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Nanotechnology has become a very advanced and popular form of technology with huge
potentials. Nanotechnology has been very well explored in the fields of electronics,
automobiles, construction, medicine, and cosmetics, but the exploration of
nanotecnology’s use in agriculture is still limited. Due to climate change, each year around
40% of crops face abiotic and biotic stress; with the global demand for food increasing,
nanotechnology is seen as the best method to mitigate challenges in disease management in
crops by reducing the use of chemical inputs such as herbicides, pesticides, and fungicides.
The use of these toxic chemicals is potentially harmful to humans and the environment.
Therefore, using NPs as fungicides/ bactericides or as nanofertilizers, due to their small size
and high surface areawith high reactivity, reduces the problems in plant diseasemanagement.
There are several methods that have been used to synthesize NPs, such as physical and
chemical methods. Specially, we need ecofriendly and nontoxic methods for the synthesis of
NPs. Some biological organisms like plants, algae, yeast, bacteria, actinomycetes, and fungi
have emerged as superlative candidates for the biological synthesis of NPs (also considered as
green synthesis). Among these biological methods, endophytic microorganisms have been
widely used to synthesize NPs with low metallic ions, which opens a new possibility on the
edge of biological nanotechnology. In this review, wewill have discussed the different methods
of synthesis of NPs, such as top-down, bottom-up, and green synthesis (specially including
endophytic microorganisms) methods, their mechanisms, different forms of NPs, such as
magnesium oxide nanoparticles (MgO-NPs), copper nanoparticles (Cu-NPs), chitosan
nanoparticles (CS-NPs), β-d-glucan nanoparticles (GNPs), and engineered nanoparticles
(quantum dots, metalloids, nonmetals, carbon nanomaterials, dendrimers, and liposomes),
and their molecular approaches in various aspects. At the molecular level, nanoparticles, such
as mesoporous silica nanoparticles (MSN) and RNA-interference molecules, can also be used
as molecular tools to carry genetic material during genetic engineering of plants. In plant
disease management, NPs can be used as biosensors to diagnose the disease.
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INTRODUCTION

In recent years, nanomaterials have emerged as a novel type of
material (Tayo, 2017; Hu et al., 2020). Nanotechnology is the
latest technology with options for utilization in different fields
like biology, sensing, medicine, chemistry and physics
(Ramalingam et al., 2014; Ramalingam, 2019). Due to having
various shapes and structures such as nanorods, nanospheres,
nanocubes, nanobipyramids, nanobranches, nanoflowers,
nanowires, nanocages, and nanoshells, nanomaterials appeared
as the most stable materials (Li et al., 2015; Ramalingam et al.,
2019; Xiao et al., 2019; Barupal et al., 2020a; Barupal et al., 2020b).
Nanomaterials have unique electrical and optical properties that
can be synthesized by different ways at low cost and have wide
applications in several interdisciplinary branches of science
(Gurav et al., 2019; Khan I. et al., 2019). Nano (dwarf) is the
greek prefix which refers to the very small which in terms of
nanoparticles, can refer to sizes up to 10–9 m i.e., one thousand
millionth of a meter (Bayda et al., 2020; Chandran et al., 2020a;
Chandran et al., 2020b). Nanotechnology belongs to the
nanoscience in which nano-size molecules (1–100 nm) are
utilized through practical applications using devices (Kumar
and Kumbhat, 2016; Bayda et al., 2020). The term
“nanotechnology” was first given by Taniguchi in 1974 to
describe that which deals with the synthesis and application of
nano-size particles (100 nm) (Filipponi, et al., 2010; Khan and
Rizivi, 2014; El-Sayed and Kamel, 2020). According to theNational
Nanotechnology Initiative (NNI) United States, Nanotechnology is
defined as a field of science, engineering, and technology where
materials are practicised at the nanoscale size (1–100 nm), using

unique phenomena in a wide range of biology, physics, chemistry,
medicine, electronics and engineering fields (Chen et al., 2007; Lu
et al., 2012; Kumari et al., 2018a; Kumari et al., 2018b). The most
important properties of these nanoparticles (NPs) are their size
which canmanipulate the physiochemical and optical properties of a
particular substance (Meena et al., 2015; Khan M. R. et al., 2019).

Different NPs, such as gold (Au), silver (Ag), nickel (Ni),
platinum (Pt), titanium (Ti), zinc (Zn), and palladiumn (Pd) are
synthesized in various shapes and colors for the delivery of
chemical, biological sensing, bioimaging (Dreaden et al., 2012;
Bareket et al., 2016; Islam et al., 2018; Yew et al., 2020; Figure 1),
gas sensing (Mansha et al., 2016; Ullah et al., 2017; Zhang H. et al.,
2019), capturing of CO2 (Ramacharyulu et al., 2015; Ganesh et al.,
2017), and other related applications. NPs are composed of three
layers. The first layer known as surface layer which is composed of
various types of small molecules, surfactants, metal ions, and
polymers which functionalized the NPs. The second layer consists
of as a shell layer, composed of different chemical materials as
compared to the core. The core is the central part of the NP and
generally refers to the NP itself (Shin et al., 2016; Heinz et al.,
2017). Due to such remarkable characteristics, these materials
gained considerable interest from researchers in multi-
disciplinary areas. Mesoporousity imparts additional
characteristics to NPs (Khan I. et al., 2019). In this review
article, we provided a common overview related to NPs such
as their different types, methods for synthesis, characterizations,
properties, and their applications. The green synthesis of
nanoparticles, specifically endophytic microorganism
associated synthesis is a more beneficial method as compared
to other physical and chemical methods such as top-down and

FIGURE 1 | Various roles of nanoparticles.
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bottom up methods, due to it being ecofriendly and cost-effective
with significant morphology and size (Messaoudi and Bendahou,
2020). Micoorganism mediated synthesis of NPs is a challenging
green process to manufacture NPs (Grasso et al., 2020). NPs are
produced by microorganisms either through intracellular or
extracellular process based on the location of enzymatic
activity involved (Messaoudi and Bendahou, 2020). Microbial-
mediated NPs synthesis showed advantage over the biosynthesis
of NPs by algae and plants (Rana et al., 2020). Endophytic
methods earned more attention in the field of medical,
pharmaceuticals, environmental and agronomical applications
(Gour and Jain, 2019; Rana et al., 2020). The last section of this
review is used to discuss the future aspects and recommendations
of NPs.

Classification of Nanoparticles
Recently, various categories of NPs and their derivatives have
been reported to have effective antimicrobial properties on the
basis of their size, morphology and chemical properties. These
derivatives of NPs can be Au, Ag, Cu, Ni, Pt, Ti, and Zn. Well-
known classes of NPs have been described below on the basis of
their physical and chemical characteristics.

Organic Nanoparticles
Organic NPs are solid particles ranging between 10 nm to 1 μm in
diameter and consist of organic compounds like polymeric or
lipids (Kumar and Lal, 2014). Organic NPs received little
attention as compared to inorganic NPs. In recent years, the
pharmaceutical industries led the research into the synthesis of
organic NPs. The search for nano-medicine developed well-
established techniques to synthesize novel materials. They have
an affinity for encapsulating or carrying active molecules as
conjugates of proteins, vehicles for DNA delivery, liposomes,
and co-polymer micelles (Ulbrich et al., 2016). Organic
compounds are inherently and ultimately slow soluble in
water or aqueous environments as compared to their
inorganic counterparts, but organic NPs will not remain in the
environment for a long period which makes them
environmentally friendly (Yu et al., 2018). There are some
well-known organic NPs that have been reported, such as
dendrimers, micelles, liposomes, and ferritin, that showed
some characteristics properties such as non-toxicity and
biodegradability (Lee et al., 2012). Micelles and liposomes have
a hollow core, also known as nanocapsules, and are considered as
more sensitive to thermal and electromagnetic radiation such as
heat and light (Ealias and Saravanakumar, 2017). Therefore, these
unique characteristics make them an ideal alternative for drug
delivery. The drug-carrying capacity, stability and delivery
systems of organic NPs, either in the form of entrapped drugs
or adsorbed drugs system determines their field applications and
their effectiveness (Ealias and Saravanakumar, 2017; Meena et al.,
2020a; Meena et al., 2020b). Organic NPs are also most widely
used in the biomedical field (Yang et al., 2019).

Carbon Nanomaterials
Carbon nanomaterials vary in shape, size, and function. There are
three categories of carbon nanomaterials that are recognized:

carbon nanotubes, graphene oxides, and fullerenes. The wall of
carbon nanotubes can be single or multi, whereas graphene
oxides and fullerenes are oxidized/reduced and C60
(buckyballs), respectively. Carbon nanomaterials are used in
textiles engineering and medicines fields due to having
antimicrobial activities against bacteria (Liu et al., 2009; Wang
et al., 2013) and fungi (Sarlak et al., 2014; Wang X. et al., 2014),
and also have been demonstrated and investigated as plant
growth enhancers (Khodakovskaya et al., 2009; Tripathi et al.,
2011; Wang et al., 2012; Elmer and White, 2018). Recently, it has
been illustrated that carbon nanomaterials play a significant role
in plant pathology. The reduced form of graphene oxide decreases
50% radial growth of Aspergillus oryzae, Aspergillus niger, and
Fusarium oxysporum on agar plate at different concentration
(100, 50, and 100 μg/ml) of graphene oxide. Single-walled carbon
nanotubes were found to be more toxic to conidia of Fusarium
poae and Fusarium graminearum (Wang X. et al., 2014).
Nowadays, carbon nanotubes are explored as a phytosanitary
treatment of pecan infected with Xylella fastidiosa (Hilton et al.,
2017). Carbon nanomaterials open new areas of microbiological
research by uncovering microbial growth inhibition mechanisms
(Liu et al., 2009; Sawangphruk et al., 2012; Chen et al., 2013; Berry
et al., 2014; Wang Y. et al., 2014). In Fusarium sp. the inhibition
mechanism is governed by carbon nanotubes (single-walled)
through the mechanism of water uptake and plasmolysis
induction (Wang L. et al., 2017). Certain forms of carbon
nanomaterials can be produced for antimicrobial activity at
relatively low cost and it attracts researchers to develop an
evaluation study for carbon nanomaterials in agriculture and
other fields (Zehra et al., 2015).

Inorganic Nanoparticles
NPs composed of metal and metal oxide are generally classified as
inorganic NPs, which are discussed below.

Metal-Based Nanoparticles
The NPs have characteristic properties such as sizes as low as
10–100 nm, pore size, high surface area to volume ratio, surface
charge and density, amorphous and crystalline structures,
spherical or cylindrical in shape, colored, high reactivity, and
their sensitivity to environmental factors like moisture, air, heat,
and sunlight (Ealias and Saravanakumar, 2017). Metal-based NPs
are synthesized from metals such as aluminium (Al), cadmium
(Cd), cobalt (Co), copper (Cu), gold (Au), iron (Fe), lead (Pb),
silver (Ag) and zinc (Zn) (Monych et al., 2019) and can exist in
solutions. These NPs have gained much attention in
pharmaceutical industries for their use in manufacturing
medicines (Padrela et al., 2018). These NPs can be modified
by altering their chemical groups to binds with antibodies (Ruiz
et al., 2019). Some noble metals such as Ag-, Au-, and Pt-
synthesized NPs have specific properties which were used in
biomedical fields to cure diseases (Kim et al., 2018). Therefore,
these NPs used to prepare drugs had anticancer, radiotherapy
enhancement, drug delivery, thermal ablation, antibacterial,
diagnostic assays, antifungal, gene delivery, and many other
properties (Jahangirian et al., 2017; Sharma et al., 2018). Fan
et al. (2018) reported that metal NPs can be target to different cells
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alongwith different functional groups, such as peptides, antibodies,
RNA, and DNA, and with potential biocompatible polymers
(polyethylene glycol; PEG). L-Ascorbic acid has been used to
synthesize Cu-NPs with size >2 nm as an antibacterial agent
against Gram-negative and Gram-positive bacteria and has been
reported as a stabilizer and reducing agent (Tomar and Garg, 2013;
Meena et al., 2018; Sathiyabama and Manikandan, 2018).

