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Summary

Annexins are traditionally thought of as calcium-dependent phospholipid-binding proteins, but
recent work suggests a more complex set of functions. More than a thousand proteins of the
annexin superfamily have been identified in major eukaryotic phyla, but annexins are absent from
yeasts and prokaryotes. The unique annexin core domain is made up of four similar repeats
approximately 70 amino acids long, each of which usually contains a characteristic ‘type 2’ motif
for binding calcium ions. Animal and fungal annexins also have non-homologous amino-terminal
domains of varying length and sequence, which are responsible for the distinct localizations and
specialized functions of the proteins through post-translational modification and binding to
other proteins. Annexins interact with various cell-membrane components that are involved in
the structural organization of the cell, intracellular signaling by enzyme modulation and ion
fluxes, growth control, and they can act as atypical calcium channels. Analysis of site-specific
conservation in the core domain suggests a role for certain buried residues in the calcium-
channel activity of vertebrate annexins and in the structural stability of their core domains.
Evolutionarily significant differences between subfamilies are preferentially localized to
accessible sites on the protein surface that determine membrane binding and interactions with
cytosolic proteins. 
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Gene organization and evolutionary history 
Annexins were discovered approximately 25 years ago. The

first to be described as an isolated, purified protein was

human annexin A7 (then known as synexin) [1], and the first

to be cloned were human annexins A1 and A2 (formerly

known as lipocortin and calpactin respectively) [2,3]. The

name ‘annexin’ was proposed for the superfamily in 1990,

and the 12 annexins common to vertebrates were recently

classified in the annexin A family and named as annexins

A1-A13 (or ANXA1-ANXA13), leaving A12 unassigned in the

official nomenclature [4]. Annexins outside vertebrates are

classified into families B (in invertebrates), C (in fungi and

some groups of unicellular eukaryotes), D (in plants), and E

(in protists); at least 40 additional subfamilies await formal

classification into these families. 

Most eukaryotic species have 1-20 annexin (ANX) genes

(Table 1, Figure 1); even the primitive unicellular protist

Giardia has at least seven (which are in the annexin E family)

[5,6]. The annexin genes have duplicated extensively and

independently in several eukaryotic lineages, as seen from

their molecular phylogeny, their gene structures and their

chromosomal positions. Plant annexins (the D family) make

up a monophyletic cluster whose members generally lack

amino-terminal domains and functional calcium-binding

sites in their second and third repeats [7] (see below). They

originated approximately 1,000 million years ago from the

one to three founding members in mosses, ferns and gymno-

sperms. Up to 17 additional gene subfamilies have emerged in

flowering angiosperms as a result of gene or genome dupli-

cation events, accruing additional annexins in individual



lineages (for example, one more in lilies and ten more in the

barrel medic). The eight and nine annexin genes in the com-

plete genomes of Arabidopsis and rice, respectively, include

only two true orthologs; the rest are products of lineage-

specific duplications after the separation of dicotyledonous and

monocotyledonous plants about 200-250 million years ago.

The annexin C family consists of diverse members in unicellular

organisms, represented by fungi, mycetozoa (slime molds) and

the newly defined kingdom of chromalveolates (a grouping of

chromist stramenopiles, including brown algae and diatoms,

and alveolates, including ciliates and dinoflagellates). Individ-

ual species in these groups may have no annexins (yeasts), one

to three (other fungi), or up to six (potato rot). Members of the

annexin B family, found in both protostome and deuterostome

invertebrates, have also undergone many lineage-specific

duplications, leading to more than 20 subfamilies whose gene

organization, protein structures and chromosomal maps differ

between clades and from vertebrate annexins. Insect annexins

exemplify the complex pattern of duplication and loss in indi-

vidual lineages: tsetse flies and mosquitoes have four annex-

ins, whereas Drosophila, honeybees and silkmoths have only

three, of which only one or two are clear orthologs between

species. The early-branching deuterostomes - sea urchins,

tunicates and lancelets - have 5-12 annexins; these include

close relatives of annexins A13, A7 and A11, the founder genes

of vertebrate annexins [8,9]. Although this establishes the

invertebrate ancestry of vertebrate annexins, none of the 12

annexins in the vertebrate A family have (yet) been assigned a

true invertebrate ortholog.

