). The improved specificity also
increased the GSC positive predictive value which leads to greater
confidence in the need for surgery among those with GSC
suspicious results (9, 10).

Here we evaluate the analytical validity of the Afirma GSC
suite to demonstrate its robustness to various potential technical
variables and interferents arising from sample or laboratory
processing. It is critical that clinical tests be robust to real-
world conditions so that patients receive consistent, accurate
results. Because the Afirma GSC was developed as a rule-
out test with a high negative predictive value (NPV) and the
intent to avoid unnecessary diagnostic surgeries, many of the
analytical validity studies were designed to evaluate the potential
of conditions that might introduce a false negative result. In this
study, we performed analytical sensitivity analyses to evaluate
variable total RNA input amounts on classification results, and
the impact of mixing benign or adjacent normal samples into
malignant samples via limit of detection (LOD) studies. We also
performed analytical specificity analyses to evaluate the impact
of mixing blood with the FNA specimen, and the impact of
mixing genomic DNA content into the FNA specimen due to
incomplete separation of DNA from RNA. We evaluated the
reproducibility of AfirmaGSC result across different laboratories.
Finally, we assessed the reproducibility of Afirma GSC results for
replicates within runs, between runs, across multiple reagent lots,
and performance by multiple operators on different days. We
conclude that the Afirma GSC suite shows robust performance
across the tested conditions.

MATERIALS AND METHODS

Specimens
Ethics committee approval—This research was approved by the
Copernicus Group Independent Review Board (Cary, North
Carolina). A waiver of written informed consent was granted
regarding de-identified biological materials from the CLIA
laboratory. IRB approval and written Informed consent in
accordance with the Declaration of Helsinki was provided by all
patients whose samples were previously used for training and
validation of the Afirma GSC as previously described (7).

Prospective FNA clinical samples were acquired and shipped
under controlled temperature and stored at −80◦C until
extraction. See Walsh et al. (11) for a description of normal
adjacent tissue and blood samples used in this study.

RNA Extraction, Library Preparation and
RNA Sequencing
The RNA library for clinical FNA specimens was purified,
prepared, and sequenced as previously described (7). Briefly,
total RNA was extracted using the AllPrep Micro Kit (QIAGEN).
RNA yield was quantified with the QuantiFluor RNA System
(Promega, Madison, WI), and the RNA Integrity Number (RIN)
was evaluated using the Bioanalyzer 2100 (Agilent Technology,
Santa Clara, CA).

Control samples, including Universal Human Reference
(UHR; Agilent, Santa Clara, CA), were included with replicates.
Fifteen nanogram of samples and controls were transferred to
96 well-plates and sequencing libraries were prepared with the
TruSeq RNA Exome Library Preparation Kit (Illumina, San
Diego, CA) automated on the Microlab STAR robotics platform
(Hamilton, Reno, NV). Briefly, RNA specimens were fragmented,
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reversed transcribed, end-repaired, A-tailed, and ligated with
adapters, followed by PCR, two rounds of exome capture,
and a final PCR amplification according to the manufacturer’s
recommendation. RNA libraries were then sequenced on
NextSeq 500 sequencers (Illumina, San Diego, CA). Sequencing
runs with >75% of bases ≥Q30 and <1% phiX error rate
were accepted.

Sequencing Data Processing and Afirma
GSC Result Generation
RNA-sequencing data were processed through the bioinformatics
pipeline as depicted in the workflow shown in Figure 1. Briefly,
raw sequencing data in FASTQ format was mapped to the
human reference genome assembly 37 using the STAR RNA-
seq aligner (12). Samples passing the quality metrics from RNA-
SeQC (13) were analyzed further. Reads data were counted using
HTSeq (14). The read count matrix was then normalized using
DESeq2 (15) for stabilizing highly variable genes and variation
in sequencing depth. Gene fusions were detected using STAR-
Fusion (16). The expression level data and fusion-calling results
were passed to the AfirmaGSC genomic classifier suite and scores
and binary calls were generated by each classifier.

BRAF V600E Status
As a reference method, Competitive Allele-Specific Taqman PCR
(castPCRTM) for BRAF c.1799T>A (Thermo Fisher, Waltham,
MA) was performed as previously described (7, 17, 18). Samples
with a variant allele frequency (VAF) <5% were considered
BRAF V600 wild type, while VAF ≥5% were considered BRAF
V600E positive.