Au NPs were found useful in the identification of different
microorganisms by detecting and evaluating DNA and
identifying protein interactions from biological samples. Au-
NPs have been used widely and help to detect cancerous cells
through bioimaging (Dreaden et al., 2012). They can be
synthesized by different processes but are currently being
produced by Pseudomonas endophytic microorganisms such as
Pseudomonas fluorescens 417 or Fusarium solani (Syed et al.,
2016; Clarance et al., 2020). Ag-NPs combined with amoxicillin,
penicillin G, clindamycin, vancomycin, and erythromycin
showed antimicrobial activities against the pathogenic strains
(Rai et al., 2012). Ag NPs play a very important role in
biomedicine, performing cell imaging, cancer therapy, genetic
delivery, drug delivery, and different disease diagnose (Keat et al.,
2015; Shanmuganathan et al., 2019). There are many endpohytic
microorganisms that have been involved in AgNPs synthesis such
as Bacillus siamensis C1, Pseudomonas poae CO, Aneurinibacillus
migulanus, and Alternaria sp. (Ibrahim et al., 2020). Silicon (Si)
nano substrates with Ag- or Cu-NPs showed antibacterial
activities against Escherichia coli (Fellahi et al., 2013; Shahriary
et al., 2018). It has been found that Si coated by Ag is highly
biocompatible in the human lung, especially adenocarcinoma
epithelial cells, whereas the Cu-coated Si showed high
cytotoxicity which may lead to death (Wu et al., 2017). Pd-
NPs are more prolific and act as anticancer and stabilizing agents
and are used by many pharmaceutical industries to produce
medicines (Siddiqi and Husen, 2017; Yaqoob et al., 2020). NPs
are being used by many pharmaceutical industries and gained
more attention in research fields (Gao and Lowry, 2018).

Metal Oxide–Based Nanoparticles
The metal oxide based NPs such as Ag2O, FeO, MnO2, CuO,
Bi2O3, ZnO, MgO, TiO2, CaO, and Al2O3, enhance their activity
and were found to have potent antibacterial activities (Yaqoob
et al., 2020). The oxide of Ag-NPs (Ag2O) was recommended as a
novel source of antibiotics (Torabi et al., 2020) and showed
antibiotic properties against E. coli (Salas-Orozco et al., 2019).
Whereas, ZnO NPs also showed antibacterial activities against
high pressure and temperature tolerant Gram-positive
microorganisms (Staphylococcus aureus and Bacillus subtilis),
Gram-negative microorganisms (E. coli, Pseudomonas
aeruginosa) and spores of Peronospora tabacina as compared
to CuO and Fe2O3, NPs respectively (Azam et al., 2012a, b;
Prasanna et al., 2019; Wagner et al., 2016). The antibacterial
activity of ZnO NPs is inversely proportional to their size
(Prasanna et al., 2019). While in the case of TiO2-NPs, its
antibacterial activity depends upon its morphology, crystal
structure, size, and shape. TiO2 emerged as an important
antibacterial agent by enhancing the anti-microorganism effect
of tetracycline, β-glycopeptides, aminoglycosides, lactums,

cephalosporins, and macrolids against methicillin-resistant
Staphylococcus aureus (Roy et al., 2010). It has been also
reported that TiO2-NPs enhanced the antifungal activity
against Candida albicans biofilms (Haghighi et al., 2013).

CuO-NPs have significant antimicrobial properties against
Enterococcus faecalis and E. coli as compared to other various
bacterial strains like Klebsiella pneumoniae, Proteus vulgaris,
Shigella flexneri, Salmonella typhimurium, P. aeruginosa, and
Staphylococcus aureus (Ahamed et al., 2014). As ZnO, CuO,
Ag2O, Fe2O3, and TiO2 and some other metal oxide based NPs
such as MnO2, Bi2O3, and FeO also showed their beneficial activity
in biomedical fields through their use in drug delivery, bioimaging,
and antimicrobial activities. FeO-NPs (4.8 nm) showed their
higher relativity value (444.56 mM−1 s−1) in the bioimaging of
tumor cells (Wang L. et al., 2017; Gao et al., 2018). Some NPs
(MnO2) are very significant for medical applications such as
bioimaging, biosensing, cancer therapy, molecular adsorption,
and drug delivery due to their physicochemical, structural, and
morphological-based properties (Chen et al., 2019a; Wu et al.,
2019). MnO2 has been considered as a novel compound due to
having lower cytotoxicity and higher hemo/histocompatibility.
Bi2O3-NPs (35 nm) is recommended for use with phenothiazine
photosensitizer for cancer treatment and in drug delivery
(Ovsyannikov et al., 2015; Szostak et al., 2019). Some NPs show
their activity under a specific environment; for example, CaO and
MgO, show their anti-bacterial activity under alkaline and oxygenic
environments and are considered as excellent biocompatible NPs.
MgO-NPs have been studied as antibacterial agents against E. coli
and Staphylococcus aureus under oxygenic conditions (Leung et al.,
2016; Meena et al., 2019a; Meena et al., 2019b). Metal oxide based
NPs can be synthesized at low cost using simply accessible
materials and, can also be utilized in food processing and
environmental conservation with biomedical uses. These NPs
have excellent properties when compared with their metal
counterparts.

Doped Metal/Metal/Metal
Oxide–Based NPs
NPs can be modified chemically to make more stable materials
that are safe for the ecosystem. The antimicrobial activities of
ZnO-NPs against B. subtilis, Staphylococcus aureus, E. coli, and
P. aeruginosa can be increased approximately by 5% by doping
with Mg (magnesium), Sb (antimony) or Ta (tantalum) as
compared to ZnO-NPs and have less self-toxicity issues (Guo
et al., 2015). The considerable improvement by approximately
10,000 times was pragmatic in the antimicrobial activity of Zn
and CuO-doped NPs as compared to the pure oxide of Cu- and
Zn-NPs on the surface of cotton fabric by ultrasound irradiation
(Malka et al., 2013). Doped Mn/ZnO NPs have been used to
study the antibacterial and photocatalytic activity in pure ZnO-
NPs by observing its optical properties and structural
morphology; it was found that doped NPs showed more
activity (Alshehri and Malik, 2019). TiO2 doped with Cu2O in
the presence of rGO results in improved antimicrobial activity
with a higher inhibition zone for microorganisms as compared
to pure TiO2 (Wu, 2017). In biomedical applications, Ag-doped
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MgO emerged as a significant antimicrobial agent as compared
to pure oxides of Mg against Staphylococcus aureus and P.
aeruginosa (Llorens et al., 2012; Nganga et al., 2013; Meena
and Swapnil, 2019). Ag- and carbon-monolith-doped NPs were
also found to be more active antimicrobial agents against C.
albicans, Staphylococcus aureus, and E. coli (Arakawa et al.,
2019). Disk diffusion analyses have been performed against
assured disease-causing pathogens like Staphylococcus aureus,
E. coli, B. cereus, and P. aeruginosa to analyze their antimicrobial
effects (Zhu et al., 2019). Therefore, doped metal-oxide based
NPs showed more activity as antimicrobial agents as compared
to pure oxides (Ewald et al., 2011).

Metal Sulfide–Based Nanoparticles
To protect the surface of the NPs, the amalgamation of
semiconductor metal sulfide NPs into polymers has been
performed through chemical methods (Mthethwa et al.,
2011). Poly methyl methacrylate (PMMA) has been
considered one of the most extensively studied polymers
among a vast variety of available polymers due to having
significant chemicophysical and mechanical properties
(Kumar et al., 2019; Gross et al., 2007). Therefore,
researches are focused on the synthesis of metal sulfides/
polymer nanocomposites (ZnS/PMMA and CdS/PMMA),
their characterization, and their optical properties via.
direct blending to attain optically clear and thermally stable
compounds with good mechanical properties (Thanh and
Green, 2010; Agrawal et al., 2011; Ezhov et al., 2011;
Hashmi, 2012; Prabhu and Pattabi, 2012; Ajibade and
Mbese, 2014). Metal-based chalcogenides such as PbS,
CdSe, CdSe-CdTe, and CdSe-ZnTe have multifarious
structures (Li and Wong, 2017; Meena et al., 2016a; Meena
et al., 2016b). Metallic sulfides containing chalcogenide sulfur
have been analyzed and have emerged as an important toxic-
free metal, earing much attention in the biomedical field
(Dahoumane et al., 2016). AgS, FeS, CuS, and ZnS have
been studied as the most well-known metal sulfides for
biomedical applications in photothermal therapy,
biosensing, drug deliveries, and biomolecular imaging
(Goel et al., 2014). CuS-NPs and their derivatives have
been widely used in molecule detection technology as
metabolites (glucose) detectors, DNA detectors, and food-
based pathogen detectors. The metal-sulphide based NPs got
recognition in the field of biosensing which promotes
electron transfer reactions.

Furthermore, CuS was exposed to anthropological
immunoglobulin A (IgA) as a thin film–based
immunosensor (Attarde and Pandit, 2020) and photothermal
agents for the treatment of cancerous cells (Tian et al., 2011).
Ag2S quantum dots have been used in the tracking and
designing of cells in vivo, bioimaging, photodynamic
treatment, and diagnostic purposes. Ag2S quantum dots can
also be used as a significant active tracker for human
mesenchymal stem cells (MSCs) and are also considered as
antimicrobial agents (Meena et al., 2016c; Argueta-Figueroa
et al., 2017). According to Ding et al. (2016), Fe3S4 showed
pseudoenzyme activities to enterprise a measurable

photometric enzyme and assess in human serum, which is
oxidized by hydrogen peroxide through Fe3S4 NPs.

Synthesis of Nanoparticles
There are several methods that can be employed for the synthesis
of NPs, which are most often divided into two main categories
Bottom-up methods and Top-down methods (Wang and Xia,
2004; Meena et al., 2017a, b; Kishen et al., 2020).

In the top-down method (or destructive method) NPs are
synthesized by decomposition of larger units into smaller units
and these smaller units are further converted into appropriate
NPs (nanometric scale particles) (Conf, 2017). This method is
followed by various types of processes such as mechanical milling
(Liversidge and Cundy, 1995; Merisko-Liversidge et al., 2003; Yadav
et al., 2012), nanolithography, laser ablation (Hulteen et al., 1999;
Amendola and Meneghetti, 2009) sputtering and thermal
decomposition (Chrissafis and Bikiaris, 2011; Verma et al., 2018;
Araújo et al., 2018) which have been described in Figure 2. While in
bottom-up synthesis (physicochemical processes) NPs such as
polymersomes (Kapakoglou et al., 2008; Christian et al., 2009),
micelles (Zhu et al., 2011), liposomes and vesicles (Camelo et al.,
2009) polymer conjugates (Grover and Maynard, 2010), capsules
(Delcea et al., 2010; Moraes et al., 2011; Zhao et al., 2011), polymeric
NPs (Grabnar and Kristl, 2011) and dendrimers (Ravoo, 2008) are
synthesized by several processes like sol-gel method, green synthesis,
spinning, and chemical vapour deposition (CVD) pyrolysis (Mann
et al., 1997; Yarema et al., 2010; Iravani, 2011; Biswas et al., 2012;
Ramesh et al., 2013; Mogilevsky et al., 2014; Liu D. et al., 2015;
Needham et al., 2016; Parveen and Tremiliosi-Filho, 2016). These
methods have been illustrated in Figure 3.

Amongst the above-mentioned methods, the green synthesis
method has emerged as the most beneficial method (Iravani, 2011;
Patra and Baek, 2014; Kitching et al., 2015; Park et al., 2016; Singh
et al., 2016; Dahoumane et al., 2017; Singh et al., 2017). Green
synthesis utilizes different metals which have been applied in
different fields, such as medical (Shah et al., 2015; Al-Sheddi et al.,
2018). The biological metallic NPs are synthesized by Nepeta
deflersiana (Al-Sheddi et al., 2018), pink yeast, and Rhodotorula sp.
ATL72 (Soliman et al., 2018) to cure various disorders in medical
fields, for their antimicrobial activity, as sensors for various
biomolecules, for gene delivery, and for labeling of cells in
medicine and plants (Wang et al., 2006; Khandel et al., 2018).

Mechanisms of Microorganism Based
Nanoparticle Biosynthesis
To reduce themetal ions into NPs, secondarymetabolites secretion
and intra and extra microbial enzyme (cellulary) play important
roles. Under metal ion stress, microorganisms secrete enzymes and
biomolecules which reduce the effect of metal ions and the toxicity
of metal ions are then reduced by detoxification (Singh A. et al.,
2018). There are three steps which have been reported for the
biosynthesis of NPs by microorganisms shown in Figures 4, 5.