The vertebrate A family includes the 12 annexins that have

been confirmed to make up the complete family in

mammals, but the number of annexins may vary in other

classes of vertebrates as genes have been gained and lost.

Ancient polyploidization events in bony fish, and more

recent genome duplications in pseudotetraploid frogs

(Xenopus), have duplicated many of the annexin genes.

Thus, annexin A1 has undergone two successive duplications

to yield up to four copies in some fish, amphibians and birds.

Mammalian ANXA6 is a compound gene, probably derived

from the fusion of duplicated ANXA5 and ANXA10 genes in

early vertebrate evolution (the two halves of the encoded

protein are indicated as 5�ANX6 and 3�ANX6 in Figure 1).

Annexins A7, A8 and A10 have not yet been detected in fish,

although genes similar to annexin A7 have been found in

earlier-diverging species such as the sea urchin, the earth-

worm and Hydra. The reasons for the tendency of annexin

genes (or their chromosomal regions) to duplicate, their suc-

cessful preservation, and the extent to which they contribute

to vertebrate complexity are as yet unknown.

The 12 human annexin genes range in size from 15 kb

(ANXA9) to 96 kb (ANXA10) and are dispersed throughout

the genome on chromosomes 1, 2, 4, 5, 8, 9, 10 and 15 [10].

Annexin genes from other vertebrates may vary slightly in

size and chromosomal linkage, but orthologs are grossly

similar in their sequence and splicing patterns (Figure 2a). 

Characteristic structural features 
All annexins share a core domain made up of four similar

repeats, each approximately 70 amino acids long. Each
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Table 1 

Annexin genes in different groups of organisms

Group Number of genes

Vertebrates 
Primates 12
Mammals 12
Birds 10
Amphibians
Western clawed frog 13
African clawed frog 19

Teleost fish
Pufferfish 15 
Zebrafish 21

Cartilaginous fish >1

Invertebrates 
Deuterostomes
Urchins 10 
Tunicates 5
Lancelets 3

Protostomes
Molluscs 6
Crustacea 2 
Insects 4
Roundworms 4-5
Flatworms 9
Cnidaria (Hydra) 4

Mycetozoa
Dictyostelium 2

Fungi 
Ascomycetes-Perizomycotina 3 
Yeasts 0
Basidiomycetes (mushrooms, rusts) 3 

Stramenopiles 
Diatoms 3
Moulds 6

Alveolates 
Ciliates 3

Plants
Angiosperms
Dicots
Rosids 8-13
Asterids 7
Caryophyllales 5

Monocots 10
Amborella, lilies 4
Gymnosperms (cycads, gingkoes, conifers) 3
Ferns 2
Mosses 3

Protists
Diplomonads (Giardia) ~7

Numbers given have been confirmed by sequence data; they are final only
for completed genomes of certain mammals (human and mouse), insects
(Drosophila) and roundworms (C. elegans).



repeat is made up of five � helices and usually contains a

characteristic ‘type 2’ motif for binding calcium ions with the

sequence ‘GxGT-[38 residues]-D/E’ (in the single-letter

amino-acid code; see Figure 2b). Animal and fungal annex-

ins also have variable amino-terminal domains.

