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This review discusses Gō models broadly used in biomo-
lecular simulations. I start with a brief description of the 
original lattice model study by Nobuhiro Gō. Then, the 
theory of protein folding behind Gō model, free energy 
approaches, and off-lattice Gō models are reviewed.  
I also mention a stringent test for the assumption in Gō 
models given from all-atom molecular dynamics simula-
tions. Subsequently, I move to application of Gō models 
to protein dynamical functions. Various extension of Gō 
models is also reviewed. Finally, some publicly available 
tools to use Gō models are listed.
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Since the very first paper by Taketomi, Ueda, and Gō in 
1975 [1], the so-called Gō model has long been used to 
broad range of biomolecular simulations, primarily for, but 
not limited to, protein folding studies. In this review article, 
I start with a brief description of the original work by Gō, 
which is followed by subsequent developments, more recent 
application of Gō model, and discussion of future directions.
While not many, in the last 20 years, the Gō model has 

been reviewed in a few articles [2–4], which would comple-
ment this review.

Lattice model by Gō
Teketomi, Ueda, and Gō, for the first time, introduced a 

lattice model to protein folding study [1] . In their model, 
each monomer in “protein” is placed on a lattice point in two 
dimension and is connected by bonds that have the unit 
length of the lattice (Fig. 1A). Starting from random config-
urations, the Metropolis Monte Carlo simulation was used to 
fold this model protein. Monomers that are separate by the 
unit length and not connected by a bond have non-local con-
tact interactions. For the contact interactions, they considered 
three cases, a weak limit of specificity, an intermediate spec-
ificity, and a strong limit of specificity. It is in the third class 
that turned out to be called Gō-model later; two beads have 
negative contact interaction energy only when these pairs 
are in contact at the pre-defined native structure. Otherwise, 
the two beads have no contact energy. The Monte Carlo sim-
ulations resulted in complete folding to the native structure 
only for the strong limit of specificity, but not for the other 
two cases. A subsequent paper by Gō and Taketomi intro-
duced the specificity to the local potential, a negative energy 
only when the bond angle is the same as that in the pre- 
defined native one, studying the balance between local and 
non-local specific interactions [5]. In these and other studies, 
Gō and his collaborators pursued statistical physics of the 
strong limit of specificity, finding many qualitatively consis-
tent results with experiments, as summarized in the seminal 
review [6]. In their lattice model, the protein folds to the 
native configuration below the melting temperature, above 
which the protein unfolds. The transition is fairly coopera-

Since the very first paper by Taketomi, Ueda, and Gō in 1975, the so-called Gō model has been broadly used in vari-
ous biomolecular simulations. A brief history, a stringent test, various extensions, and broad range of applications 
are reviewed.



Takada: Gō model revisited 249

Theory behind
Through series of lattice model simulations and lessons 

from many X-ray crystallographic structures, Nobuhiro Gō 
proposed the consistency principle in the 1983 review [6]. In 
their native structures, proteins individually take the optimal 
local interactions, akin to the secondary-structure, and non- 
local interactions, i.e., the tertiary structure. This dual opti-
mality was attained via evolutionary selections of the amino 
acid sequence. The review also mentioned about the kinetic 
aspect of the consistency principle; the balance between the 
local and non-local specificity, which is necessary for the 
well-behaved cooperative folding-unfolding transition. The 
consistency principle serves as a theoretical basis to use the 
Gō model. The consistency principle, and thus the Gō model, 
were considered as an ideal limit, whereas real proteins must 
have other restraints, such as functional restraints.
Some years later, extending Gō’s perspective, Wolynes 

and his coworkers formulated a statistical physical theory  
of protein folding and elucidated global picture of energy 
landscape of proteins [11,12]. The theory clarified that, for a 
given temperature, the energy bias to the native structure has 
to be large enough, relative to the average ruggedness of  
the energy surface (frustration) for the protein being able to 
fold to the native structure avoiding glassy slow dynamics. 
Here, the energy bias is linked to the thermodynamic stabil-

tive, showing a clear peak in the heat capacity. The folding 
occurs faster when the local preference energy is larger, rel-
ative to the non-local contact energy, whereas the folding 
transition is more cooperative when the non-local contact 
contribution is larger. All these are very robust physical 
properties well supported by biophysical experiments and 
shared by more accurate protein simulations performed to 
date.
About 15 years later from the first paper by Gō, the lattice 