Metal Ions and Microbial Interaction
Through electrostatic interaction metallic ions attach to the
negatively charged surface of a microbial cell wall and are
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transported inside the cell through cationic membrane transport
systems (Ghashghaei and Emtiazi, 2015; Singh A. et al., 2018).

Bio-Reduction of Metallic Ions
Metallic ions can be bioreduced either by functional group
(hydroxyl group or carboxyl group) associated with
biomolecules having reduction capabilities or by microbial
enzymes (NADH-dependent nitrate reductase) which catalyze
the reduction of Ag ions to Ag NPs (Talekar et al., 2012;
Velusamy et al., 2016). In this reaction, a mono or di valant
oxidation state is converted into a zero valent oxidation state.
After reduction, zero valent state AgNPs associate to form various
morphological shaped (ovale, spheres, cubes, triangles, hexagons,
etc.) NPs (Chokkareddy and Redhi, 2018).

Stabilization of NPs
This step is followed to stabilize the shape of biosynthesized NPs
by preventing further growth and agglomeration (Singh A. et al.,
2018) by controlled and optimized physicochemical parameters
such as metal salt concentration, temperature, incubation period,
pH, agitation, or concentration and nature of nutrients (carbon
and nitrogen) in culture media (Khandel et al., 2018). The small
size and particular shape of NPs biosynthesized by endophytic
microorganisms provide good quality and a higher surface/
volume ration which affects the activity positively (Niño-
Martínez et al., 2019).

Nanoparticles Synthetized by Endophytic
Microorganisms
Green synthesis or biological methods to synthesize metal NPs
are becoming more popular. Among them, endophytic
microorganisms such as bacteria, fungi, and actinomycetes
have the tendency to convert metal ions into metallic NPs
such as Ag, Au, Zn, and Cu with the help of secondary
metabolites and cellular enzymes (Joshi et al., 2017; Soliman
et al., 2018). Endophytic bacteria under high metallic ion stress
establish the defense mechanism to reduce the toxicity of metal
ions through the precipitation of metallic ions at the nanometer
scale to synthesize NPs (Iravani et al., 2014). Due to having
metallic ion stress tolerance tendency, endophytic bacteria
emerged as good entrant for NPs synthesis (Syed et al., 2019).
Ag NPs with antibiofilm, antibacterial and antifungal activity can
be synthesized from Bacillus siamensisC1, Pseudomonas poaeCO
(Ibrahim et al., 2019; Ibrahim et al., 2020), or Aneurinibacillus
migulanus (Prathna et al., 2010), while Au NPs (5–50 nm)
synthesized by Pseudomonas fluorescens 417 have bactericidal
activity (Syed et al., 2016). Ag NPs synthesized by Pseudomonas
aeruginosa were reported as higher active NPs. Due to having
metal uptake, their accumulation and toleration capable
endophytic fungi attracted more attention in research fields
(Moghaddam et al., 2015). There are several advantages to
endophytic fungi which make it a better microorganism for
NPs’ synthesis, such as trouble-free isolation from plants or

FIGURE 2 | Top-down approach for the synthesis of nanoparticles (A)Mechanical milling (B) Nanolithography (C) Thermal decomposition (D) Laser ablation, and
(E) Sputtering.
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soil (Xiaowen et al., 2019), more secretion of metabolites and
extracellular enzymes for the reduction of metallic ions into NPs,
and it being easy to grow rapidly. Au NPs synthesized through the
isolation of Fusarium solani from Chonemorpha fragrans can be
used to cure cervical cancer cells (Clarance et al., 2020). ZnO NPs
(size ranges from 15 to 45 nm) are synthesized by culture filtrate of
the Alternaria tenuissima (Abdelhakim et al., 2020). Exserohilum
rostrata has been used to synthesize AgNPs (size ranges from 15 to
45 nm) for their antioxidant and anti-inflammatory activities
(Bagur et al., 2019). Actinomycete Streptomyces are known to
produce a broad range of secondary metabolites and can be
utilized for the clinical use as antifungals, antibiotics, anticancer,
immunosuppressives, antivirals and insecticides (Messaoudi et al.,
2015; El-Gamal et al., 2018; El-Moslamy et al., 2018; Singh et al.,
2019). Streptomyces capillispiralis and Streptomyces zaomyceticus
Oc-5 have been used for the synthesis of Cu NPs (Hassan et al.,
2018; Hassan et al., 2019). Endophytic actinomycete Isoptericola
SYSU 333150 have been used to synthesized AgNPs (size ranges
from 11 to 40 nm) with sunlight exposition using photo-irradiation
for different time periods which show antimicrobial, cytotoxic,
antioxidant and antiinflamatory effects aginst pathogens (Verma
et al., 2016; Singh et al., 2017; El-Gamal et al., 2018; El-Moslamy
et al., 2018; Farsi and Farokhi 2018; Abdel-Azeem et al., 2019;
Xiaowen et al., 2019; Ranjani et al., 2020). Methods for the
characterization of endophytic microorganisms have been
illustrated in Figure 6.

Besides endophytic microorganisms, there are several plant
species (Sesbania plant, Medicago sativa, Brassica juncea, and
Helianthus annuus) and microorganisms (bacteria; Desulfovibrio
desulfuricans NCIMB 8307, Pseudomonas stuzeri, Clostridium
thermoaceticum, Klebsiella aerogens and fungi; Phanerochaete
chrysoparium, Aspergillus furnigatus, Aspergillus flavus, F.
oxysporum, and Verticillium sp.) that have been used for the
synthesis of NPs (Ghormade et al., 2011). In the spinning
methods, NPs are synthesized by spinning disc reactor (SDR)
(Bhaviripudi et al., 2007; Tai et al., 2007; Mohammadi et al.,
2014). The main drawback of CVD is the high-cost related
equipment and its highly toxic gaseous by-products (Ealias
and Saravanakumar, 2017).

Another important method is pyrolysis for the production
of NPs at a large scale. Pyrolysis is a simple, resourceful, low
cost, high yield, and constant process. In this method, a
precursor (either liquid or vapour) burns with flame and is
fed into through a small hole in the furnace at high pressure
(Kammler et al., 2001), and the gaseous by-product is
characterized to get NPs (Majhi et al., 2018). This green
and eco-friendly method for NPs synthesis is called
biosynthesis and produces nontoxic and biodegradable
NPs using bacteria, plant extracts, and fungi with the
precursors (Kuppusamy et al., 2014). This method
produces NPs without convention chemicals (Hasan,
2015). Liposomes, vesicles, and micelles are NPs

FIGURE 3 | Bottom-up approach for the synthesis of nanoparticles (A) Pyrolysis (B) Spinning (C) Sol gel (D) Green synthesis, and (E) Chemical vapour
deposition (CVD).
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synthesized by supramolecular self-assembly of lipids and
surfactants (Vaishnav and Mukherjee, 2019). Basically,
micelles are the colloidal aggregates of amphiphilic
molecules synthesized using soaps and detergents (Romero
and Moya, 2012). Sodium dodecyl sulfate (SDS) and
cetyltrimethylammonium bromide (CTAB) are the typical
surfactants that form micelles (Hoque et al., 2018). Some

lipids and proteins, like lipoxygenase-3, can also aggregate in
micelles (26 nm) by heat induction (Brault et al., 2002).

Vesicles/liposomes/lipid vesicles are hollow spheres that are
enclosed by amphiphilic molecules (Davies et al., 2006). The
vesicles are classified into two types: Unilamellar vesicles (UVs)
andMutilamellar vesicles (MLVs). UVs are defined as having one
amphiphile bilayer in the hollow sphere and MLVs are defined as

FIGURE 4 | Steps in the green synthesis mechanism of nanoparticles.

FIGURE 5 | Synthesis of nanoparticles using endophytic microorganisms.
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having more than one amphiphile bilayer (Bangham et al., 1965).
On the basis of compositions, vesicles are of two types; one is
composed of natural or synthetic glycolipids and the other is
composed of phospholipids (Romero and Moya, 2012). The
properties of having a vesicle-like size and surface potential,
polydispersity, degree of ionization, permeability, physical
stability, and phase behaviour depend on the methodology
used in preparation and the nature of the constituent (da Silva
Santos et al., 2019). There are two methods that have been
reported for vesicle synthesis spontaneous formation (Jung
et al., 2001; Rolland et al., 2004; Segota and Težak, 2006) and
vesicle fabrication (Courbin and Panizza, 2004; Segota and Težak,
2006). Spontaneous formation is applied with stress to
homogenize the structure without using external energy
whereas vesicle fabrication is an induced method to form
vesicles via. extrusion, sonication, and other methods using
external energy. Nowadays, liposomes and vesicles play a
significant role in the research field for model systems and
permeable biological membranes (Courbin and Panizza, 2004).
Some monodispersed branched polymers, such as dendrimers,
were found to be different from other linear polymer molecules
which can be synthesized through divergent and convergent
methods (Hodge, 1993). In divergent methods, two dormant
groups and one reactive group-containing a monomer react
with a first-generation dendrimer (core-forming) and then
successively follows the reaction of several monomers to form
large macromolecules. The main drawback of the divergent
method is purified form of macromolecule synthesis.
Convergent methods rely on the inward synthesis of

dendrimers and are easy to purify (Hawker and Fréchet,
1990). Therefore, the development and improvement of novel
technology for the synthesis of NPs with their vast applications
showed their importance, particularly in the environmental
systems and sustainable agricultural (Cheng et al., 2016; Shang
et al., 2019; Zehra et al., 2020).

Nanomaterials as Delivery System
It has been found that NPs play a very significant role as delivery
systems in agricultural research for the improvement of crops
(Singh et al., 2015). The delivery process of chemicals through
NPs in plants is similar to the delivery of nano drugs in humans
(Jahangirian et al., 2017; Barupal et al., 2020c). In agriculture,
these smart delivery systems should have time-controlled,
targeted specific, well-controlled, multifunctional
characteristics, and should be self-regulated to evade biological
barriers. Plants and their extracts have been used to synthesize
several NPs and were found to be more ecofriendly with specific
well-defined size and shapes (Agarwal et al., 2017; Ahmed et al.,
2017; Meena and Zehra, 2019). NPs as delivery systems have been
applied in agricultural applications for the improvement of crops
by studying their effect on plant growth, metabolic functions, and
genetic transformation. Nano-encapsulated chemicals for
agricultural purposes should be planned in a manner to show
less ecotoxicity, effective concentration, high stability, solublility,
time-control, and to enhance their targeted activity when certain
stimuli occur (Mathur, 2016). Perez-de-Luque and Rubiales
(2009) reported that nanocapsulated herbicides reduce the
phytotoxicity caused by herbicides under parasitic weed control.

FIGURE 6 | Different characterization techniques to analyse properties of nanoparticles.
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These nanocapsules have the ability to penetrate cuticles and
release active ingredients to control target weeds. The diameter of
NPs should be less than the diameter of a plant’s cell wall
(5–20 nm) to penetrate and reach the plasma membrane
(Schwab et al., 2016). NPs can enter into the plant cell
through stomatal openings or bases of trichomes, and are then
translocated to tissues (Nair et al., 2010). Lipophilic nanosilica get
easily absorbed into the cuticular lipids (effective barrier made of
several lipids and fatty acids) of insects through physiosorption
process and destroy the protective wax layer for use as pest
control in agriculture (Jampílek and Krá̌lová, 2017). Ag-NPs
(1–5 nm) have been successfully used to control
phytopathogens (Surega et al., 2019). Currently,
nanotechnology applications have been employed to study
biological systems in medical research and animal science.

