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This review discusses Gō models broadly used in biomo-
lecular simulations. I start with a brief description of the 
original lattice model study by Nobuhiro Gō. Then, the 
theory of protein folding behind Gō model, free energy 
approaches, and off-lattice Gō models are reviewed.  
I also mention a stringent test for the assumption in Gō 
models given from all-atom molecular dynamics simula-
tions. Subsequently, I move to application of Gō models 
to protein dynamical functions. Various extension of Gō 
models is also reviewed. Finally, some publicly available 
tools to use Gō models are listed.
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Since	the	very	first	paper	by	Taketomi,	Ueda,	and	Gō	in	
1975	 [1],	 the	 so-called	 Gō	 model	 has	 long	 been	 used	 to	
broad range of biomolecular simulations, primarily for, but 
not limited to, protein folding studies. In this review article, 
I	start	with	a	brief	description	of	the	original	work	by	Gō,	
which is followed by subsequent developments, more recent 
application	of	Gō	model,	and	discussion	of	future	directions.
While	not	many,	 in	 the	 last	20	years,	 the	Gō	model	has	

been reviewed in a few articles [2–4], which would comple-
ment this review.

Lattice model by Gō
Teketomi,	Ueda,	and	Gō,	for	the	first	 time,	introduced	a	

lattice model to protein folding study [1] . In their model, 
each monomer in “protein” is placed on a lattice point in two 
dimension and is connected by bonds that have the unit 
length	of	the	lattice	(Fig.	1A).	Starting	from	random	config-
urations, the Metropolis Monte Carlo simulation was used to 
fold this model protein. Monomers that are separate by the 
unit length and not connected by a bond have non-local con-
tact interactions. For the contact interactions, they considered 
three	cases,	a	weak	limit	of	specificity,	an	intermediate	spec-
ificity,	and	a	strong	limit	of	specificity.	It	is	in	the	third	class	
that	turned	out	to	be	called	Gō-model	later;	two	beads	have	
negative contact interaction energy only when these pairs 
are	in	contact	at	the	pre-defined	native	structure.	Otherwise,	
the two beads have no contact energy. The Monte Carlo sim-
ulations resulted in complete folding to the native structure 
only	for	the	strong	limit	of	specificity,	but	not	for	the	other	
two	cases.	A	subsequent	paper	by	Gō	and	Taketomi	 intro-
duced	the	specificity	to	the	local	potential,	a	negative	energy	
only when the bond angle is the same as that in the pre- 
defined	native	one,	studying	the	balance	between	local	and	
non-local	specific	interactions	[5].	In	these	and	other	studies,	
Gō	and	his	 collaborators	pursued	 statistical	physics	of	 the	
strong	limit	of	specificity,	finding	many	qualitatively	consis-
tent results with experiments, as summarized in the seminal 
review [6]. In their lattice model, the protein folds to the 
native	configuration	below	the	melting	 temperature,	above	
which the protein unfolds. The transition is fairly coopera-

Since the very first paper by Taketomi, Ueda, and Gō in 1975, the so-called Gō model has been broadly used in vari-
ous biomolecular simulations. A brief history, a stringent test, various extensions, and broad range of applications 
are reviewed.



Takada: Gō model revisited 249

Theory behind
Through series of lattice model simulations and lessons 

from	many	X-ray	crystallographic	structures,	Nobuhiro	Gō	
proposed the consistency principle in the 1983 review [6]. In 
their native structures, proteins individually take the optimal 
local interactions, akin to the secondary-structure, and non- 
local interactions, i.e., the tertiary structure. This dual opti-
mality was attained via evolutionary selections of the amino 
acid sequence. The review also mentioned about the kinetic 
aspect of the consistency principle; the balance between the 
local	 and	 non-local	 specificity,	which	 is	 necessary	 for	 the	
well-behaved cooperative folding-unfolding transition. The 
consistency principle serves as a theoretical basis to use the 
Gō	model.	The	consistency	principle,	and	thus	the	Gō	model,	
were considered as an ideal limit, whereas real proteins must 
have other restraints, such as functional restraints.
Some	 years	 later,	 extending	 Gō’s	 perspective,	Wolynes	