model of protein folding got popularity, notably by the stud-
ies of Dill, Shakhnovich, and Onuchic and Wolynes [7–10]. 
Importantly, in this second generation of the lattice protein 
model, monomer contact energies were not biased to their 
pre-defined native structure, but are purely sequence-based. 
So, these models are not a sort of Gō model. But, sometimes, 
the Gō model was mentioned as a control, which served as 
the limit of strong specificity. It was in this context that peo-
ple started to call this type of models as “Gō model” [7,8]. 
Retrospectively, due to its strong geometrical constraint, the 
sequence-based, i.e., non-Gō type lattice models may have 
pronounced ruggedness, which might have overestimated 
the ruggedness of the energy landscape, comparing with 
nowadays-available all-atom molecular dynamics (MD) 
simulations for folding.

Figure 1 Various studies with Gō models. A) One of the original two-dimensional lattice models used by Gō. The figure taken from [5]. B) A 
stringent test of the assumption in Gō models. For contact i and j, the log ratio of lifetime in the transition-path tTP to lifetime in the unfolded state 
tU is plotted by color in upper-left triangle, while the native contact map is depicted in the lower-right triangle. Results for three proteins are drawn 
here. The figure taken from [35]. C) Comparison of the root mean square fluctuation in the native basin for a test protein CheY. Results from all-atom 
MD (black circles), an elastic network model (GNM) (red curve), and a Gō model (green curve) are compared. The figure taken from [30]. D) A 
schematic plot for the multiple-basin Gō model that is based on two single Gō models. The picture taken from [41].
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and u, such as uuuunnnnuu for a 10-residue case. The global 
native state N and unfolded state U correspond to the states 
that all the residues take n and u microstates, respectively. 
Only when both of natively interacting residues as well as all 
the residues in between take the n states, they get a certain 
stability, which basically is the same assumption as the Gō 
model. Non-native contacts are completely ignored. As resi-
dues change from the u state to the n state, the chain loses its 
conformational entropy. Thus, as the protein folds, it gains 
energetic stability and loses its conformational entropy. 
Since the folding transition is modeled as the energy-entropy 
compensation process, the optimal folding pathways are 
determined so as to minimize the entropy loss for a given 
energy gain. Under some assumptions, free energy of micro-
states can be analytically calculated by a transfer-matrix 
approach, which is a clear advantage of this type of model-
ing, compared to the lattice Gō model. This simple modeling 
turned out to have marked predictive power of folding tran-
sition ensembles and folding rates, when compared with 
experimental phi-value analysis and folding rates. Related 
free energy function approaches were developed by a few 
other studies, as well [2,18–20]. Conversely, this success 
strongly supports the consistency principle and the perfect 
funnel view. More recently, the Wako-Saito-Munoz-Eaton 
model and its extension have been broadly used in diverse 
folding studies [21,22].

Off-lattice Cα Gō model
While the lattice model was powerful to reveal conceptual 

aspects in protein folding, its highly restricted geometry 
precludes direct application to real protein structures. 
Especially, low-frequency and collective fluctuations around 
the native structures cannot easily be represented by lattice 
models. In this respect, another class of minimal protein 
models, called the elastic-network-model, was invented first 
by Tirion in 1996 [23], and further developed by Jernigan, 
Bahar, and others [24]. The elastic network model consists 
of elastic bonds between two monomers that are spatially 
close to each other at the native structures, with the natural 
lengths of the elastic bond being the lengths at the native 
structure. Albeit its ultra-simplicity, the elastic network 
model was shown to represent low-frequency fluctuations of 
proteins in the native state surprisingly well. As in the case 
of Gō model, the elastic network model directly uses and is 
biased towards the native structure by construction. How-
ever, because all the interactions are elastic, the elastic net-
work model cannot approximate the unfolded state at all, 
and thus is not considered as a Gō model.
The lattice Gō model is a concise realization of protein 

folding, but not good for native fluctuation dynamics. On the 
other hand, the elastic network model is a simple and mini-
mal model to approximate low-frequency native fluctuations, 
but does not take into consideration of unfolding. Soon after 
Tirion’s work, Clementi, Nymeyer, and Onuchic proposed 

ity T < Tm, where T is the physiological temperature and Tm 
is the melting temperature. The average ruggedness is cor-
related with the characteristic glass-transition temperature Tg 
for the onset of slow dynamics; thus, as the kinetic condi-
tion, T > Tg is to be satisfied. Together, Tg < T < Tm gives the 
foldability condition. For fast folding of proteins, the frustra-
tion at the native basin and on the route to it has to be small 
enough, which is termed the principle of minimum frustra-
tion.
While the consistency principle of Gō and the principle  

of minimum frustration apparently have overlap, they also 
differ in some respects. First, the consistency principle is a 
concept stated primarily by words, while the principle of 
minimum frustration gives mathematical expressions. Sec-
ondly, the consistency principle primarily states on the 
structural aspect at the native state and thus on the thermo
dynamic stability, in addition to the balance between the 
local and non-local specificities for experimentally observed 
cooperative folding-unfolding transitions. The Wolynes the-
ory defines the foldability as the combination of the stability 
and kinetics; T < Tm from the stability and T > Tg from the 
kinetics.