The use of nanotechnology and their versatility can also be
demonstrated in plant science research to study genomics and the
function of genes for the improvement of crop species. It has been
shown that silica NPs can be used to deliver drugs (Giri et al.,
2005) and DNA material (Bharali et al., 2005; Meena and Samal,
2019) into animal cells and tissues but their delivery into plant
cells is limited due to the presence of a cell wall. 3 nm pores
containing mesoporous silica nanoparticles (MSN) can transport
chemicals and DNA into plant cells due to having exclusive
structural features, such as their thermally and chemically stable
mesoporous structures. Mesoporous structures have well-defined
surface properties with pore sizes (2–10 nm in diameter) and
surface areas more than 800 m2 g−1, and are preferred as an ideal
host for the various properties containing guest molecules. In
most of the non-porous Au or Ag coated particle-based (such as
in gene gun process) DNA or chemical delivery limitations were
shown to the nucleic acid. The microinjection process can also be
used for DNA delivery to the plant cell for genetic modification
but they were found to be inefficient (Ahmad andMukhtar, 2017;
Meena et al., 2017g; Meena et al., 2017h). The specific feature of
MSN is to prevent the leaching out of loaded molecules or drugs
due to covalent bonding with the pore. Themolecules are released
by some chemicals (uncapping triggers), such as dithiothreitol
(DTT), or disulphide-reducing antioxidant inside the cells
(Torney et al., 2007). The interactions of these capped MSN
systems have been studied in plant cells (without cell wall)
compared with animal cells. In animal cells, endocytosis is a
very efficient process as compared to plant cells due to membrane
impermeability (Jat et al., 2020). Torney et al. (2007) reported that
endocytotic vesicles size ranged between 0.2 and 3 mm and
showed no toxicity to plants cells.

The mesoporous structure of the MSNs enables the delivery of
those chemicals which are incompatible with growth media and
impermeable to the membrane along with DNA material to the
targeted cells. Further, developments like enlargement of pore
size andmore functionality of theseMSNs will offer new potential
and possibilities in the delivery of target specific proteins,
chemicals, and nucleotides in plant biotechnology. Overall, the
MSN system appeared as a new and versatile tool to study cell
biology and plant endocytosis. Each plant has a specific defense
mechanism to protect itself against phytopathogens and
herbivorous insects. This defense mechanism is further

translated into a suitable adaptive response to defend against
pathogen attack (Dangl and Jones, 2001; Barupal et al., 2019).
This mechanism either can be triggered or activated after a
pathogen attack or be pre-existing (Koornneef and Pieterse,
2008). Under pathogen attack, plants showed resistance
against pathogens which is referred to as induced systemic
resistance (ISR). ISR is the alternative natural and clean
biological process of an integrated pest management strategy
to control plant diseases (Sticher et al., 1997; Van Loon, 1997). In
cucumber plants, SiO2 NPs reduced the infection of papaya ring
spot virus (PRSV) by inducing certain defense-related gene
expressions to activate phenylalanine ammonia-lyase (PAL)
genes peroxidases (POX). Most of the important food crops
are affected by bacterial wilt which is a serious problem.
Recent studies have indicated the resistance of plants to
bacterial infection can be increased by treatment with biotic or
abiotic stress factors. MgO-NPs showed disease resistance in
tomato plants against Ralstonia solanacearum. MgO NPs
significantly reduced the bacterial (R. solanacearum) infection
in the root of tomato seedlings by inducing rapid synthesis of
reactive oxygen species (ROS) such as oxygen-free radicals.

It has been clearly investigated that NPs induce defense-
related mechanisms against pathogens through ISR. NPs such
as chitosan biopolymer are biocompatible, biodegradable, and
non-toxic in character and therefore can be used as delivery
systems for micronutrients and immune elicitors to suppress
disease in plants (Kumaraswamy et al., 2018; Meena et al., 2017c;
Meena et al., 2017d). Cu and Zn CS-NPs (chitosan NPs) were
synthesized by entrapping metal in chitosan. These CS-NPs were
useful for controlling plant diseases like Curvularia leaf spot
(CLS) of maize (Choudhary et al., 2017) and blast disease of
finger millet (Sathiyabama and Manikandan, 2018) by inhibiting
mycelial growth of pathogens and activating the plant growth.
CLS controlled by 0.04–0.16% CS-NPs about 24.6–22.6% in the
pot while in 44.0% of water condition (Choudhary et al., 2017).
Cu-CS-NPs-treated plants showed 11.6% enhancement in grain
weight as compared to Bavistin treated wheat plant similar to the
case of Zn-CNPs. Higher concentrations of Cu-CNPs and Zn-
CNPs negatively affect plant growth (Fu et al., 2020). These CS-
NPs release their metals Cu2+ and Zn2+ to interact with the
cellular system of plants and facilitate other metabolic processes
of plants based on Cu and Zn nutrition (Rajasekaran and Santra,
2015; Saharan and Pal, 2016). Therefore, Cu-CNPs and Zn-CS-
NPs improve the plant growth as well as protect from
phytopathogens as plant immune elicitors by showing
multimodal action. CS-NPs have emerged as better immune
elicitors as compared to salicylic acid (SA) and harpin
(Thakur and Sohal, 2013). The harpinPss-loaded CS-NPs
(H-CS-NPs) improved the damping-off in tomato caused by a
phytopathogen Rhizoctonia solani (Nadendla et al., 2018). SA
functionalized chitosan nanoparticles (CS-NPs) control the
Fusarium verticillioides causing post-flowering stalk rot
(Kumaraswamy et al., 2019) and showed strong antifungal
activity by growth inhibition of mycelia 62.2–100% at
0.08–0.16% of CS-NPs. Therefore, present studies showed
strong evidence regarding how NPs act as an efficient delivery
system for the continued release of bioactive compounds that
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trigger the plant immune system to enhance the long-lasting
effect of disease suppression efficacy. NPs also work as
biostimulants at a specific concentration and play a very
important role in disease suppression in plants.

A Brief Discussion of Engineered
Nanomaterials
For the specific physical and chemical properties, nanomaterials
are engineered at 1–100 nm in particle size (Wilson et al., 2002).
These engineered nanomaterials are nanoscale metals and
contain oxides (e.g., iron oxides, aluminum oxides, and
titanium dioxide), polymeric nanocomposite materials and
polymers. Engineered nanomaterials have also been used in
drug delivery, immunology, and photovoltaic cells. (Bhatia,
2016). Engineered nanomaterials play a very important role in
energy generation, production of food (Morris, 2011), and
remediation of water to remove toxic substances or pollutants
(Hochella et al., 2019). Currently, due to having a large surface
area and small size, engineered nanomaterials are discussed to
improve plant growth and health with good soil quality for
sustainable agriculture. These engineered nanomaterials are
highly potent for soil feasibility in soils due to being highly
reactive and containing distinct properties such as high cation
exchange capacity, longlasting release of nutrients, and delivery of
nutrients to solve the problem of soil restoration (Bastioli, 2020).
Metallic oxide-based NPs such as Mn, Fe, Cu, and Ag have been
widely used in biological processes (Amde et al., 2017).

In another aspect, the synthesis and use of massively
engineered nanoproducts released into the environment
interact with several components of the environment and are
followed by dynamic transformation processes (Abbas et al.,
2020). These transformations of engineered NPs are
interrelated to several environmental aspects. Several
environmental processes, such as physical, chemical and
biological changes the mobility and availability of these
engineered NPs. Physico-chemical features of engineered NPs
and environmental factors (pH, temperature, ionic strength,
organic, inorganic colloids, etc.) are very important conditions
to transform engineered NPs (Goswami et al., 2017). Therefore, it
is of high importance to study the activities of transformed
engineered NPs to recognize their environmental fortune,
bioavailability, and form of toxicity. Some toxicological studies
revealed that some freely circulating engineered NPs can be toxic
for living systems. They affect the capability and behaviour of the
plants (Aslani et al., 2014).

Interaction of Nanoparticles With Plants
Nanoparticles (NPs) due to their various properties are being
used in the fields of biotechnology and agriculture (Pérez-de-
Luque, 2017). Different factors such as the nature of the NPs,
plant physiology and interaction of the NPs govern the uptake of
NPs by the plants (Khan M. R. et al., 2019; Figure 7A-C).
Chemical entities, stability, and functionalization of NPs
influence the uptake, translocation, and accumulation;
properties are also found to be variably affected by plant type,
species, and site facilitating internalization of NPs (Santana et al.,

2020). Different studies have reported both the positive and
negative effects of the NPs on the plants (Yang et al., 2017;
Goswami et al., 2019; Kumar et al., 2019). Zinc oxide NPs showed
a positive effect on soybean by increasing its root length whereas
negative effects (shrunken root tip and broken root caps) were
found in ryegrass (Lin and Xing, 2007; López-Moreno et al., 2010;
Meena et al., 2017e; Meena et al., 2017f). Similarly, Cañas et al.
(2008) also reported both positive and negative impacts of single-
walled carbon nanotubes (SWCNTs) in root length of onion and
cucumber, respectively.

Absorption, Uptake, and Translocation of
Nanoparticles by the Plants
It is well demonstrated that the properties of NPs are the main
factor in absorption by the plants (Khan I. et al., 2019; Santana
et al., 2020). Among the different properties of NPs, size of the
NPs is one of the main factors affecting the penetration,
translocation, and accumulation of NPs to the plant cells (Lv
et al., 2019). NPs with a size larger than 40–50 nm are restricted
by the plant cells for absorption (Avellan et al., 2017; Pérez-de-
Luque, 2017). Chemical composition, morphology, and the type
of NPs are other factors affecting the uptake and translocation
(Elemike et al., 2019; Sanzari et al., 2019). Additionally, Judy et al.
(2012), studied another factor responsible for absorption and
accumulation i.e. functionalization and coating of the
nanomaterial surface. The absorption and accumulation of
NPs by the plants are greatly affected by the functionalization
and coating. Different researchers revealed that the physiology of
plants is also an important factor influencing the uptake and
translocation of NPs (Pérez-de-Luque, 2017; Khan M. R. et al.,
2019). Some NPs exposed to different plant species belonging to
different families showed different absorption and accumulation
patterns in the plants (Balafrej et al., 2020). The effectiveness of
penetration to the plant cells is greatly determined by the
application method of NPs because roots and leaves are both
specialized in different processes (Schwab et al., 2016).

The interactions of NPs with the environment also affect the
properties of NPs, and in turn influence the uptake of NPs by the
plants. Navarro et al. (2008) studied the effect of organic matter
and salt ion on the absorption of NPs and found that the stability
of organic matter provided better availability of the NPs to the
plants whereas salt ions showed opposite results. Microbes
present in the soil also influence the uptake of NPs to the
plants especially mycorrhizal fungi. Mycorrhiza forms a
symbiotic association with the roots of plants and hence
provides a better platform for the NPs to get easily absorbed
by the plants (Ingle et al., 2017; Cao et al., 2020). Once the NPs are
absorbed by the plants, the translocation of the NPs is achieved in
two different ways: the symplast and the apoplast (Meena et al.,
2017i; Lv et al., 2019). The transport of NPs via. apoplastic
pathways occur through extracellular spaces and cell walls of
neighbouring cells and xylem vessels (Sanzari et al., 2019)
whereas symplastic transport takes place through
plasmodesmata between the two adjacent cells (Ruttkay-
Nedecky et al., 2017) and sieve plates. The importance of
apoplastic pathways is very crucial for the movement of the
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NPs within the plants (Schwab et al., 2016). NPs reach the central
cylinder and vascular tissue of the roots via. this pathway and
further move to the aerial parts of the plants through the xylem
with the help of transpiration stream (Cifuentes et al., 2010;
Banerjee et al., 2019).

Still, there is a barrier to reaching the xylem of NPs through the
root via. the apoplastic pathway called the Casparian strip which
can be overcome by the endodermal cells following the symplastic
pathways. Different studies have reported the accumulation of
some NPs at the Casparian strip (Schwab et al., 2016; Rossi et al.,
2017). Translocation of NPs via. the symplastic pathway through
the sieve tube elements of the phloem allows the distribution of
NPs toward non-photosynthetic tissues and organs (Shukla et al.,
2016; Banerjee et al., 2019). Foliar application of NPs involves the
crossing of the cuticle which acts as a barrier for the NPs
following the lipophilic or hydrophilic pathways (Avellan
et al., 2019). Hydrophilic and lipophilic pathways involve
diffusion through cuticular waxes and through the polar
aqueous pores present in the cuticle and/or stomata
(Fernández and Eichert, 2009; Fernández et al., 2017). In the
case of foliar application, the stomatal pathway is the main route
for the interaction of NPs above 10 nm. The tiny size of the
cuticular pore (around 2 nm) makes it less efficient for the
translocation of NPs (Eichert and Goldbach, 2008).