Analytical Verification Study Design
The analytical verification study includes 3 key components:
analytical sensitivity, analytical specificity and reproducibility.
These components test whether the RNA-sequencing based
Afirma GSC genomic classifier suite can maintain the same
critical clinical validity and classifier performance of sensitivity
≥90% and NPV ≥90% under conditions of technical variability
and interferents potentially encountered in a real-life setting.
Afirma GSC BM, BRAF V600E, MTC and PTA are all evaluated
in a similar fashion.

Analytical Sensitivity
• Variability in total RNA input quantity study tests the classifier

robustness at five RNA input values: 5, 10, 15, 20, and 30 ng.
Both classifier positive and negative samples were sequenced
in triplicate for evaluation.

• Dilution of malignant FNA content (limit of detection) tests
the dilution effect of malignant (classifier positive) signal by
adjacent normal or benign tissue. The dilution levels increase
in increments of 20% or 25% for BM, BRAF V600E, MTC, and
PTA classifiers, and in increments of 5% for RET/PTC fusion
detection module.

Analytical Specificity
• In a real-life clinical setting, blood is a potential interferent

in FNA biopsies. Selected benign, malignant, BRAF V600E,

FIGURE 1 | Analytical verification study data generation workflow.

MTC and PTA positive samples were mixed with blood
proportionally in vitro at 0, 25, 50, 75, and 100% to evaluate
their impact on the Afirma GSC performance.

• Genomic DNA is another potential interferent and was tested
for its possibility to skew the expression level estimations. Both
classifier positive and negative samples were mixed with 0% or
30% genomic DNA and sequenced in triplicate for evaluation.

Reproducibility
• Inter-laboratory reproducibility tests the concordance of

classifier as well as the stability of classifier scores. Samples
covering the classifier score range were selected and sequenced
in both R&D and CLIA laboratories.

• Assay reproducibility tests the assay stability of classifier calls
and scores when samples are run by different operators,
on different days and instruments, and across multiple lots
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of reagents. Selected samples covering each classifier score
range were tested in triplicate across three independent
experimental runs.

Analytical Verification Data Analysis
Analytical Verification Statistical Analysis
The effects of RNA input amount variation (analytical sensitivity)
and genomic DNA interference (analytical specificity) were
evaluated using a linear mixed effect model (Equation 1) on
the classifier scores (Sijk). Specifically, µi indicates the sample
effect and is fitted as a random effect. bj is the experimental effect
and is modeled as a fixed effect. For the input amount variation
study, bj is the input amount (5, 10, 15, 20, or 30 ng); while
for the genomic DNA interference study, bj is the percentage of
genomic DNA (0% or 30%). εijk is the residual, and k indicates
the technical replicate. Analysis of variance (ANOVA) analysis
tests whether the experimental effect is significant (significance
level= 0.05).

Sijk = µi + bj + εijk (1)

The dilution of malignant FNA (analytical sensitivity) is designed
to quantify the impact of interfering classifier negative signals
commonly encountered in a real-life clinical setting. To infer
the trend of classifier scores at mixture points not tested
experimentally (in vitro), an in silicomixing is performed for each
experiment. For each gene g, the number of read counts Cgj at
mixture percentage pj (pj = 0, 0.01, 0.02, . . . 1) is calculated by
Equation 2, where C1 denotes the classifier positive sample and
C2 denotes the classifier negative sample. Then, Cgj is normalized
using DESeq2 similarly as other RNA-Seq derived count data.

Cgj = pj∗C1g + (1− pj)
∗C2g (2)

For inter-laboratory reproducibility, the correlation coefficients
of samples were computed using Pearson’s correlation. The lab
effect on classifier scores were estimated by a linear mixed effect
model as specified in Equation 1, where bj indicates the specific
laboratory (RD or CLIA). For assay reproducibility, the classifier
scores are modeled as:

Sijk = µi + rj + µi : rj + εijk (3)

where µi is the fixed sample effect, and rj is the run effect, which
is modeled as a random effect. µi : rj is the interaction effect
between sample i and run j, which is modeled as a random effect
as well. All 95% confidence intervals for standard deviation (SD)
were estimated by bootstrapping.