Subsequent computer simulations by Onuchic and others 
pointed out importance of the network of folding pathways 
[13]; the folding is fast and efficient when there are multiple 
parallel pathways that are linked to the native state, while it 
is slow when there is a bottleneck where only few routes 
exist. This ends up with the concept of protein folding fun-
nel; fast folding proteins have funnel-like energy landscapes 
[14]. The solvent-averaged energy of a fast-folding protein, 
on average, decreases as the protein approaches to the native 
state, which correspond to the bottom of the funnel. If the 
effective energy monotonically decreases, how does the 
folding free energy barrier arise? As the folding reaction 
proceeds, the number of available conformations, and thus 
the conformational entropy decreases, which opposes the 
folding. It is thus the energy-entropy compensation that gives 
rise to the free energy barrier along the folding reaction 
coordinate. Conformational bottleneck corresponds to a large 
conformational entropy loss, which increases the free energy 
at the bottleneck.
Gō model can be considered as a concise mean to realize 

the consistency principle, or the perfect funnel landscape. 
Assumed in Gō model is that only natively-contacting pairs 
(native contacts) have crucial contribution to the folding, but 
other pair interaction (non-native contacts) can be ignored.

Free energy function type Gō model
In the same spirit of Gō model, Wako and Saito proposed 

an Ising-like model to describe protein folding processes 
[15,16], which was, many-years later, reinvented and applied 
to many proteins by Munoz and Eaton [17]. In the model, 
each residue takes two state, n (native) and u (unfolded) so 
that a microstate of a protein is described as a sequence of n 



Takada: Gō model revisited 251

this analysis provides the most convincing data to date that 
supports the native-contact centric view and thus the use of 
Gō model. For each residue pair, they compared the lifetime 
of that contact in the transition-path and the lifetime of the 
same contact in the non-native ensemble in the trajectories 
(the transition-path stands for a fragment of MD trajectory 
that departs from the unfolded basin and reaches at the native 
state) (Fig. 1B). If the former lifetime is much longer than 
the latter for a pair, this indicates the pair has significant role 
for folding. Quantifying this ratio, they found that the high 
scores are located only in the native contact pairs and their 
neighbors for all but one protein analyzed. Interestingly, one 
exception was a designed protein, of which sequence has not 
evolved naturally. For naturally-evolved proteins, not all the 
native contacts are equally resistant; the high scored regions 
correlate with the folding initiation sites. They also per-
formed a Bayesian analysis finding similar tendency; native 
contacts are formed at higher probabilities in the transition-
path than the non-native contacts. This analysis unambigu-
ously shows that, in the successful folding and unfolding 
transitions, natively formed contacts play major roles, while 
non-native contacts do not contribute significantly; thus,  
this directly rationalizes the use of Gō models in predicting/
revealing folding mechanisms for natural proteins. Further-
more, the Wako-Saito-Munoz-Eaton model was applied to 
the same set of proteins as those simulated with Anton, find-
ing highly consistent results [36].

From folding to function with Gō model
It has been shown that off-lattice Gō models are useful not 

only for protein folding, but also for native-state dynamic 
simulations [30,37]. Somewhat surprisingly, comparing with 
the root-mean-square-fluctuations (RMSF) calculated by all-
atom MD with explicit water, off-lattice Gō models agree 
better than the elastic network model, which indicates that 
even the native dynamics of proteins reflect some un- 
harmonic part of potentials that is linked to local unfolding 
(Fig. 1C). It was investigated that, relative to the elastic 
network model, local unfolding, or cracking, decreases the 
free energy barrier for conformational transition [38]. With a 
multiscale-calibrated version of Gō model, the correlation 
between the RMSF by the Gō model and that by all-atom 
MD with explicit water was as high as the correlation 
between the RMSF by all-atom MD with implicit water and 
that with explicit water [39].