The information about the accumulation of NPs inside the
plants mainly depends on the route of translocation (Singh
J. et al., 2018). For example, if a kind of NP shows a good
translocation through the xylem, application should be done to
the roots, whereas if the main route of any NPs is the phloem, not
xylem so they should be applied by foliar spray for the even
distribution of the NPs. If the route of the translocation of the
NPs is known, the accumulation of NPs in plant parts can be
found. For example, if any NP is translocated through the

phloem, it must be accumulated in fruits and grains. However,
it is not necessary that translocation will takes place with a specific
cell. Lateral movement of NPs between the xylem and phloem can
also occur (Pérez-de-Luque, 2017). Translocation and
accumulation of the NPs are greatly influenced by the
characteristics and nature of the NPs, in addition to the
physiology of the plant species (Remédios et al., 2012; Lv
et al., 2019). Different studies have reported the differences in
the mechanism of translocation and accumulation of the same
kind of NPs for different plant species (Shang et al., 2019; Yan and
Chen, 2019; Hossain et al., 2020). On the contrary, similar NPs
with few differences showed different results within the same
plant species (Zhang P. et al., 2019). In pea plants, faster
translocation and large accumulation of carbon-coated iron
NPs were found in the roots whereas slow translocation and
less accumulation of the same NPs were reported in sunflower
and wheat (Cifuentes et al., 2010). Further, a large amount of
positively charged gold NPs were accumulated by radish and
ryegrass than rice and pumpkin (Zhu et al., 2012). Negatively
charged Au-NPs were not taken up faster by the roots of the
plants because plant cell walls contain negative charges resulting
in the accumulation of positively charged Au-NPs.

NPs generally accumulate to different plant parts, such as
fruits (McClements and Xiao, 2017), grains (Mahakham et al.,
2017), flowers, and young leaves (Padalia et al., 2015; Javed et al.,
2019) after the translocation through the vascular system. The
location of the accumulation of NPs within the plants can be
crucial to avoid human and animal consumption of NPs after
treatment. Different studies have demonstrated the storage of
NPs in the plant parts which are not used for consumption and
degradation or transformation of some NPs by the plant after
some time (Kalpana and Devi Rajeswari, 2018; Khan I. et al.,
2019; Salem and Fouda, 2020). Higher concentrations of NPs

FIGURE 7 | (A)-(C) Uptake, movement and penetration of nanoparticles inside the plant cell.
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affects human health. Human exposure to NPs takes place via.
three different routes-gastrointestinal, skin and lungs and is then
distributed to the blood and brain after absorption and
subsequently, to heart and kidney (Korani et al., 2015).

Interaction of Nanomaterials With Plant
Cells
If the NPs are to be translocated by the symplastic pathway, they
must be taken by the plant cell and cross the plasma membrane
(Karny et al., 2018). There are different ways for the
internalization of the NPs to take place. Nanoparticles can be
taken by the plant cell through the process of endocytosis and can
cross the plasma membrane (Etxeberria et al., 2016). Some NPs
instead of being invaginated by the plasma membrane are taken
up by the cell by the formation of pores on the plasma membrane
which directly reaches the cytoplasm (Behzadi et al., 2017; Zhao
and Stenzel, 2018). NPs can also bind to carrier proteins of the
plasma membrane that internalize the NPs inside the plant cell
(Lesniak et al., 2013). Several researchers have acknowledged
aquaporins as the carrier protein for internalization of the NPs to
the plant cells, however the tiny pore size creates a hinderance for
NP penetration (Banerjee et al., 2019), without reorganisation
and enhancement of pore size. Plasmodesmata are very
important structures of plant cells for the translocation of NPs
through the phloem (Fincheira et al., 2020). Additionally, ion
channels are also used by the NPs for entry into the plant cells but
the tiny size of the channels makes it not suitable for the NPs
penetration without specific modifications (Chichiricco and
Poma, 2015; Pérez-de-Luque, 2017). Endocytosis appeared to
be the most suitable way for the delivery of chemicals inside
specific cell organelles (Iversen et al., 2011). On the other hand,
pore formation is the best way for the delivery of chemicals into
the cytosol.

MOLECULAR APPROACHES OF
NANOPARTICLES

Gene Carriers
It has been observed that an effortless DNA conveyance strategy
would encourage investigations of plant functional genomics (Rai
et al., 2015). Nonetheless, the effect of NPs on plants is limited by
the plant cell wall (Torney et al., 2007). There are different
relevant properties of NPs with the ability to cross biological
membranes, carry out intracellular multifaceted target delivery,
and perform controlled release having enabled NPs to
revolutionize the genetic engineering method (Cunningham
et al., 2018). However, plant cell walls act as a barrier for
efficient nanocarrier delivery which is generally conquered by
chemical or mechanical methods (Demirer et al., 2017). DNA and
chemicals were first delivered by Torney et al. (2007) to tobacco
plants through biolistic delivery of 100–200 nm gold-capped
MSNs. In this method, Gold NPs were capped by the MSN
pores which were loaded with the chemical expression inducer.
The coating of green fluorescent protein (GFP) plasmids was
done to the cappedMSNs and delivered to the tobacco cotyledons

by gene gun. Thereafter, unsealing and release of the chemical
expression inducer caused the expression of GFP. This study
demonstrated the proof role of NPs as a gene carrier into the plant
cells. In addition to this, Martin-Ortigosa et al. (2014) reported
the delivery of Cre recombinase proteins into the Zea mays cells
using the gold plated MSNs by the biolistic method. Different
strategies comprising of gene gun, electromagnetic field, and
protoplast polyethylene glycol transfection are still mandatory
for the efficient delivery of biomolecules into the plant cells by
NPs, as NPs cannot passively bypass the plant cell wall
(Cunningham et al., 2018; Lu, 2018; Rastogi et al., 2019). Even
after the requirement of mechanical and chemical aid for
internalization of NPs, nanocarriers still show superior
performance over traditional methods because of their small
size and high surface area (Shang et al., 2019). Several studies
have demonstrated the successful mediated delivery of NPs to the
plants in vivo (Raliya et al., 2016; Zhao et al., 2016; Lee et al., 2017)
and in vitro (Pasupathy et al., 2008; Naqvi et al., 2012; Burlaka
et al., 2015). Chang et al. (2013) performed fluorescence and
antibody labelling techniques for the detection of gene expression
in the epidermal and endodermal layer of Arabidopsis thaliana
roots by using MSNs as a gene carrier to deliver foreign DNA into
the plants.

Moreover, Demirer et al. (2018) studied the efficient delivery
of plasmid DNA and siRNA into Eruca sativa and Nicotiana
benthamiana plants using functionalized carbon nanotubes
(CNT) NPs. In the leaves of E. sativa, the green fluorescent
protein (GFP) was expressed whereas expressed GFP was silenced
in transgenic Nicotiana benthamiana leaves. Further
examinations are expected to advance NP properties and
functionalization, since early outcomes are promising for
additional investigation of NPs as a plant biomolecule delivery
vehicle that tends to the drawbacks of the traditional strategies.
This could work alongside with the appearance of nuclease-based
gene-altering advancements. It is of incredible interest to
researchers to improve the delivery of these progressive
genome designing tools by investigating NP-based delivery
techniques for assorted biomolecular cargoes.

Genetic Modification
The genetic modification of plants has been broadly investigated
for the production of new varieties of crop plants with several
desirable characters such as high yield, improved quality, and
resistance against abiotic and biotic stress (Kumar et al., 2020).
Practically, tissue culture is the main technique used in almost all
of the current strategies of genetic engineering, although they are
very tedious, long, and relentless procedures (Zhang et al., 2020).
It is very difficult for some of the agriculturally important crop
plants, such as cotton to produce transgenic plants from the tissue
culture with conventional plant breeding methods. So, there
should be an alternative method to overcome the constraints
of traditional tissue culture methods and its associated problems.
Pollen-based plant transformations are viewed as promising
alternatives over traditional methods of transformation (Zhang
R. et al., 2019). During pollination and fertilization, foreign DNA
is directly released to the ovary by pollen grains. There is a direct
production of transgenic seeds with foreign DNA transformed

Frontiers in Chemistry | www.frontiersin.org May 2021 | Volume 9 | Article 61334313

Meena et al. Scope and Applications of Endophytic Nanotechnology

https://www.frontiersin.org/journals/chemistry
www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


pollen by the process of pollination. Different physical methods
such as electroporation, bombardment, sonication, and
Agrobacterium infection have been used for the transformation
of pollen, however its success rate is restricted. Although, this
technique is promising, they are also unfavorable to pollen
viability. An ideal and highly efficient method of pollen
transformation is magnetofection in which a foreign DNA
associated with magnetic NPs is adroitly taken up by the
target cells of pollen in the presence of a magnetic field (Zhao
P. et al., 2017). One of the molecular approaches of NPs is genetic
modification. Pollen magnetofection is the genetic modification
of pollen using NPs.

In this technique, pollens are genetically transformed with the
help of magnetic NPs which are loaded with pure plasmid DNA
carrying functional genes. Pure plasmid DNA is delivered into the
pollen through a pollen aperture in the presence of a magnetic
field. Genetically modified pollen (magnetofected pollens)
produces transformed seeds through pollination (Bisen et al.,
2015; Zhang R. et al., 2019). One of the main advantages of this
technique is that foreign DNA can stably express in successive
generations. Pollen magnetofection is an effective stage for
genetic modification of cotton and other crops with high-
throughput and proficient potential infield activity (Altindal
and Altindal, 2020). The wall of pollen is reduced at the
surface apertures with a diameter of about 5–10 μm in most of
the crop pollens. Zhao P. et al. (2017) reported the presence of
such aperture in cotton pollen where the wall of pollen was thin
with high permeability. The thin pollen wall made the delivery of
foreign DNA possible inside the pollen. MNPs were used by Zhao
P. et al. (2017) as DNA carriers that could easily pass through the
apertures under the influence of a magnetic field. In pollen
magnetofection, an MNP-DNA complex was formed by
binding and condensing the negatively charged DNA with the
positively charged polyethyleneimine-coated Fe3O4 MNPs which
inconsequentially acts as a DNA carrier. Then, pollen was mixed
with MNP–DNA complexes. Subsequent mixing of the MNP-
DNA complexes were directed into the pollen through pollen
aperture under the influence of the magnetic field before
pollination. After the formation of the transformed seeds,
transgenic plants were obtained by kanamycin screening.

RNA Interference
The RNAi pathway has risen as an amazing asset to battle plant
pathogenic microbes by genetic engineering (Robinson et al.,
2014; Majumdar et al., 2017). Effective use of dsRNA has
developed as a profoundly engaging alternative. Up till now,
nanocarriers of RNAi-inducing molecules have been used
against viruses, aphids, and mosquitoes (Das et al., 2015;
Mitter et al., 2017; Thairu et al., 2017). Silva et al. (2010)
reported the knockdown of a target gene in tobacco protoplasts
through encapsulation of siRNAs into conjugated polymer
NPs. Draz et al. (2014) reviewed the use of different NPs
such as metal and metal oxides NPs, silica and silicon-based
NPs, carbon nanotubes, dendrimers, graphene, polymers,
cyclodextrins, lipids, semiconductor nanocrystals, and
hydrogels as a carrier for dsRNA. In the seedlings of
Arabidopsis, fluorescent NPs loaded with dsRNA induced

the gene silencing of two endogenous genes (Jiang et al.,
2014). Mitter and colleagues sprayed the plants with
Bioclay, a layered double hydroxide (LDH) NP loaded with
dsRNA against the two viruses viz. pepper mild mottle virus
(PMmoV)and cucumber mosaic virus (CMV) (Mitter et al.,
2017). Further, Worrall et al. (2019), synthesized BCMVCP-
BioClay by the encapsulation of BCMVCP-dsRNA (which
targets the coat protein (CP) coding region of bean
common mosaic virus) into LDH-NPs and reported the
enhanced protection of Nicotiana benthamiana and Vigna
unguiculata against aphid-mediated virus transmission as
compared to the naked dsRNA. However, even though
exogenous use of RNAi-inducing molecules for crop
improvement still has advantages over pesticides, because of
its decreased toxicity, effective use of RNAi still faces its own
obstacles.