Reproducibility Acceptance Specification

Determination
A 3-step simulation study was performed for each classifier
to define the tolerable variability level, beyond which, the
performance is severely affected.

• (1) Random noise ǫ is generated from the normal distribution
ǫ ∼ N(0, σ

2), where standard deviation σ spans between 0.36
and 2.10 with an increment of 0.02. Such simulated noise is
added to the original classifier scores to create the simulated

scores mimicking the classifier being impacted by different
levels of noise.

• (2) Performance metrics (for example: sensitivity, specificity,
PPA, NPA, etc.) are computed on the simulated scores.

• (3) Steps (1) and (2) are repeated 1,000 times for each noise
setting and the median performance metrics are computed.

The maximum score variability tolerated for each classifier is
determined with median clinical performance metrics higher or
equal to the pre-specified product requirements.

RESULTS

Analytical Sensitivity—Total RNA Input
Quantity
The standard input quantity of total RNA to the Afirma R© GSC
assay is 15 ng. However, the quantity of input material may
vary in the lab due to quantitation and pipetting variance. We
analyzed the Afirma GSC performance over a range of input
amounts wider than expected to occur in the lab to determine
the robustness of the test for both classifier positive and negative
samples. The titration levels of input mass were evaluated in
triplicate at 5, 10, 15, 20, and 30 ng (Figure 2A and Figure S1).
There was no significant difference in the GSC BM scores across
different input amount when evaluated with a linear mixed effect
model (BM classifier: p-value = 0.97, Figure 2A). The BRAF
V600E, MTC, and PTA classifiers were also evaluated (Table S1),
and no significant difference in their scores were observed.
Finally, a RET/PTC1 fusion positive sample was tested across the
same input amounts and all input amounts tested resulted in
RET/PTC1 true positive calls (Figure S1D). This study showed
highly robust analytical sensitivity of the Afirma GSC genomic
test to variability in RNA input quantity.

Analytical Sensitivity—Dilution of
Malignant FNA Content (Limit of Detection)
During routine FNA procedures, Adjacent Normal Tissue (ANT)
may also be sampled in varying quantities. We sought to define
the limit of detection of a classifier positive nodule in the
background of adjacent normal tissue or benign tissue. The
tolerance of a classifier positive signal to dilution as evaluated
using in vitro total RNAmixtures from a malignant FNA sample.
The limit of detection for classifier positive signals was evaluated
at 0, 40, 60, 80, and 100% of adjacent normal tissue or benign
tissue as diluted by total RNA mass. The pure adjacent normal
tissue was classified as benign by the GSC, whereas all pure
malignant FNA samples and different degree of mixtures resulted
in malignant GSC calls (Table 1 and Table S2). MTC, PTA and
RET-PTC fusions were evaluated in a similar way. Overall, each
GSC component could tolerate dilution by more than 75% RNA
derived from benign or adjacent normal tissue and still make
the correct prediction (Table 1 and Table S2). To understand if
the classifier can distinguish the malignant signal in a higher
benign background, an in silico mixing approach was explored
(seeMethods). The in silicomodeling shows that the BM classifier
can differentiate a 5% malignant signal in a background of 95%
benign RNA (Table 1), suggesting that the presence of malignant
signals plays a persistent and dominant role in classification.

Frontiers in Endocrinology | www.frontiersin.org 4 July 2019 | Volume 10 | Article 438

https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
https://www.frontiersin.org/journals/endocrinology#articles


Hao et al. Afirma GSC Analytical Verification Performance

FIGURE 2 | Analytical sensitivity and specificity of the Afirma GSC BM classifier. The y-axis spans the observed score range of the classifier being tested. (A) Effect of

input mass variation on Afirma GSC scores. Each box represents classifier scores of technical triplicates for either one benign sample or malignant sample. The x-axis

shows the total input mass. Overall, GSC scores for each sample did not differ significantly with RNA input amount (p-value = 0.97). (B) Analytical specificity of the

Afirma GSC BM classifier against genomic DNA (gDNA). The x-axis shows the percentage of gDNA spiked into 15 ng of total RNA samples before library preparation.

Each box represents classifier scores of all technical replicates for either one benign or malignant sample. Overall, the Afirma GSC BM classifier scores of the same

samples with 30% gDNA spike-in are not significantly different from the scores of the corresponding pure RNA samples (p-value = 0.064).