Given that the native dynamics can be well captured by 
Gō models, we can go further simulating conformational tran-
sition between two or more distinct conformations relevant 
to allosteric regulations. When two distinct conformations, 
A and B, for a target protein are available from experiments, 
we can construct the two respective Gō models V(R|A), 
and V(R|B), each making funnel-like landscapes centered 
around A and B basins, respectively, where the vector R col-
lectively represents all the particle coordinates. If we think 

an off-lattice Gō model that resulted in taking advantage of 
the two minimal models; the model represents a protein as a 
chain of Cα atoms of every amino acids and that has both 
local angle and non-local contact potentials biased towards 
the native structure. In the low temperature limit, the model 
converges to the elastic network model, whereas the protein 
unfolds cooperatively at a higher temperature. They applied 
this off-lattice Cα Gō model to small fast-folding proteins, 
directly comparing the folding pathways with experiments 
[25]. Several subsequent works together showed its predic-
tive power for folding reaction mechanisms [26,27].
As is clear by now, “Gō model” does not mean a single 

model, but represents a class of models that share the con-
cept in the original work by Gō. Although no one clearly 
defined it, in practice, Gō models share the two concepts.  
1) They represent folding-unfolding transitions and 2) take 
into accounts pairwise contact energies only for the pairs 
that are in contact in the native structure. The Gō model is 
often called “structure-based model” as well since the energy 
function is explicitly dependent on the native structure. 
While the two names are used as synonym, they can be 
slightly different; e.g., the elastic network model of Tirion is 
clearly a structure-based model, but is not a sort of Gō 
model.
The first version of off-lattice Cα Gō model by Clementi, 

C., et al. is a minimal and concise model so that there is 
room to add some more details. Karanicolas and Brooks 
added sequence-dependent local terms, chemically-motivated 
energy scales for the contact energies, and a desolvation 
potential in non-local contacts, improving predictive power 
of folding transitions and pathways [28]. A similar desolva-
tion energy was addressed by Kaya and Chan, as well [29]. 
Multiscale algorithms were utilized to reflect more sequence- 
and structure-specific interaction at atomic level within Cα 
Gō model [30,31]. Furthermore, the chemical denaturant 
effect was incorporated into an off-lattice Gō model [32].

Testing Gō model assumption via all-atom molecular 
simulations

A special-purpose supercomputer Anton and the associ-
ated MD software Desmond were used to simulate long-time 
folding dynamics of small proteins with an all-atom force-
field and explicit water solvent, which successfully realized 
reversible folding and unfolding for more than 10 proteins 
[33,34]. They observed in the trajectories that, whereas non- 
native secondary structures do form in the unfolded state 
ensemble for some proteins, they are transient and disappear 
either before initiation of folding events or early during the 
folding. This implies that these non-native contacts do not 
contribute much to the folding mechanisms, supporting the 
assumption behind Gō models.

Soon after this all-atom folding simulations, these trajec-
tories were further analyzed from the perspective of folding 
mechanisms by Best, Hummer, and Eaton [35]. Probably, 
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structure B, which can be thought as a proxy to the confor-
mational change. It should be noted that the sudden switch 
of potential places the protein at quite a high energy state in 
the new potential surface so that the initial part of the relax-
ation process tends to contain more artefacts. This “switch-
ing Gō model” was applied to a rotary molecular motor, 
F1-ATPase [50], molecular chaperone [51], and, more 
recently, for ATP-dependent chromatin remodeler [52].

Integrating with physical model
While the Gō model represents an ideal protein encoding 

the prefect funnel picture, real proteins do have some non-
ideality. Functional restraints give rise to frustrations that are 
enriched near active sites as well as allosteric sites [30,53]. 
To model non-ideality on top of the funnel picture, it has 
been devised to integrate the Gō type bias with purely 
sequence-based and physico-chemical potentials. It should 
be noted that earlier off-lattice Cα Gō models such as [28] 
already took into account the sequence-based interaction to 
some extent. More thorough sequence-based interactions, 
i.e., non-native contact interactions, were also incorporated 
into Gō type modeling; for example, the AWSEM provides a 
spectrum of models from a purely sequence-based model for 
protein structure prediction to a Gō type model representing 
the perfect funnel landscape [54,55].
Within Cα models, one can approximate backbone hydro-

gen bonds and sidechain interactions using orientation- 
dependent potential functions. Hoang, T. X., et al. proposed 
to use three consecutive Cα positions to calculate orien
tations of backbone amide- and carbonyl- groups of the  
central residue so that the orientation-dependent backbone 
hydrogen bonds can be modeled as a function of 6 Cα 
coordinates, which was carefully calibrated later [56,57]. A 
similar approach was further developed to model the side-
chain orientation in terms of three consecutive Cα positions 
[58,59]. This type of modeling is particularly useful to model 
intrinsically disorder proteins/regions that lack the native 
structure, as well as amyloid like higher-order structures. 
While these physico-chemical interactions alone cannot spe-
cific enough to fold a globular protein purely from sequence 
information, one can combine it with Gō type bias, when-
ever necessary.