Application of Nanoparticles
Applications of Nanotechnology to Increase the
Production Rate and Crop Yield
Different methods such as plant breeding, fertilizers, and plant
protection products have been used for increasing the crop yield
(Usman et al., 2020). The decline in agricultural productivity has
been reported since the green revolution which needs another
revolution in agricultural technology (Ghidan and Al Antary,
2019). Nanotechnology is a quickly emerging field with the
possibility to advance forward the agriculture and food
industry with new devices and tools which guarantee to
increase food production in a sustainable manner and to
protect crops from various diseases (Moulick et al., 2020). The
management of the primary production of crops highly depends
on twomain fundamental aspects: increased crop production and
nutrient use efficiency (Usman et al., 2020). Nanofertilizers and
nanobionics bothmeet these two aspects and play important roles
in agriculture by increasing the production rate and crop yield
(Shang et al., 2019).

Nanofertilizers
The consistently growing human population is creating pressure
for the agriculture sector to fulfill their continuously increasing
demands (Zulfiqar et al., 2019). Chemical fertilizers that are
generally used for improving crop productivity have major
adverse environmental and ecological effects (Pirzadah et al.,
2020). Nanotechnology which utilizes the small size of NPs (less
than 100 nm) with unique properties such as higher absorption
rate, utilization efficacy, and minimum losses may offer an
exceptional opportunity to create a concentrated source of
plant supplements (Iqbal, 2019). Nanofertilizers are being
synthesized by encapsulating the plant nutrients into
nanomaterials and delivering them in the form of nano-sized
emulsions (Kah, 2015). The uptake and deep penetration of
nanomaterials are facilitated by the nanopores and stomatal
openings in plant leaves leading to higher nutrient use
efficiency. Plasmodesmata which are nanosized channels
between cells facilitate higher transport and delivery of
nanofertilizers (Pirzadah et al., 2020). The increased efficiency
of utilization causes significantly less nutrient losses of
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nanofertilizers which ultimately leads to higher productivity and
nutritional quality of various crops.

Different approaches, such as top-down, bottom-up and
biological methods (especially endophytic), are generally used
for the synthesis of NPs as nanofertilizers (Shang et al., 2019;
Messaoudi and Bendahou, 2020). Nanofertilizers are generally of
two types, macronutrient nanofertilizers and micronutrient
nanofertilizers. Different macronutrients such as nitrogen,
phosphorus, potassium, magnesium, sulphur and calcium
encapsulated with NPs reduce their overall requirements and
deliver precise amount of nutrients to the crops (Zulfiqar et al.,
2019). Nanofertilizers consist of one or moremacronutrients with
specific NPs. Nanofertilizers such as zeolites, hydroxyapatite and
mesoporous silica NPs containing nitrogen macronutrient have
been reported to show promising results by increasing the
production and yield in different food crops (Fatima et al.,
2020). Nanofertilizers are also synthesized by encapsulating
the micronutrients to meet the requirements of different crop
plants. Zinc (Zn) plays a very important role in plant growth by
acting as a regulatory cofactor for various enzymes (Umair
Hassan et al., 2020). Zinc has also been reported to provide
protection to the plants against different pathogens (Cabot et al.,
2019). Boron is also very important for the growth and
development of plants as it is involved in the biosynthesis of
the cell wall and its lignifications (Wimmer et al., 2019). Hence, it
is crucial to apply the appropriate amount of Zn and B to different
food crops for higher yield and good quality. Davarpanah et al.
(2016) studied the effect of three different concentrations of
nanofertilizers of Zn and B on the yield and quality of
pomegranate and observed that the maximum fruit yield along
with good quality was improved by the application of low
amounts of B and Zn. In another study, the fruit yield and
growth of shoots was increased in cucumber seedlings grown in
nutrient solution containing rubber type NPs as Zn source as
compared to commercial Zn sulphate fertilizer (Moghaddasi
et al., 2013).

Further, Tarafdar et al. (2014) developed zinc nanofertilizers
for the enhancement of crop production in pearl millet
(Pennisetum glaucum L.) and found that the growth and yield
of the crop were significantly enhanced by the use of zinc
nanofertilizers. Several studies have reported the effect of
different nanofertilizers on increased crop production in many
cereals (Jyothi and Hebsur, 2017). Maghemite NPs improve crop
production and stress tolerance by reducing the hydrogen
peroxide content as well as lipid peroxidation in Brassica
napus plants (Palmqvist et al., 2017). Fe is also a very
important micronutrient for the growth and development of
plants. Hu et al. (2017) studied the effect of different
concentrations of iron oxide NPs and ferric ions on the
physiological changes in Citrus maxima plants and
demonstrated that the effect of nanofertilizers on plants was
different at different concentrations. At very low concentrations
there was no effect on the plants whereas at very high
concentrations, plants were negatively influenced. This
suggests that the effect of iron oxide NPs was concentration-
dependent. Manganese (Mn) also plays an important role in
various physiological processes by acting as a cofactor of various

enzymes. Stabilized NPs of copper, zinc, manganese, and iron
oxide NPs showed different effects on lettuce seedlings. Mn and
Fe NPs enhanced plant growth whereas CuO NPs were more
toxic than the Cu ions. The toxicity of ZnO NPs was similar to Zn
ions (Liu et al., 2016).

Nanobionics
Plant nanobionics is a combination of plant biology and
nanotechnology and it deals with the enhancement of plant
productivity by improving plant growth development and
photosynthetic efficiency (Sharma and Kar, 2019; Ansari et al.,
2020). Nanobionics use nanomaterials for the enhancement of
plant productivity (Lew et al., 2020). Photosynthetic efficiency
can be improved by widening the range of solar light absorption
near-infrared spectra. Nanomaterials with unique properties and
higher stability can form chloroplast based photocatalytic
complexes with enhanced and improved functional properties
(Marchiol, 2018). Different studies have reported on the positive
effects of nanomaterials on photosynthesis (Qi et al., 2013;
Giraldo et al., 2014). The high photocatalytic activity of
titanium oxide nanoparticles (nTiO2) play a role in the
enhancement of absorption of light by the leaves and increase
photosynthesis. nTiO2 enhances the photosynthetic rate by
influencing the electron chain transport, photophosphorylation
activity, Rubisco carboxylation, and protection of chloroplast
from ageing (Linglan et al., 2008; Qi et al., 2013). It also
positively influences water conductance and transpiration.
Giraldo et al. (2014) studied the effect of single-walled carbon
nanotubes (SWCNTs) on the photosynthesis process in leaves of
Arabidopsis thaliana and isolated chloroplasts of Spinacia
oleracea. The authors observed that the shelf life of isolated
chloroplast and electron transport rate was highly increased in
the treated leaves and chloroplast. The advantage of
semiconductor SWCNTs over chloroplasts was having high
electrical conductance and the ability to capture solar energy
in wavelengths that were weakly absorbed by chloroplasts. Three
times higher photosynthetic activity and enhanced electron
transport rate were promoted by the SWCNT-chloroplast
assemblies than control (Giraldo et al., 2014). From one
perspective, there is no uncertainty that further comprehensive
research would be expected to assess the impacts of plant
nanobionics on enhanced production of sugars as well as crop
yield. Then again, the upgrade of a fundamental plant function
because of the consolidation of nanomaterials was shown as
confirmation of the concept.

ROLE OF NANOTECHNOLOGY IN CROP
PROTECTION

Antimicrobial Agents
Nanoparticles are one of the most promising agents to prevent the
emergence of antimicrobial resistance against pathogenic
microbes such as Fusarium oxysporum, Alternaria solani,
Aspergillus niger, Ralstonia solanacearum, and Erwinia
amylovora (Wang Y. et al., 2017; El-Batal et al., 2020).
Acording to Chavan and Nadanathangam (2019), the use of
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higher concentrations of Ag and ZnO NPs (3,000 μg/ml) affect the
three groups of agriculturally relevant beneficialmicroorganisms. The
exclusive physiochemical properties of NPs and growth inhibition of
pathogens make it a potential candidate for antimicrobials (Karaman
et al., 2017). Differentmetals such as silver and copper have long been
used for treatment against pathogenic microbes. It is very obvious
that some of the metallic compounds have antimicrobial properties.
Lately, some of the metals in the form of NPs have been used as
promising antimicrobial agents. Various kinds of metallic NPs viz.
aluminium, copper, gold, magnesium, silver, titanium, and zinc NPs
are found to have antimicrobial properties (Sánchez-López et al.,
2020; Table 1). Different NPs inhibit microbial growth through
different mechanisms (Figure 8).

Antibacterial Activity of Different
Nanoparticles
Silver Nanoparticles (Ag-NPs)
Different salts of silver and their derivatives are potential antimicrobial
agents (Zorraquín-Peña et al., 2020). The antimicrobial properties of
nanosilver particles are reported on by several researchers (Silva et al.,

2017; Loo et al., 2018; Sánchez-López et al., 2020). Different
mechanisms have been put forward to clarify the inhibitory impact
of silver nanoparticles (Ag-NPs) on microscopic organisms (Le Ouay
and Stellacci, 2015; Liao et al., 2019; Qais et al., 2019). One of the most
important reasons for the antimicrobial properties of silver is high
affinity towards sulphur and phosphorus. Ag-NPs react with the
sulphur-containing amino acids found in the protein of bacterial cell
membranes and affect the viability of bacterial cells (Roy et al., 2019).
NPs react with the phosphorusmoiety of the DNA and sulphur of the
proteins and inhibit the DNA replication and enzymatic processes of
the bacterial cell (Liao et al., 2019). Greater permeability of the cell
occurs through the attachment of Ag-NPs (with a size less than
20 nm) to the sulphur-containing amino acids of the cell membrane
which causes the death of the bacterial cell (Slavin et al., 2017; Guilger-
Casagrande and Lima, 2019). Various studies have reported on the
dose dependent-effect of Ag-NPs with the size range of 10–15 nm on
the Gram-positive and Gram-negative bacteria (Pazos-Ortiz et al.,
2017; Slavin et al., 2017; Chittora et al., 2020). At both high and low
concentrations, silver NPs were found to inhibit the growth of
bacterial cells (Wang Y. et al., 2017). In different mechanisms of
inhibition of bacterial cells such as uncoupling of respiratory

TABLE 1 | Antimicrobial activities of different nanoparticles.

Nanoparticles Methods of
synthesis

Target organism Mechanism of action References

Antibacterial activity

Silver nanoparticle Immersion method Escherichia coli, Strptomyces aureus, Bacillus
subtilis, Staphylococci, Pseudomonas
aeruginosa

Generation of ROS,
Degradation of cell
membrane, Leakage of
cellular contents, Interaction
with phosphorus moieties in
DNA resulting in inactivation
of DNA replication, Reaction
with sulfur-containing
amino acids leading to the
inhibition of enzyme
functions

Lala et al. (2007), Andrade et al.
(2016), Khatoon et al. (2017)

Gold nanoparticle Immersion method B. subtilis, E. coli, Klebsiella mobilis,
Staphylococcus aureus

Zhang et al. (2008), Rai et al. (2010)

Copper oxide
nanoparticle

Gel combustion
method

E. coli, P. aeruginosa, Staphylococcus aureus, B.
subtilis

Ren et al. (2009), Azam et al. (2012b)

Zinc oxide
nanoparticle

Green synthesis E. coli, Salmonella enteritidis, B. subtilis,
Staphylococcus aureus, Proteus mirabilis,
Serratia marcescens

Jin et al. (2009), Gunalan et al. (2012),
Singh V. P. et al. (2018)

Magnesium oxide
nanoparticle

Aerogel method E. coli, B. subtilis, Bacillus megaterium Richards et al. (2000), Koper et al.
(2002)

Aluminum oxide
nanoparticle

Immersion method E. coli Li and Logan, (2004)

Titanium dioxide
nanoparticle

Batch technique E. coli, Staphylococcus aureus, Lysteria
monocystogenes

Hu et al. (2006), Chawengkijwa-nich
and Hayata (2008)

Antifungal activity

Silver nanoparticle Immersion
method

Aspergillus niger, Candida albicans, Candida tropicalis,
Saccharomyces cerevisiae, Penicillium citrinum

Degradation of cell
membrane

Zhang et al. (2008), Li et al. (2013),
Oves et al. (2016), Khatoon et al.
(2017)

Gold nanoparticle Green synthesis Puccinia graminis tritci, A. niger, Aspergillus flavus, C.
albicans

Jayaseelan et al. (2013a)

Copper nanoparticle Gel combustion
method

C. albicans Usman et al. (2013)

Zinc oxide
nanoparticle

Green synthesis A. niger, Microsporum cannis El-Nahhal et al. (2020), Singh V. P. et
al. (2018)

Antiviral activity

Silver nanoparticle Immersion
method

HIV-1, Influenza virus, Monkey pox virus, Herpes
simplex virus

Inhibition of virion
binding to the cell
surface

Baram-Pinto et al. (2009), Lara et al.
(2010)

Gold nanoparticle Immersion
method

HIV, Influenza virus Di Giancivincenzo et al. (2010)
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electron transport, blocking of respiratory chain enzymes and
interference with the membrane permeability are shown by
silver ions at low concentrations. Additionally, at higher
concentrations, nucleic acids, and cytoplasmic contents of
bacterial cells are found to be affected by silver ions (Dakal
et al., 2016).