and his coworkers formulated a statistical physical theory  
of protein folding and elucidated global picture of energy 
landscape	of	proteins	[11,12].	The	theory	clarified	that,	for	a	
given temperature, the energy bias to the native structure has 
to be large enough, relative to the average ruggedness of  
the energy surface (frustration) for the protein being able to 
fold to the native structure avoiding glassy slow dynamics. 
Here, the energy bias is linked to the thermodynamic stabil-

tive, showing a clear peak in the heat capacity. The folding 
occurs faster when the local preference energy is larger, rel-
ative to the non-local contact energy, whereas the folding 
transition is more cooperative when the non-local contact 
contribution is larger. All these are very robust physical 
properties well supported by biophysical experiments and 
shared by more accurate protein simulations performed to 
date.
About	15	years	later	from	the	first	paper	by	Gō,	the	lattice	

model of protein folding got popularity, notably by the stud-
ies of Dill, Shakhnovich, and Onuchic and Wolynes [7–10]. 
Importantly, in this second generation of the lattice protein 
model, monomer contact energies were not biased to their 
pre-defined	native	structure,	but	are	purely	sequence-based.	
So,	these	models	are	not	a	sort	of	Gō	model.	But,	sometimes,	
the	Gō	model	was	mentioned	as	a	control,	which	served	as	
the	limit	of	strong	specificity.	It	was	in	this	context	that	peo-
ple	started	to	call	this	type	of	models	as	“Gō	model”	[7,8].	
Retrospectively, due to its strong geometrical constraint, the 
sequence-based,	i.e.,	non-Gō	type	lattice	models	may	have	
pronounced ruggedness, which might have overestimated 
the ruggedness of the energy landscape, comparing with 
nowadays-available all-atom molecular dynamics (MD) 
simulations for folding.

Figure 1 Various	studies	with	Gō	models.	A)	One	of	the	original	two-dimensional	lattice	models	used	by	Gō.	The	figure	taken	from	[5].	B)	A	
stringent	test	of	the	assumption	in	Gō	models.	For	contact	i	and	j,	the	log	ratio	of	lifetime	in	the	transition-path tTP to lifetime in the unfolded state 
tU is plotted by color in upper-left triangle, while the native contact map is depicted in the lower-right triangle. Results for three proteins are drawn 
here.	The	figure	taken	from	[35].	C)	Comparison	of	the	root	mean	square	fluctuation	in	the	native	basin	for	a	test	protein	CheY.	Results	from	all-atom	
MD	(black	circles),	an	elastic	network	model	(GNM)	(red	curve),	and	a	Gō	model	(green	curve)	are	compared.	The	figure	taken	from	[30].	D)	A	
schematic	plot	for	the	multiple-basin	Gō	model	that	is	based	on	two	single	Gō	models.	The	picture	taken	from	[41].
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and u, such as uuuunnnnuu for a 10-residue case. The global 
native state N and unfolded state U correspond to the states 
that all the residues take n and u microstates, respectively. 
Only when both of natively interacting residues as well as all 
the residues in between take the n states, they get a certain 
stability,	which	basically	is	the	same	assumption	as	the	Gō	
model. Non-native contacts are completely ignored. As resi-
dues change from the u state to the n state, the chain loses its 
conformational entropy. Thus, as the protein folds, it gains 
energetic stability and loses its conformational entropy. 
Since the folding transition is modeled as the energy-entropy 
compensation process, the optimal folding pathways are 
determined so as to minimize the entropy loss for a given 
energy gain. Under some assumptions, free energy of micro-
states can be analytically calculated by a transfer-matrix 
approach, which is a clear advantage of this type of model-
ing,	compared	to	the	lattice	Gō	model.	This	simple	modeling	
turned out to have marked predictive power of folding tran-
sition ensembles and folding rates, when compared with 
experimental phi-value analysis and folding rates. Related 
free energy function approaches were developed by a few 
other studies, as well [2,18–20]. Conversely, this success 
strongly supports the consistency principle and the perfect 
funnel view. More recently, the Wako-Saito-Munoz-Eaton 
model and its extension have been broadly used in diverse 
folding studies [21,22].