TABLE 1 | LOD in malignant FNA mixed with benign or adjacent normal tissue.

Classifier/module RNA mixture LOD in classifier

positive FNA

In vitro In silico

BM ANT + Malignant 20% 5%

BM Benign + Malignant 20% 5%

MTC Benign + MTC 25% 20%

PTA Benign + PTA 25% 15%

RET-PTC Benign + RET-PTC 10%

ANT, Adjacent Normal Tissue.

Additional in silicomodeling on the PTA andMTC classifiers also
revealed robust classification in the background of benign cells,
at 15 and 20%, respectively (Table 1). This suggests that when
representing a true positive signal, the genomic classifiers are very
robust to high level of contamination from true negative content.

The limit of detection for the BRAF V600E classifier was
determined by comparing the classifier call to the BRAF V600E
variant status derived by castPCR. 264 total samples were
evaluated; 62 had a BRAF V600E VAF ≥5% and 202 had a BRAF
V600E 0%≤ VAF < 5%. The classifier had 100% positive percent
agreement (PPA) with BRAF V600E castPCR positive samples
and a 99% negative percent agreement (NPA) with BRAF V600E
castPCR negative samples (see Table S3). Therefore, the BRAF
V600E classifier limit of detection is 5% VAF.

Analytical Specificity—Blood
Blood may be inadvertently sampled during FNA procedures,
with varying amounts of this unintended contaminant observed.
To evaluate the tolerance of the GSC classifier to the impact
of blood interference, RNA from FNA samples was mixed with
RNA derived from a fresh, whole blood sample to create an
in vitromixture. The percentages of blood-derived RNAmixtures
tested, while holding the total RNA input constant at 15 ng,
are 0, 25, 50, 75, and 100%. A fitted sigmoid curve of the GSC
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TABLE 2 | Blood interference in Afirma GSC prediction.

Classifier RNA mixture Maximum

interference level of

blood

In vitro

BM Benign + Blood 100%

BM Malignant + Blood 75%

BRAF V600E BRAF V600E + Blood 75%

MTC MTC + Blood 75%

PTA PTA + Blood 75%

BM classifier scores suggested that the malignant sample can be
correctly classified with substantially less than the experimentally
assessed 25% of the original malignant FNA content (Table 2 and
Table S4). The benign sample mixed with blood was correctly
classified for all titration points (Table 2 and Table S4). BRAF
V600E, MTC, and PTA classifiers were evaluated in a similar
way. Overall, all classifiers could tolerate presence of >75%
blood content in the sample mixture and still make the correct
prediction (Table 2 and Table S4). This suggests the genomic
classifier is robust to blood contamination.

Analytical Specificity—Genomic DNA
Genomic DNA (gDNA) is removed from samples during RNA
extraction, however the removal may not be complete in all
samples tested. To test the impact of gDNA contamination, we
spiked high amounts of gDNA into purified RNA. Testing pure
gDNA in the Afirma GSC assay did not produce any sequencing
library, and thus the potential for interference in such setting
is minimal. To test the impact of gDNA contamination in a
sample that produces sequence-able libraries, we evaluated 30%
gDNA added to RNA. This level of gDNA contamination can be
observed during RIN evaluation in the bioanalyzer traces of RNA
(Figure S2A). We reasoned that if such a high level of gDNA
contamination were observed in a QC step, but did not interfere
with the assay, then lesser amounts of contamination would not
affect performance. To experimentally assess the extent of gDNA
interference on the Afirma GSC BM results, in vitro mixtures
were created with one malignant and one benign sample each
with 30% gDNA spiked in, while maintaining the total RNA input
constant at 15 ng. Afirma GSC scores of the BM classifier for
each sample did not differ significantly between samples with
and without 30% genomic DNA spiked in (p-value = 0.064).
As shown in Figure 2B, the observed score differences are very
small when shown in the score range of BM classifier. These
observations support that the Afirma GSC test is robust against
genomic DNA interference. The BRAF V600E, MTC classifiers
and RET/PTC fusion detection module were evaluated and no
significant difference was observed (Table S5 and Figure S2). The
PTA classifier had a statistically significant difference (p= 0.005),
but this observation was due to the extremely reproducible scores
and a small shift in the PTA score at 30% gDNA (Table S5 and
Figure S2). This score shift represents <1% of the total score
space of the PTA classifier and will not have an impact on PTA
classification performance.