Different techniques such as TEM, SEM, and X-ray
microanalyses were used to show the effect of Ag-NPs on
the cell structures of Gram-positive and Gram-negative
bacteria (Jung et al., 2008). Silver ion-induced almost
similar morphological and physiological changes in both
E. coli, and Staphylococcus aureus bacteria. But the effect
of silver ion was higher in Gram-negative bacteria. It may be
because of the presence of a thick layer of peptidoglycan in
the Gram-positive bacteria which can prevent the inhibitory
effect of silver ions up to some extent (Jung et al., 2008). The
general mechanism of the death of bacterial cells by the Ag-
NPs may be the interaction of silver ions to the nucleic acids.
This leads to the impairment of DNA replication. Further,
Smetana et al. (2008) studied the antimicrobial effect of Ag-
NPs (with a size range of 2–5 nm) using green fluorescent
protein (GFP)-expressing recombinant E. coli. Ag-NPs with a
size of less than 10 nm causes perforation of the cell wall and
by attaching to the bacterial cell, leads to death. Silver ions
were also reported to induce reactive oxygen species in
bacteria which leads to the destruction of the bacterial cell
(Meena et al., 2013; Shaikh et al., 2019). It has been reported
that the antimicrobial activity of Ag-NPs was enhanced by the
combination of polymer even at low concentrations (Chen
et al., 2016; Abbas et al., 2018; Batista et al., 2018). Chitosan, a
cationic polysaccharide was used along with Ag-NPs to
improve the antimicrobial properties of NPs (Abdelgawad
et al., 2014). Cationic chitosan decreased the osmotic stability

of the cell as well as leakage of intracellular constituents by
binding with the negatively charged cell membranes.

The antimicrobial effect of chitosan Ag-NPs is much
higher than its individual constituents i.e. chitosan and
silver. Both chitosan and silver work together in chitosan
Ag-NPs to destruct the bacterial cell (Regiel-Futyra et al.,
2017). Chitosan attaches to the negatively charged plasma
membrane of the bacteria whereas silver ions produce pores
on the bacterial wall, thereby causing rapid destruction of the
bacteria. Ag induced the expression of stress-related proteins
such as envelope proteins and heat shock proteins on the cell
membrane of the bacterial cell which has been confirmed by the
proteomic approach (Zienkiewicz-Strzałka et al., 2020). Further,
Tormena et al. (2020) evaluated the antimicrobial activity of Ag-
NPs which were synthesized by the biological method using
Handroanthus impetiginosus underbark extract.

Gold Nanoparticles (Au-NPs)
In recent decades, various investigations on the antibacterial
activity of Au-NPs have been reported (Shamaila et al., 2016;
Katas et al., 2019). The enhanced antimicrobial effect of Au-
NPs have been demonstrated when it is used in combination
with antibiotics, drugs, vaccines, and antibodies (Tao, 2018).
Gu et al. (2003) reported the enhanced antibacterial effect of
vancomycin antibiotic against enterococci after coating with
Au-NPs. The improved efficacy of cefaclor and Au-NPs were
reported against Staphylococcus aureus and E. coli when both
were used together. Both cefaclor and Au-NPs show various
mechanisms for inhibition of the growth of bacterial cells.
Binding of Au-NPs with the DNA of the bacterial cell played
an important role in the death of the bacterial cell. Cefaclor
and Au-NPs both inhibited the synthesis of cell walls by
creating holes which caused leakage of the contents of the

FIGURE 8 | Different mechanisms of nanoparticles as antimicrobial agents.
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bacterial cell (Rai et al., 2010). Antibacterial effects of Au-NPs
were enhanced against the Gram-positive Staphylococcus
epidermidis and the Gram-negative Enterobacter aerogenes
when used in combination with antibiotic kanamycin. The
antibacterial effect of both kanamycin and Au-NPs when
used together was much higher than the individual use
(Payne et al., 2016). Additionally, Rattanata et al. (2016)
studied the combined effect of gallic and Au-NPs against
the food borne pathogens Plesiomonas shigelloides and S.
flexneri B. and demonstrated by the use of Fourier-
transform infrared spectroscopy that the biomolecules of
the bacterial cell were destructed by the Au-NPs–gallic
acid. Further, Bagga et al. (2017) evaluated the
antibacterial effect of Au-NPs along with levofloxacin
antibiotic against Staphylococcus aureus, E. coli and P.
aeruginosa. Analysis of the underlying mechanism revealed
that the effect of gold nanoparticles-levofloxacin conjugate
was much pronounced than when used alone (Bagga et al.,
2017). A study conducted by Wongyai et al. (2020) on the
antibacterial effect of greenly synthesized Au-NPs showed
effective antibacterial activity against Staphylococcus aureus,
methicillin-resistant Staphylococcus aureus, and Acinetobacter
baumannii.

Magnesium Oxide Nanoparticles
MgO-NPs have great potential as an antimicrobial agent (Cai
et al., 2018). MgO-NPs have been reported as a potential
antimicrobial agent either used individually or in combination
with other antimicrobial agents (Imani and Safaei, 2019). In one
study, Cai et al. (2018) demonstrated the superior antibacterial
properties of MgO-NPs against R. solanacearum at a very low
concentration (250 μg/ml). Disruption of nascent biofilms and
death of bacterial cell by the production of ROS, increased
calcium ion concentrations and quorum sensing was reported
as different antimicrobial mechanisms of the MgO-NPs against
planktonic bacteria (Nguyen et al., 2018). In another study, He
et al. (2016) studied themechanism of action ofMgO-NPs against
some bacteria and used scanning electron microscopy technique
to show the cell damage in Campylobacter jejuni, E. coli, and
Salmonella enteritidis bacteria after treatment with MgO-NPs.
The antibacterial effect of MgO-NPs was shown against
Streptococcus mutans and Streptococcus sobrinus bacteria
which was evident by the formation of a zone of inhibition
using agar disk diffusion technique (Noori and Kareem, 2019).
Similarly, Ibrahem et al. (2017) studied the role of MgO-NPs
which were synthesized by the A. niger method as an effective
antimicrobial agent against Staphylococcus aureus and P.
aeruginosa. NPs synthesized by the green method proved to be
effective antibacterial agents against various bacteria. MgO-NPs
which were greenly synthesized by using the Dalbergia sissoo
extract showed excellent antibacterial activity against E. coli and
Ralstonia solanacearum (Khan et al., 2020).

Zinc Oxide Nanoparticles
ZnO-NPs are considered to be highly toxic amongst the
different metallic NPs (Xie et al., 2011). Use of ZnO-NPs in
agricultural and food industries is highly recommended

because of selective toxicity against bacteria and negligible
toxic effects on human cells (Espitia et al., 2012). Different
studies have reported the antimicrobial activity of ZnO-NPs
against different food-borne pathogens (Sirelkhatim et al.,
2015; Khatami et al., 2018). A study conducted by Jin et al.
(2009) on the antimicrobial effect of ZnO-NPs in culture
media showed promising results against Listeria
monocytogenes, Salmonella enteritidis, and E. coli. ZnO-NPs
completely lysed some food borne pathogens such as S.
typhimurium and Staphylococcus aureus and showed strong
antimicrobial activity (Souza et al., 2019). Tiwari et al. (2018)
reported the antibacterial mechanism of ZnO-NPs against
Acinetobacter baumannii which is a multi-drug resistant
pathogen. In another study, Naseer et al. (2020) used leaf
extracts of Cassia fistula and Melia azedarach plants and
synthesized ZnO-NPs which revealed improved antibacterial
activity against E. coli and Staphylococcus aureus. Various
mechanisms have been put forward to explain the
antibacterial activity of the ZnO-NPs. The production of
reactive oxygen species is one of the important mechanisms
of the ZnO-NPs which causes lipid peroxidation and leakage of
the cellular contents (Tiwari et al., 2018). ZnO-NPs also caused
disruption of the cell membrane of the bacterial cell which
leads to cell death (Qiu et al., 2020). Zn ions which were
released from the Zn NPs were also reported to interact with
the cell membrane and cellular contents of the bacterial cell
(El-Nahhal et al., 2017).

Copper Oxide Nanoparticles (CuO-NPs)
The unusual crystal structure and high surface area make CuO-NPs
an effective antimicrobial agent (Mahmoodi et al., 2018). Generally,
the high concentrations of CuO-NPs are required for their better
antibacterial activity (Concha-Guerrero et al., 2014). CuO-NPs were
reported to possess antimicrobial activity against different bacterial
pathogens such as E. coli, E. faecalis, S. flexneri, and S. typhimurium
(Ahamed et al., 2014). In one study, Amiri et al. (2017) employed an
agar diffusion test to assess the antibacterial properties of CuO-NPs
against Streptococcus mutans and Lactobacilli. CuO-NPs exhibited
effective results against both bacteria. CuO-NPs biosynthesized by
using the leaf extracts of papaya, were found to have excellent
antibacterial activity against a soil-borne pathogen R. solanacearum
(Chen et al., 2019b). CuO-NPs caused damage to the cell membrane
of the pathogenic bacterium and ultimately leakage of the cellular
contents. It also generates toxic hydroxyl radicals which ultimately
causes the death of the bacterial cell (Taran et al., 2017). CuO-NPs
were biosynthesized by the actinomycetes and enhanced
antimicrobial activity was reported by Nabila and Kannabiran
(2018) against some bacterial pathogens. Similarly, Qamar et al.
(2020) synthesized CuO-NPs from Momordica charantia plants
with improved antibacterial activity against different bacterial
pathogens such as Bacillus cereus, Corynebacterium xerosis, and
Streptococcus viridians.

Aluminium Oxide Nanoparticles (Al2O3-NPs)
Aluminum oxide NPs show comprehensive applications as
antimicrobial agents (Aderibigbe, 2017). Different studies have
reported on the antimicrobial applications of Al2O3-NPs
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TABLE 2 | Different nanoparticles as carriers of various pesticides (fungicides, insecticides and herbicides).

Carriers of fungicides

Nanoparticles Methods of synthesis Fungicides Target organism References

Polymeric nanoparticles (Polyvinylpyridine
and polyvinylpyridine-co-styrene as a
polymer)

Interfacial polymerization Tebuconazole and Chlorothalonil Gloeophyllum trabeum Liu et al. (2001, 2002)

Polymeric nanoparticles (Polyvinylpyridine
and polyvinylpyridine-co-styrene as a
polymer)

Interfacial polymerization Tebuconazole, Chlorothalonil, and
KATHON 930

Trametes versicolor, Gloeophyllum trabeum Liu et al. (2002)

Bacterial ghost from Pectobacterium
cypripedii

Bacterial ghost technology Tebuconazole Erysiphe graminis, Leptosphaeria nodorum,
Pyrenophora teres, Sphaerotheca fuliginea

Hatfaludi et al. (2004)

Porous hollow silica nanoparticles Surfactant templating
method

Validamycin – Liu et al. (2006)

Nano sized calcium carbonate Reversed-phase
microemulsion method

Validamycin Rhizoctonia solani Qian et al. (2011)

Porous hollow silica nanospheres Miniemulsion method Tebuconazole – Qian et al. (2013)
Polylactic acid nanoparticles Electrospinning method Crude extraxt of Chaetomium globosum and

Chaetomium cupreum
– Dar and Soytong (2014)

Mesoporous silica nanospheres Sol-gel process Metalaxyl Wanyika, (2013)
Chitosan-Lactide Copolymer
Nanoparticles

Nano-precipitation method Pyraclostrobin Colletotrichum gossypii Southw Xu et al. (2014)

Chitosan-polylactide (CS-PLA) graft
copolymer nanoparticles

Nano-precipitation method Flusilazole – Mei et al. (2014)

Solid lipid nanoparticles Solvent evaporation method Carbendazim and Tebuconazole – Campos et al. (2015)
Mesoporous silica nanoparticles Encapsulation method Allyl isothiocyanate, Carvacrol,

Cinnamaldehyde, Diallyl disulfide, Eugenol,
Thymol, and Thymoquinone

Aspergillus niger Janatova et al. (2015)

Lecithin/Chitosan nanoparticles Ionic interaction method Kaempferol Fusarium oxysporum Ilk et al. (2017)
Solid lipid nanopartilces High shear homogenization

and Ultra sound technique
Zataria multiflora essential oil Aspergillus ochraceus, A. niger, A. flavus,

Alternaria solani, Rhizoctonia solani, and
Rhizopus stolonifer

Nasseri et al. (2016)

Engineered gold nanoparticles Encapsulation method Ferbam – Hou et al. (2016)
Chitosan capped mesoporous silica
nanoparticles

Liquid crystal templating
method

Pyraclostrobin Phomopsis asparagi Cao et al. (2016)

Polymeric nanoparticles Ionic interaction method Carbendazim Fusarium oxysporum, Aspergillus
parasiticus

Kumar et al. (2017)

Mesoporous silica nanoparticles Sol-gel process Pyrimethanil – Zhao X. et al. (2017)
Mesoporous silica nanoparticles Sol-gel process Prochloraz Botrytis cinerea Zhao et al. (2018)
Chitosan nanoparticles Emulsion-ionic gelation

method
Clove essential oil Aspergillus niger Hasheminejad et al.