Off-lattice Cα Gō model
While the lattice model was powerful to reveal conceptual 

aspects in protein folding, its highly restricted geometry 
precludes direct application to real protein structures. 
Especially,	low-frequency	and	collective	fluctuations	around	
the native structures cannot easily be represented by lattice 
models. In this respect, another class of minimal protein 
models,	called	the	elastic-network-model,	was	invented	first	
by Tirion in 1996 [23], and further developed by Jernigan, 
Bahar, and others [24]. The elastic network model consists 
of elastic bonds between two monomers that are spatially 
close to each other at the native structures, with the natural 
lengths of the elastic bond being the lengths at the native 
structure. Albeit its ultra-simplicity, the elastic network 
model	was	shown	to	represent	low-frequency	fluctuations	of	
proteins in the native state surprisingly well. As in the case 
of	Gō	model,	the	elastic	network	model	directly	uses	and	is	
biased towards the native structure by construction. How-
ever, because all the interactions are elastic, the elastic net-
work model cannot approximate the unfolded state at all, 
and	thus	is	not	considered	as	a	Gō	model.
The	 lattice	Gō	model	 is	 a	 concise	 realization	of	protein	

folding,	but	not	good	for	native	fluctuation	dynamics.	On	the	
other hand, the elastic network model is a simple and mini-
mal	model	to	approximate	low-frequency	native	fluctuations,	
but does not take into consideration of unfolding. Soon after 
Tirion’s	work,	Clementi,	Nymeyer,	 and	Onuchic	proposed	

ity T < Tm, where T is the physiological temperature and Tm 
is the melting temperature. The average ruggedness is cor-
related with the characteristic glass-transition temperature Tg 
for the onset of slow dynamics; thus, as the kinetic condi-
tion, T > Tg	is	to	be	satisfied.	Together,	Tg < T < Tm gives the 
foldability condition. For fast folding of proteins, the frustra-
tion at the native basin and on the route to it has to be small 
enough, which is termed the principle of minimum frustra-
tion.
While	 the	consistency	principle	of	Gō	and	 the	principle	 

of minimum frustration apparently have overlap, they also 
differ in some respects. First, the consistency principle is a 
concept stated primarily by words, while the principle of 
minimum frustration gives mathematical expressions. Sec-
ondly, the consistency principle primarily states on the 
structural aspect at the native state and thus on the thermo-
dynamic stability, in addition to the balance between the 
local	and	non-local	specificities	for	experimentally	observed	
cooperative folding-unfolding transitions. The Wolynes the-
ory	defines	the	foldability	as	the	combination	of	the	stability	
and kinetics; T < Tm from the stability and T > Tg from the 
kinetics.

Subsequent computer simulations by Onuchic and others 
pointed out importance of the network of folding pathways 
[13];	the	folding	is	fast	and	efficient	when	there	are	multiple	
parallel pathways that are linked to the native state, while it 
is slow when there is a bottleneck where only few routes 
exist. This ends up with the concept of protein folding fun-
nel; fast folding proteins have funnel-like energy landscapes 
[14]. The solvent-averaged energy of a fast-folding protein, 
on average, decreases as the protein approaches to the native 
state, which correspond to the bottom of the funnel. If the 
effective energy monotonically decreases, how does the 
folding free energy barrier arise? As the folding reaction 
proceeds, the number of available conformations, and thus 
the conformational entropy decreases, which opposes the 
folding. It is thus the energy-entropy compensation that gives 
rise to the free energy barrier along the folding reaction 
coordinate. Conformational bottleneck corresponds to a large 
conformational entropy loss, which increases the free energy 
at the bottleneck.
Gō	model	can	be	considered	as	a	concise	mean	to	realize	

the consistency principle, or the perfect funnel landscape. 
Assumed	in	Gō	model	is	that	only	natively-contacting	pairs	
(native contacts) have crucial contribution to the folding, but 
other pair interaction (non-native contacts) can be ignored.