Reproducibility—Acceptance Specification
To understand the threshold of variation the Afirma GSC can
tolerate, an in-silico simulation with increasing levels of random
variation was performed. The GSC BM classifier score indicated
that the classifier can tolerate a total variation of scores SD ≤

0.44 from all technical sources without substantially impacting
sensitivity and specificity (Table 3). The BRAF V600E, MTC, and
PTA classifiers were also evaluated in a similar fashion, and the
maximum tolerable variation level are summarized in Table 3

column “SD Specification.” As with the GSC BM classifier, these
specification values serve as the acceptance thresholds to be
compared against the technical variation levels estimated from
reproducibility studies.

Reproducibility—Inter-laboratory
The Afirma GSC was developed in the Veracyte R&D laboratory
and transferred to the CLIA laboratory for clinical use. To
confirm that the two labs achieve the same GSC BM results, a
total of 40 unique patients spanning the entire GSC BM score
range were used to evaluate the inter-laboratory reproducibility.
The Afirma GSC BM classifier call results from the two
laboratories were 100% concordant (40 of 40). Additionally, the
Afirma GSC BM scores of the 40 samples between the two
laboratories were highly correlated (R2 = 0.99) and demonstrated
strong inter-laboratory reproducibility of the Afirma GSC BM
classifier. The inter-laboratory pooled SD of Afirma GSC BM
scores was estimated to be 0.130 (95% CI: [0.114, 0.144]), which
is substantially below the pre-determined acceptance threshold of
SD ≤ 0.44 from in-silico simulation (Figure 3). Other classifiers
were evaluated in the same fashion and rendered similar results
(Table 3 and Figure S3).

Reproducibility—Assay Inter-run and
Intra-run
In a CLIA lab production environment, samples are processed
continually by different operators, on different machines, and
across different lots of reagents. It is therefore critical to
ensure performance stability across these variables to ensure that
patients tested over the lifetime of the product receive consistent
results. We performed reproducibility studies that examined
identical samples run by different operators, on different days and
instruments, across multiple lots of reagents.

To evaluate the tolerance of the Afirma GSC BM to
experimental variation due to equipment, operator, reagent lot,
and days, 15 malignant and benign FNA samples spanning
the entire score range were tested in triplicate across three
independent experimental runs. The intra- and inter-run
reproducibility of the Afirma GSC BM were evaluated using
total RNA from 134 assays that passed QC, tested in 3
experimental runs.

The pooled intra-run SD of Afirma GSC BM scores,
quantifying variability from technical replication, was estimated
to be 0.069 (95% CI: [0.053, 0.073]). The pooled inter-
run SD of GSC scores, measuring the total experimental
variability other than sample-specific effects, was estimated
to be 0.274 (95% CI: [0.228, 0.310]) across all samples in
this study. In comparison, the total SD of inter-class scores
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TABLE 3 | Afirma GSC classifier suite reproducibility result summary.

Classifier Score range Biological variation SD specification Technical variation

Inter-class Inter-lab Inter-run Intra-run

N SD (95% CI) N SD (95% CI) N SD (95% CI) N SD (95% CI)

BM 8 191 1.452 (1.306–1.634) 0.440 80 0.130 (0.114 −0.144) 134 0.274 (0.228–0.310) 134 0.069 (0.053–0.073)

BRAF V600E 13 264 3.417 (3.189–3.698) 0.640 42 0.298 (0.249–0.344) 134 0.186 (0.169–0.202) 134 0.133 (0.115–0.153)

MTC 12 211 2.912 (2.424–3.499) 2.000 50 0.174 (0.088–0.253) 53 0.189 (0.114–0.257) 53 0.189 (0.081–0.214)

PTA 10.5 195 1.242 (0.735–1.845) 1.210 50 0.104 (0.090–0.117) 36 0.105 (0.082–0.124) 36 0.078 (0.040–0.079)

“SD Specification” was derived by in-silico simulation on the training set scores for each classifier. “N” is the sample size for each study. 95% confidence interval is included for all
SD estimates.

between benign and malignant samples, reflecting biological
difference, was estimated to be 1.452 (95% CI: [1.306, 1.634])
(Figure 3). Observed technical variation of the BM and other
classifiers were all below the pre-determined specs from
the in-silico simulation (Table 3, Figure 3 and Figure S3).
RET/PTC fusion positive samples were all called positive in all
replicates across all batches. Thus, the Afirma GSC genomic
test is highly robust to routinely encountered sequencing
operational variations.