Amino-acid site conservation in a sequence alignment of

vertebrate annexins can be analyzed statistically using

hidden Markov models [11,12] to generate a signature logo

[13,14] (Figure 2c). The levels of conservation and the fre-

quency of amino acids at each site reflect both evolutionary

selection on the site and its functional importance. The simi-

larity in sequence between individual repeats (especially

repeats 2 and 4) is evident. The calcium-binding motif is

most conserved in repeat 2; in annexin A10, the motif in

repeat 2 is the only such motif. The exon splice patterns and

alternating intron phases in annexin genes do not corre-

spond to domains within the proteins, a feature that has

effectively precluded exon shuffling. The high level of con-

servation of features such as the four carboxy-terminal

repeats contrasts with unique amino termini in different

annexins, and there are also smaller differences between

them in specific parts of the proteins (Figure 3). Annexins

bind to a wide variety of other proteins (Table 2). Many

annexins have posttranslational modifications, such as phos-

phorylation and myristoylation (Figure 3); such modifica-

tions and surface remodeling of individual members

presumably account for much of the subfamily specificity in

annexin interactions. An intriguing, recurring connection

between annexins and structural proteins, such as actin, is

suggested by genetic anomalies such as the fusion in

Drosophila of an annexin gene with a dynein intermediate-

chain gene [15] and in Ciona intestinalis of a gene similar

(on the basis of its exon-splicing pattern) to ANXA11 with an

intermediate-filament gene [16,17]. 

The core domains of most vertebrate annexins have been

analyzed by X-ray crystallography, revealing conservation

of their secondary and tertiary structures [18-20] despite

only 45-55% amino-acid identity among individual

members. Each annexin repeat is folded into five � helices

(Figure 2b,c), and these in turn are wound into a right-

handed super-helix. The four repeats pack into a structure

that resembles a flattened disc, with a slightly convex

surface on which the Ca2+-binding loops are located and a

concave surface at which the amino and carboxyl termini

come into close apposition (Figure 4). An innovative and

powerful approach to associating protein structural

domains with intrinsic function or functional divergence

involves the incorporation of evolutionary information into

three-dimensional models [21-23]. The family sequence

logo defines universally conserved sites (Figure 2), which

can be mapped as a color or shading scheme onto the

surface-exposed atoms of a crystallographic model [24] to

reveal localized domains of probable relevance to the basic

function of the protein (Figure 4a). A more complicated

problem in the study of large protein families is the deter-

mination of which structural differences are responsible for

functional specificity in each subfamily. Because functional

constraint guides evolutionary selection, the sites that

change in an evolutionarily significant way can be inferred

to be responsible for functional divergence. Thus, shifts in

site-specific evolutionary rates during speciation (computed

from site variations in multiple sequence alignments

derived from a broad range of species) or a conserved

change in an amino-acid property at a critical location may

consolidate a functional change at that site. We present

such a comparative analysis of annexins A1, A2 and A5

(Figure 4b) to identify the sites at which each differs

significantly from other annexins and which, in terms of
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Figure 1
The phylogenetic distribution of annexins. A tree showing the
classification of annexins into five families, ANXA to ANXE, which
correspond with different eukaryotic lineages that originated at different
periods over the past 1,200 million years (Mya, million years ago). Names
of the vertebrate annexins are shown, but those of other members of the
superfamily are omitted for simplicity. 
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Figure 2
Gene structures, protein domains and signature logos of vertebrate annexins. (a) The organization of the regions of family-A annexin genes encoding the core
carboxy-terminal region. Exon numbers are shown above each gene; introns are indicated by vertical lines and homologous intron positions by dotted lines.
The structures of the nine human annexin genes not shown are the same as that of ANXA11. ANXA13 is thought to have the gene structure closest to the
ancestral vertebrate annexin gene; ANXA7 is intermediate between ANXA13 and the others, and most closely resembles ANXA11 in its amino-terminal half and
ANXA13 in its carboxy-terminal half. (b) Annexin proteins generally consist of a unique amino-terminal region (of 0-191 amino acids in vertebrates, for
example) and a carboxy-terminal ‘core region’ of four homologous repeats, each 68-69 amino acids long and containing five � helices and a type-2 calcium
binding site with the sequence GxGT-[38 residues]-D/E. The indicated residues Glu89 and Arg265 are considered key components of the putative calcium
channel function. (c) Sequence logo for the core domain of vertebrate annexins, derived from a hidden Markov model [11] generated from an alignment of
311 amino acids from 200 sequences representing the 12 subfamilies in 50 vertebrate species. The full height of each residue stack reflects the conservation
level at that position; the height of symbols within the stack indicates the relative frequency of each amino acid [12]. The two parts of the calcium-binding motif
(GxGT and D/E) are indicated by asterisks. The four repeats are aligned to the right on their calcium-binding motifs.
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evolutionary dynamics, may indicate a key structure-function