Free energy function type Gō model
In	the	same	spirit	of	Gō	model,	Wako	and	Saito	proposed	

an Ising-like model to describe protein folding processes 
[15,16], which was, many-years later, reinvented and applied 
to many proteins by Munoz and Eaton [17]. In the model, 
each residue takes two state, n (native) and u (unfolded) so 
that a microstate of a protein is described as a sequence of n 
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this analysis provides the most convincing data to date that 
supports the native-contact centric view and thus the use of 
Gō	model.	For	each	residue	pair,	they	compared	the	lifetime	
of that contact in the transition-path and the lifetime of the 
same contact in the non-native ensemble in the trajectories 
(the transition-path stands for a fragment of MD trajectory 
that departs from the unfolded basin and reaches at the native 
state) (Fig. 1B). If the former lifetime is much longer than 
the	latter	for	a	pair,	this	indicates	the	pair	has	significant	role	
for folding. Quantifying this ratio, they found that the high 
scores are located only in the native contact pairs and their 
neighbors for all but one protein analyzed. Interestingly, one 
exception was a designed protein, of which sequence has not 
evolved naturally. For naturally-evolved proteins, not all the 
native contacts are equally resistant; the high scored regions 
correlate with the folding initiation sites. They also per-
formed	a	Bayesian	analysis	finding	similar	tendency;	native	
contacts are formed at higher probabilities in the transition- 
path than the non-native contacts. This analysis unambigu-
ously shows that, in the successful folding and unfolding 
transitions, natively formed contacts play major roles, while 
non-native	 contacts	 do	 not	 contribute	 significantly;	 thus,	 
this	directly	rationalizes	the	use	of	Gō	models	in	predicting/
revealing folding mechanisms for natural proteins. Further-
more, the Wako-Saito-Munoz-Eaton model was applied to 
the	same	set	of	proteins	as	those	simulated	with	Anton,	find-
ing highly consistent results [36].

From folding to function with Gō model
It	has	been	shown	that	off-lattice	Gō	models	are	useful	not	

only for protein folding, but also for native-state dynamic 
simulations [30,37]. Somewhat surprisingly, comparing with 
the	root-mean-square-fluctuations	(RMSF)	calculated	by	all-
atom	MD	with	 explicit	water,	 off-lattice	Gō	models	 agree	
better than the elastic network model, which indicates that 
even	 the	 native	 dynamics	 of	 proteins	 reflect	 some	 un- 
harmonic part of potentials that is linked to local unfolding 
(Fig. 1C). It was investigated that, relative to the elastic 
network model, local unfolding, or cracking, decreases the 
free energy barrier for conformational transition [38]. With a 
multiscale-calibrated	 version	 of	Gō	model,	 the	 correlation	
between	 the	RMSF	by	 the	Gō	model	and	 that	by	all-atom	
MD with explicit water was as high as the correlation 
between the RMSF by all-atom MD with implicit water and 
that with explicit water [39].

Given that the native dynamics can be well captured by 
Gō	models,	we	can	go	further	simulating	conformational	tran-
sition between two or more distinct conformations relevant 
to allosteric regulations. When two distinct conformations, 
A and B, for a target protein are available from experiments, 
we	 can	 construct	 the	 two	 respective	Gō	models	V(R|A),	
and	V(R|B),	 each	making	 funnel-like	 landscapes	 centered	
around A and B basins, respectively, where the vector R col-
lectively represents all the particle coordinates. If we think 

an	off-lattice	Gō	model	that	resulted	in	taking	advantage	of	
the two minimal models; the model represents a protein as a 
chain	of	Cα	atoms	of	every	amino	acids	and	that	has	both	
local angle and non-local contact potentials biased towards 
the native structure. In the low temperature limit, the model 
converges to the elastic network model, whereas the protein 
unfolds cooperatively at a higher temperature. They applied 
this	off-lattice	Cα	Gō	model	to	small	fast-folding	proteins,	
directly comparing the folding pathways with experiments 
[25]. Several subsequent works together showed its predic-
tive power for folding reaction mechanisms [26,27].
As	is	clear	by	now,	“Gō	model”	does	not	mean	a	single	

model, but represents a class of models that share the con-
cept	 in	 the	 original	work	 by	Gō.	Although	 no	 one	 clearly	
defined	 it,	 in	 practice,	Gō	models	 share	 the	 two	 concepts.	 
1) They represent folding-unfolding transitions and 2) take 
into accounts pairwise contact energies only for the pairs 
that	are	in	contact	in	the	native	structure.	The	Gō	model	is	
often called “structure-based model” as well since the energy 
function is explicitly dependent on the native structure. 
While the two names are used as synonym, they can be 
slightly different; e.g., the elastic network model of Tirion is 
clearly	 a	 structure-based	 model,	 but	 is	 not	 a	 sort	 of	 Gō	
model.
The	first	version	of	off-lattice	Cα	Gō	model	by	Clementi,	