DISCUSSION

The Afirma GSC classifier is a novel genomic diagnostic
test that leverages whole transcriptome RNA-sequencing and
machine learning methods to accurately predict benign vs.
malignant thyroid nodules. It is an enhanced version of its
predecessor, the Afirma GEC classifier (5). The clinical validity
of the GSC has been established (7). Equally important to
clinical validation is the establishment of analytical validation,
as outlined by the Evaluation of Genomic Applications in
Practice and Prevention (EGAPP) Working Group and the
Centers for Disease Control’s ACCE (Analytic and Clinical
validity, Clinical utility and associated Ethical) Project (19,
20). All analytical validation studies were performed in a
prospective manner, whereby the acceptance criteria for each
study were determined (1) based on previously approved design
requirements and (2) prior to the study being performed in the
laboratory. Here we report the analytical validation of the GSC
and demonstrate its robustness to various technical variations
along the entire pipeline process of plating, library generation,
sequencing, and algorithm analysis. More specifically, we show
the tolerance of the classifier to the impact of variation in
RNA input amount, and heterogenous sample inputs resulting
from admixture with blood, genomic DNA, and adjacent normal
tissues. Sample collection, storage, and shipping were unchanged
from the Afirma GEC and their analytical validity was previously
established (11).

Our studies demonstrated that the Afirma GSC classifier is
robust to technical variability encountered in routine clinical
sample processing. Analytical sensitivity studies showed that
classifier calls are not impacted by variation in RNA input
deviating from the standard amount (15 ng); it can tolerate

FIGURE 3 | Reproducibility results for Afirma GSC BM classifier. The left most

is the biological variation calculated as the inter-class score SD between

benign and malignant samples and was computed from all samples passing

quality control criteria in the clinical validation study. On the right side, technical

variability from different sources were listed. Dashed line: the maximum

tolerable level of technical variation in GSC scores derived from simulation

(0.44). Black dots: observed values. Vertical red lines: 95% CI. The sample

size used to calculate the point estimate and the 95% CI is shown at the top.

variance up to −10 ng to +15 ng (range, 5–30 ng). Clinical
sample collection procedures may yield an impure nodule
sample due to the needle passing through other tissues
on its way to the thyroid nodule of interest. Limit of
detection studies here demonstrated that the BM classifier
is robust to dilution of malignant FNA content by adjacent
normal (80%) and benign FNA content (80%) and in silico
modeling shows that the BM classifier can tolerate even
higher dilution (95%). All other components of the GSC test
system also demonstrated significant resistance to the effects
of dilution.

Potential interferents such as blood and genomic DNA may
also be mixed in the samples due to variability in sample
collection, preparation, or biological heterogeneity. Analytical
specificity analyses showed that malignant signals remained
sufficiently detectable with up to 75% of blood mixed into a
malignant sample. Also, no changes in classifier calls were found
with up to 30% of genomic DNA in the sample mixture. These
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results suggest that the Afirma GSC test is robust to heterogenous
sample content.

We selected both positive and negative control samples
and FNA samples that cover the entire score range to
evaluate the reproducibility of GSC test results according
to regulatory requirements of genomic applications. We
showed that the Afirma GSC scores and calls are reproducible
for samples replicated across different reagents, operators,
equipment and runs. The accuracy of the test performed
at the CLIA-certified laboratory was established by an
inter-laboratory comparison study, showing that the test
results generated from the CLIA-certified commercial
laboratory are consistent with those generated in the R&D
laboratory where the test was developed. Combined with
the clinical validation study previously published (7), the
GSC successfully fulfills the analytic criteria of EGAPP
level I.

CONCLUSION

The Afirma GSC demonstrates robust reproducibility and
analytical performance against technical variability that
may arise from clinical sample collection and laboratory
processing. These findings support its clinical use among
cytologically indeterminant thyroid nodules to inform
patient care.
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