adaptation. For example, annexin A2 orthologs incorporate

additional basic residues into a group of amino acids (posi-

tions 48-56) that is accessible on the concave (cytosolic) face

of the molecule (Figure 4b). The functional significance of

this divergence is consistent with a possible nuclear-local-

ization signal in annexin A2, although any such hypothesis

requires empirical testing. An extreme case of adaptive evo-

lution is that of annexin A9, an ancient duplicated relative

of annexin A2, in which all four calcium-binding sites on

the convex surface have been eradicated by evolutionary

selection. Comparable divergence patterns in annexins A1

and A5, which are in distinct evolutionary clades of the A-

family annexins, reveal patterns of structural divergence

between subfamilies that localize principally to sites

exposed on the protein surface that are most likely to be

involved in intermolecular interactions, such as the KGD

motif that is an inherited characteristic of the clade contain-

ing annexins A1, A2, and A9. These contrast with the uni-

versally conserved sites common to all annexins, which are

confined to the central, interior portion of the molecule

(Figure 4a). This approach, involving differentiation

between universally conserved sites (important for the

general function of a family) and discrete rate changes

(which affect binding to other proteins and which may be

responsible for the properties of individual annexins) may

eventually help to resolve the molecular basis for the multi-

faceted functional profiles of individual annexin proteins. 

Localization and function
Annexins are generally cytosolic proteins, with pools of both a

soluble form and a form stably or reversibly associated with

components of the cytoskeleton or proteins that mediate inter-

actions between the cell and the extracellular matrix (matricel-

lular proteins). Some, such as annexins A11 and A2, have been

found in the nucleus under particular circumstances [25,26]. In

certain instances, annexins may be expressed at the cell

surface, despite the absence of any secretory signal peptide; for

example, annexin A1 translocates from the cytosol to the cell

surface following exposure of cells to glucocorticoids [27], and

annexin A2 is constitutively expressed at the surface of vascular

endothelial cells where it functions in the regulation of blood

clotting [28]. The expression level and tissue distribution of

annexins span a broad range, from abundant and ubiquitous

(annexins A1, A2, A4, A5, A6, A7, A11) to selective (such as

annexin A3 in neutrophils and annexin A8 in the placenta and

skin) or restrictive (such as annexin A9 in the tongue, annexin

A10 in the stomach and annexin A13 in the small intestine). 

The presence of multiple annexins in all higher eukaryotic cell

types suggests fundamental roles in cell biology [5], even

though prokaryotes and yeasts appear to tolerate their

absence, but the apparent functional diversity within the

family remains perplexing. The development of knockout mice

has provided insight into the functions of annexins A1, A2, A5,

A6 and A7. Loss of ANXA1 leads to changes in the inflam-

matory response and the effects of glucocorticoids [29],

whereas the ANXA2 knockout mouse has defects in neovascu-

larization and fibrin homeostasis [30]. The ANXA5 and

ANXA6 knockout mice have subtler phenotypes and need

further investigation [31,32], and two independently derived

ANXA7 null mutant mouse strains are either embryonic lethal

[33] or show changes in calcium homeostasis [34]. The

diversity of phenotype in the annexin knockout mice is

consistent with these proteins having largely independent

functions. Roles for annexins that have been established from

studies using cultured cells are not always reflected in pheno-

typic abnormalities in the corresponding knockout mice,

suggesting that functional redundancy may, in some instances,

obscure the full range of functions of these multifunctional

proteins. In mice that lack an overt phenotype, there is now the

opportunity to test molecular theories of annexin function,

such as the proposed calcium channel activity of annexin A5.