C., et al. is a minimal and concise model so that there is 
room to add some more details. Karanicolas and Brooks 
added sequence-dependent local terms, chemically-motivated 
energy scales for the contact energies, and a desolvation 
potential in non-local contacts, improving predictive power 
of folding transitions and pathways [28]. A similar desolva-
tion energy was addressed by Kaya and Chan, as well [29]. 
Multiscale	algorithms	were	utilized	to	reflect	more	sequence-	
and	structure-specific	interaction	at	atomic	level	within	Cα	
Gō	 model	 [30,31].	 Furthermore,	 the	 chemical	 denaturant	
effect	was	incorporated	into	an	off-lattice	Gō	model	[32].

Testing Gō model assumption via all-atom molecular 
simulations

A special-purpose supercomputer Anton and the associ-
ated MD software Desmond were used to simulate long-time 
folding dynamics of small proteins with an all-atom force-
field	and	explicit	water	solvent,	which	successfully	realized	
reversible folding and unfolding for more than 10 proteins 
[33,34]. They observed in the trajectories that, whereas non- 
native secondary structures do form in the unfolded state 
ensemble for some proteins, they are transient and disappear 
either before initiation of folding events or early during the 
folding. This implies that these non-native contacts do not 
contribute much to the folding mechanisms, supporting the 
assumption	behind	Gō	models.

Soon after this all-atom folding simulations, these trajec-
tories were further analyzed from the perspective of folding 
mechanisms by Best, Hummer, and Eaton [35]. Probably, 
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structure B, which can be thought as a proxy to the confor-
mational change. It should be noted that the sudden switch 
of potential places the protein at quite a high energy state in 
the new potential surface so that the initial part of the relax-
ation process tends to contain more artefacts. This “switch-
ing	 Gō	 model”	 was	 applied	 to	 a	 rotary	 molecular	 motor,	
F1-ATPase [50], molecular chaperone [51], and, more 
recently, for ATP-dependent chromatin remodeler [52].

Integrating with physical model
While	the	Gō	model	represents	an	ideal	protein	encoding	

the prefect funnel picture, real proteins do have some non- 
ideality. Functional restraints give rise to frustrations that are 
enriched near active sites as well as allosteric sites [30,53]. 
To model non-ideality on top of the funnel picture, it has 
been	 devised	 to	 integrate	 the	 Gō	 type	 bias	 with	 purely	
sequence-based and physico-chemical potentials. It should 
be	noted	that	earlier	off-lattice	Cα	Gō	models	such	as	[28]	
already took into account the sequence-based interaction to 
some extent. More thorough sequence-based interactions, 
i.e., non-native contact interactions, were also incorporated 
into	Gō	type	modeling;	for	example,	the	AWSEM	provides	a	
spectrum of models from a purely sequence-based model for 
protein	structure	prediction	to	a	Gō	type	model	representing	
the perfect funnel landscape [54,55].
Within	Cα	models,	one	can	approximate	backbone	hydro-

gen bonds and sidechain interactions using orientation- 
dependent potential functions. Hoang, T. X., et al. proposed 
to	 use	 three	 consecutive	Cα	 positions	 to	 calculate	 orien-
tations of backbone amide- and carbonyl- groups of the  
central residue so that the orientation-dependent backbone 
hydrogen	 bonds	 can	 be	 modeled	 as	 a	 function	 of	 6	 Cα	
coordi nates, which was carefully calibrated later [56,57]. A 
similar approach was further developed to model the side-
chain	orientation	in	terms	of	three	consecutive	Cα	positions	
[58,59]. This type of modeling is particularly useful to model 
intrinsically	 disorder	 proteins/regions	 that	 lack	 the	 native	
structure, as well as amyloid like higher-order structures. 
While these physico- chemical interactions alone cannot spe-
cific	enough	to	fold	a	globular	protein	purely	from	sequence	
information,	one	can	combine	 it	with	Gō	type	bias,	when-
ever necessary.