Further spreading and future directions
While Gō models have originally been developed for and 

applied to proteins, one can extend the same idea to other 
macromolecules. The RNA folding and functional dynamics 
have been studied by some Gō models together with physico-
chemical interactions [60–62]. For DNA, Gō type biases 
have been added to more physico-chemical interactions to 
stabilize B-type duplex form [63] although this bias was 
much weakened in more recent modeling. Notably, Gō type 
model has never been used for lipid, to my knowledge; lipid 

of V(R) = Min (V(R|A), V(R|B)), this potential V(R) encodes 
two basins A and B in its energy landscape (Fig. 1D). To  
use it in MD simulations, we need to make it differentiable. 
There can be multiple means to do it. Best and Hummer 
proposed the so-called soft-min function, represented as  
a combination of logarithmic and exponential functions, 
describing conformational change of a protein [40]. Okazaki, 
K., et al. used the secular equation formalism for the purpose 
[41]. Notably, these multiple-Gō model formalisms create 
two basins in the global energy landscape, but do not make 
intermediate states between two conformations. As an oppo-
site limit of cooperativity, one can put two local minima in 
every pair contact potentials, corresponding to the pair dis-
tances in conformations A and B [42,43]. While this formal-
ism also encodes two basins A and B, it also allows to 
possess multiple intermediate states between two endpoint 
configurations. This locally multiple Gō contact formalism 
is useful to investigate detailed pathways for conformational 
change. There can be ways to put a cooperativity in between 
these two limits: One can use the global multiple-Gō model-
ing for certain fragments of a protein [44,45]. Alternatively, 
one can design an arbitrary range of cooperativity in the 
conformational transition [46].

With the framework of constructing multiple-basins in 
hand, one can treat the ligand binding dynamic process in a 
few different manners. For a minimal modeling of confor-
mational transition dynamics, one may simply change the 
relative free energy between two basins mimicking the 
ligand binding [47]. As a second level, one can introduce an 
implicit ligand binding interaction potential which effec-
tively stabilizes the residues neighboring the ligand. Then, 
the ligand binding and unbinding is mimicked by truing on 
and off of this implicit ligand binding potential. This turning 
on and off process can be realized by Monte Carlo process, 
thus making the entire simulation as the hybrid-MC/MD 
simulation. Namely, the ligand binding and unbinding, or 
even chemical reactions, can be treated by MC, whereas 
protein conformational motions are treated by MD [48].  
This scheme has been applied to modeling whole enzymatic 
dynamics of adenylate kinase as well as FO part of F-type 
ATP synthase [44,49]. As a third and more microscopic view, 
one can treat ligand as an explicit molecule represented by  
a few beads [42].

To mimic an entire cycle of conformational transition for 
huge molecular complexes, such as molecular machines, 
one may favor even a simpler approach; sudden switch of 
the reference (native) structures in Gō models. For example, 
a protein may have an open conformation A in the apo state 
and a closed conformation B in the ligand-bound state.  
For mimicking the ligand-binding induced conformational 
change, during a MD simulation with a Gō model based  
on the A structure, one can suddenly (or gradually) switch 
the potential surface to a new Gō model based on the B 
structure. After the sudden (or gradual) switch, the protein 
conformation smoothly relaxes from the A basin to the new 



Takada: Gō model revisited 253

interface to run MD with GROMACS, somewhat similar to 
SMOG [75]. The CafeMol is a standalone software that 
implements a simple as well as a fine-tuned version of Cα 
Gō models, a multiple-basin Gō model, a RNA Gō model, 
together with an experiment-based coarse-grained DNA 
model and protein-DNA interactions [37]. The AWSEM-MD 
package offers a broad range of models from a purely 
physico-chemical and sequence-based interaction model, in 
one limit, to a Gō model in the other limit [55]. It uses a 
three-beads-per-amino-acid resolution. The AWSEM-MD 
produces an interface to run MD with the LAMMPS MD 
suite.
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