Frontiers 
The definition of the biological processes in which annexins

are involved has progressed through the use of gene knock-

outs and imaging. On the basis of studies using live cell

imaging and targeted gene disruption, roles have now been

unequivocally established for annexin A1 in inflammation,

annexin A2 in vesicle traffic and annexin A7 in regulation of
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Table 2

Proteins that interact with vertebrate annexins

Annexin Interacting proteins

ANXA1 Epithelial growth factor receptor, formyl peptide receptor,
selectin, actin, integrin A4

ANXA2 Tissue plasminogen activator, angiostatin, insulin receptors, 
tenascin C, caveolin 1

ANXA3 None known

ANXA4 Lectins, glycoprotein 2

ANXA5 Collagen type 2, vascular endothelial growth factor 
receptor2, integrin B5, protein kinase C, cellular 
modulator of immune recognition (MIR), G-actin, helicase, 
DNA (cytosine-5-)methyltransferase 1 (DNMT1)

ANXA6 Calcium-responsive heat stable protein-28 (CRHSP-28), ras 
GTPase activating protein, chondroitin, actin

ANXA7 Sorcin, galectin

ANXA8 None known

ANXA9 None known

ANXA10 None known

ANXA11 Programmed cell death 6 (PDCD6), sorcin

ANXA13 Neural precursor cell expressed, developmentally down-
regulated 4 (NEDD4)



cell growth. The ubiquity and stability of annexins suggest

some fundamental role of the unique core domain in cellular

physiology, possibly involving adhesion mechanics, membrane

traffic, signal transduction and/or developmental processes.

To the extent that annexins may have adapted to the particular

needs of their host species, molecular-evolution studies offer

some insight into which structural changes may be responsi-

ble for their functional diversity, but biological data remain

scant for nonvertebrate annexins. Transcript expression

studies using microarrays and RNA interference offer new
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Figure 3 
Domain structures of representative annexin proteins. Orthologs of the 12 human annexins shown in other vertebrates have the same structures, with
strict conservation of the four repeats in the core region (black) and variation in length and sequence in the amino-terminal regions (shaded). Human
ANXA1 and ANXA2 are shown as dimers, with the member of the S100 protein family that they interact with. Domain structures for other model
organisms are derived from public data made available by the relevant genome-sequencing projects. Features: S100Ax, sites for attachment of the
indicated member of the S100 family of calcium-binding proteins; P, known phosphorylation sites; K, KGD synapomorphy (a conserved, inherited
characteristic of proteins); I, codon insertions (+x denotes the number of codons inserted); S-A/b, nonsynonymous coding polymorphisms (SNPs) with
the amino acid in the major variant (A) and that in the minor variant (b); N, putative nucleotide-binding sites; D, codon deletions (-x denotes the number
of codons deleted); A, alternatively spliced exons; Myr, myristoylation. The total length of each protein is indicated on the right. 
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experimental approaches that could implicate annexins in

some defined cellular process or pathway. 

Long-standing problems also remain to be addressed. Do

individual annexins have different functions in different cell

types? How are annexins secreted? Can annexins be classi-

fied into groups with integrated functions, or are they func-

tionally independent of each other? These and many other

questions, and perhaps most importantly the need to under-

stand mechanism, will occupy annexin biologists for years to

come. The discovery of annexins with negligible calcium-

binding capacity and growing evidence for interactions with

other proteins may make the traditional definition of annexins

as calcium-dependent phospholipid-binding proteins super-

fluous in the near future.
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Figure 4
Surface mapping of important sites onto the three-dimensional structure of annexins. All panels show the crystal structure of the core region of the pig
annexin A1 protein (Protein Data Bank code:1MCX [19]), viewed frontally (left) and laterally inverted (right) as a space-filling model rendered by the
RasTop 2.0 version of RasMol [24]. Residues are numbered as in Figure 2, and the approximate positions of the conserved repeats are indicated with
Roman numerals. (a) Functionally important sites common to all annexins. The level of evolutionary conservation in clusters of residues is indicated by
lighter or darker shading. This is derived from a maximum-likelihood analysis of a multiple sequence alignment from 200 vertebrate A-family annexins
using CONSURF [22,23]. NT, amino terminus. (b) Sites that are functionally divergent between annexin subfamilies are shown with different shading for
ANXA1, ANXA2 or ANXA5, three annexins for which the differences are especially significant. The sites were assessed by ‘rate-shift analysis’ of
subfamily sequence alignments using DIVERGE [21] RATE4SITE and CONSURF [22,23]. Calcium atoms are indicated by Ca.
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