Further spreading and future directions
While	Gō	models	have	originally	been	developed	for	and	

applied to proteins, one can extend the same idea to other 
macromolecules. The RNA folding and functional dynamics 
have	been	studied	by	some	Gō	models	together	with	physico-	
chemical	 interactions	 [60–62].	 For	 DNA,	 Gō	 type	 biases	
have been added to more physico-chemical interactions to 
stabilize B-type duplex form [63] although this bias was 
much	weakened	in	more	recent	modeling.	Notably,	Gō	type	
model has never been used for lipid, to my knowledge; lipid 

of V(R) = Min (V(R|A),	V(R|B)),	this	potential	V(R) encodes 
two basins A and B in its energy landscape (Fig. 1D). To  
use it in MD simulations, we need to make it differentiable. 
There can be multiple means to do it. Best and Hummer 
proposed the so-called soft-min function, represented as  
a combination of logarithmic and exponential functions, 
describing conformational change of a protein [40]. Okazaki, 
K., et al. used the secular equation formalism for the purpose 
[41].	Notably,	 these	multiple-Gō	model	 formalisms	 create	
two basins in the global energy landscape, but do not make 
intermediate states between two conformations. As an oppo-
site limit of cooperativity, one can put two local minima in 
every pair contact potentials, corresponding to the pair dis-
tances in conformations A and B [42,43]. While this formal-
ism also encodes two basins A and B, it also allows to 
 possess multiple intermediate states between two endpoint 
configurations.	This	locally	multiple	Gō	contact	formalism	
is useful to investigate detailed pathways for conformational 
change. There can be ways to put a cooperativity in between 
these	two	limits:	One	can	use	the	global	multiple-Gō	model-
ing for certain fragments of a protein [44,45]. Alternatively, 
one can design an arbitrary range of cooperativity in the 
conformational transition [46].

With the framework of constructing multiple-basins in 
hand, one can treat the ligand binding dynamic process in a 
few different manners. For a minimal modeling of confor-
mational transition dynamics, one may simply change the 
relative free energy between two basins mimicking the 
ligand binding [47]. As a second level, one can introduce an 
implicit ligand binding interaction potential which effec-
tively stabilizes the residues neighboring the ligand. Then, 
the ligand binding and unbinding is mimicked by truing on 
and off of this implicit ligand binding potential. This turning 
on and off process can be realized by Monte Carlo process, 
thus	 making	 the	 entire	 simulation	 as	 the	 hybrid-MC/MD	
simulation. Namely, the ligand binding and unbinding, or 
even chemical reactions, can be treated by MC, whereas 
protein conformational motions are treated by MD [48].  
This scheme has been applied to modeling whole enzymatic 
dynamics of adenylate kinase as well as FO part of F-type 
ATP synthase [44,49]. As a third and more microscopic view, 
one can treat ligand as an explicit molecule represented by  
a few beads [42].

To mimic an entire cycle of conformational transition for 
huge molecular complexes, such as molecular machines, 
one may favor even a simpler approach; sudden switch of 
the	reference	(native)	structures	in	Gō	models.	For	example,	
a protein may have an open conformation A in the apo state 
and a closed conformation B in the ligand-bound state.  
For mimicking the ligand-binding induced conformational 
change,	 during	 a	MD	 simulation	with	 a	Gō	model	 based	 
on the A structure, one can suddenly (or gradually) switch 
the	 potential	 surface	 to	 a	 new	Gō	model	 based	 on	 the	B	
structure. After the sudden (or gradual) switch, the protein 
conformation smoothly relaxes from the A basin to the new 
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interface to run MD with GROMACS, somewhat similar to 
SMOG [75]. The CafeMol is a standalone software that 
implements	a	simple	as	well	as	a	fine-tuned	version	of	Cα	
Gō	models,	a	multiple-basin	Gō	model,	a	RNA	Gō	model,	
together with an experiment-based coarse-grained DNA 
model and protein-DNA interactions [37]. The AWSEM-MD 
package offers a broad range of models from a purely 
physico- chemical and sequence-based interaction model, in 
one	 limit,	 to	 a	Gō	model	 in	 the	other	 limit	 [55].	 It	 uses	 a	
three-beads-per-amino-acid resolution. The AWSEM-MD 
produces an interface to run MD with the LAMMPS MD 
suite.
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