(2019)
Silver nanoparticles Encapsulation method Ginkgo fruit extract Bipolaria maydis Huang et al. (2018)
Chitosan nanoparticles Emulsion-ionic gelation

method
Cymbopogon martinii essential oil Fusarium graminearum Kalagatur et al. (2018)

Polybutylene succinate and polylactic acid
nanoparticles

Solvent evaporation method Azoxystrobin, Difenoconazole – Wang X. et al. (2018)

Mesoporous silicananoparticles Selective etching strategy
and subsequent annealing
treatment

Pyraclostrobin Phomopsis asparagi Cao et al. (2018)

Carrier of insecticides

Nanoparticles Methods of synthesis Insecticides Target organism References

Solid lipid naoparticles High pressure
homogenization technique

Artemisia arborescens L. essential oil Bemisia tabaci Lai et al. (2006)

Porous hollow silica nanoparticles
(PHSNPs)

Sol-gel method Avermectin – Wen et al. (2005), Li et al.
(2006), Li et al. (2007)

Polyethylene glycol (PEG) coated
nanoparticles

Melt-dispersion method Garlic essential oil Tribolium castaneum Yang et al. (2009)

Chitosan-coated beeswax solid lipid
nanoparticles (CH-BSLNPs)

Hot homogenization and
Sonication method

Deltamethrin – Nguyen et al. (2012a)

Nanostructured lipid carriers (NLCs) Hot homogenizationand
Sonication method

Deltamethrin – Nguyen et al. (2012b)

Silica nanoparticles Sol-gel process Chlorfenapyr Cotton Bollworm larva Song et al. (2012)
Carboxymethyl chitosan with ricinoleic
acid (R-CM-chitosan) nanoparticles

Emulsion ionic gelation
method

Azadirachtin – Feng and Peng (2012)

Chitosan copolymer nanoparticles Solvent evaporation method Chlorpyrifos – Zhang et al. (2013)
Octahydrogenated retinoic acid-
conjugated glycol chitosan nanoparticles

Chemical Conjugation
method

Azadirachtin Tobacco cutworm culture Lu et al. (2013)

Sodium alginate nanoparticles Emulsion cross linking
technology

Imidacloprid Leafhoppers Kumar et al. (2014)

Silica nanoparticles Immersion method α-Pinene and Linalool Spodoptera litura F., Achaea janata L. Rani et al. (2014)
Porous silica nanoparticles Hydrophilic delivery method Abamectin – Wang Y. et al. (2014)

(Continued on following page)
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(Prashanth et al., 2015; Sánchez-López et al., 2020). Bala et al.
(2011) prepared the alumina silver composite NPs and
demonstrated the enhanced antimicrobial activity of NPs
against E. coli and Staphylococcus epidermidis. Al2O3-NPs
cause cell death by attaching to the cell surface of bacteria
(Aderibigbe, 2017). In another study, Ansari et al. (2015)
showed improved antibacterial activity of Al2O3-NPs against
P. aeruginosa which were synthesized by biological methods
using leaf extracts of lemongrass. Al2O3-NPs were
synthesized by combustion methods and their effects were
investigated against some Gram-positive and Gram-negative
bacteria. The synthesized aluminium oxide NPs showed
considerable effect against all the tested strains of bacteria
(Prashanth et al., 2015). Further, Brintha and Ajitha (2016)
prepared aluminium doped NPs and examined their

antibacterial activity against some pathogenic bacteria.
Similarly, Manyasree et al. (2018) studied the antibacterial
activity of Al2O3-NPs against different bacteria such as
Staphylococcus aureus, Streptococcus mutans, E. coli, and P.
vulgaris. Green synthesized Al2O3-NPs showed enhanced
antibacterial activity against Gram-positive and Gram-
negative bacteria (Manikandan et al., 2019).

Titanium Dioxide Nanoparticles (TiO2-NPs)
Synthesis of metal oxide NPs via. chemical methods cause serious
problems and are also harmful to the environment (Nayantara
and Kaur, 2018). NPs synthesized by biological methods are safe,
cost-effective, and environmentally friendly (Singh J. et al., 2018).
Different studies have reported the synthesis of TiO2-NPs by
biological methods called green synthesis. Green synthesis of

TABLE 2 | (Continued) Different nanoparticles as carriers of various pesticides (fungicides, insecticides and herbicides).

Carriers of fungicides

Nanoparticles Methods of synthesis Fungicides Target organism References

MgAl layered double hydroxide
nanoparticles

Solvent evaporation method Anacardic acid Spodoptera litura Nguyen et al. (2014)

Silica nanocapsules Bio-inspired templating
platform technology

Fipronil Termites Wibowo et al. (2014)

Polydopamine microcapsule Emulsion interfacial-
polymerization method

Avermectin – Jia et al. (2014)
Sheng et al. (2015)

Dendrimer-based nanocarrier Conjugation method Thiamethoxam Heliothis armigera Liu et al. (2012)
Nano sized capsule Encapsulation method Pyrethroid Danio rerio Meredith et al. (2016)
Polymer-coated silver nanoparticles Immersion method Organochlorine – Glinski et al. (2016)
Silver nanoparticles Conjugation method Suaeda maritima leaf extract Aedes aegypti, Spodoptera litura Suresh et al. (2018)
Chitosan nanoparticles Cross-linking technology Ponneem Heliothis armigera Paulraj et al. (2017)
Bioinspired nanoparticles Solvent evaporation

technology
Avermectin Liang et al. (2017)

Castor oil-based polyurethanes Emulsion solvent evaporation
method

Avermectin Zhang et al. (2017)

Chitosan and Zinc oxide based
nanoparticles

Sol-gel and Ion tropic gelation
technique

Azadirachtin Caryedon serratus O. Jenne et al. (2018)

β-cyclodextrin nanoparticles Kneading method Carvacrol and Linalool Tetranychus urticae, Helicoverpa armigera Campos et al. (2018)
Chitosan/gum arabic nanoparticles Encapsulation method Geraniol Bemisia tabaci de Oliveira et al. (2018a)
Chitosan/tripolyphosphate nanoparticles Encapsulation method Satureja hortensis L. Tetranychus urticae Koch Ahmadi et al. (2018)
Zein nanoparticles Anti-solvent precipitation

method
Geraniol and R-citronellal Tetranychus urticae Koch de Oliveira et al. (2018b)

Chitosan/sodim tripolyphosphate
nanoparticles

Encapsulation method Nicotine hydrochloride Musca domestica Yang et al. (2018)

Hybrid magnetic nanocomposites Chemical bonding approach Benzenoid – Wang Y. et al. (2018)
α-Amylase and α-cyclodextrin based
hollow mesoporous silica nanoparticles

Encapsulation method Avermectin Plutella xylostella Kaziem et al. (2018)

Carrier of herbicides

Nanoparticle Methods of synthesis Herbicide Target organism References

Polymer montmorillonite nanoparticles Solution and solid state
reaction methods

Paraquat (PQ; 1,1′-dimethyl-(4,4′-bipyridium)
dichloride)

– Han et al. (2010)

Alginate/Chitosan nanoparticles Solution and solid state
reaction methods

Paraquat – dos Santos Silva et al.
(2011)

Manganese carbonate core shell
nanoparticles

Hydrothermal/
solvolthermal method

Pendimethalin – Kanimozhi and
Chinnamuthu (2012)

Polymeric poly (ε-caprolactone)
nanocapsules

Interfacial polymerization
method

Ametryn, Atrazine, and Simazine – Grillo et al. (2012)

Chitosan/tripolyphosphate nanoparticles Ionic gelification
technique

Paraquat – Grillo et al. (2014, 2015)

Solid lipid nanoparticles Emulisfication and
solvent evaporation
method

Simazine and Atrazine Raphanus raphanistrum de Oliveira et al. (2015)

Nanosized tubular halloysite and platy
kaolinite

Encapsulation method Amitrole – Tan et al. (2015)

Alginate/chitosan and chitosan/
tripolyphosphate nanoparticles

Ionotropic gelification
method

Imazapic and Imazapyr Bidens pilosa Maruyama et al. (2016)
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TiO2-NPs has shown that the NPs synthesized by biological
methods are much more effective against microbes (de
Dicastillo et al., 2020). Rajakumar et al. (2012) synthesized the
TiO2-NPs by using A. flavus fungus and showed enhanced
antibacterial activity of TiO2-NPs against E. coli. Increased
antibacterial activity of TiO2-NPs synthesized by using
Aeromonas hydrophila bacterium was shown against different
bacteria such as E. coli, P. aeruginosa, Staphylococcus aureus,
Streptococcus pyogenes, and E. faecalis (Jayaseelan et al., 2013a).
Subhapriya and Gomathipriya (2018) prepared the Trigonella
foenum-graecum extract mediated TiO2-NPs with enhanced
antibacterial activity against Staphylococcus aureus, K.
pneumoniae, E. faecalis, Streptococcus faecalis, E. coli, P.
eruginosa, P. vulgaris, B. subtilis and Yersinia enterocolitica.
Bavanilatha et al. (2019) reported on the synthesis of TiO2-
NPs by the root extracts of Glycyrrhiza glabra commonly
known as Licorice with the help of a precursor, titanium
oxysulfate. The general mechanism behind the antibacterial
activity of TiO2-NPs is the generation of ROS. Generated ROS
disrupts the cellular mechanisms of the bacteria and ultimately
causes cell death. TiO2-NPs also interfere with the cell signaling
pathways and cause changes in gene expression of the bacterial
cell by affecting the transcription factors. A study conducted by
Soo et al. (2020) on enhancing the antibacterial performance of
TiO2-NPs reported the superior activity of titanium dioxide
nanofibres coated with Ag-NPs as compared to intrinsic
titanium dioxide nanofibres.

Antiviral Activities of Nanoparticles
There are several studies based on the antibacterial property of
metal NPs, yet the antiviral properties of metal NPs have limited
reports. Some researchers have reported on the antiviral
properties of different NPs (Haggag et al., 2019; Meléndez-
Villanueva et al., 2019). The diseases caused by viruses present
testing issues with overall social and monetary ramifications.
Synthesizing antiviral drugs that can focus on the virus and
maintain host cell viability is challenging (Baram-Pinto et al.,
2009). Metal NPs have been proposed as antiviral systems
exploiting the core material and additionally the ligands shell
(Di Gianvincenzo et al., 2010). Haggag et al. (2019) studied the
antiviral properties of Ag-NPs biosynthesized by Lampranthus
coccineus and Malephora lutea. Green synthesized Ag-NPs
showed remarkable antiviral activity against HSV-1, HAV-10,
and CoxB4 virus. Khandelwal et al. (2014) reviewed the
application of Ag-NPs as potential antiviral agents for
different viruses. Ag-NPs have been reported to show antiviral
activity against HIV-1 viruses through inhibition of CD4
dependent virion binding as well as prevention of the post-
entry phase of the HIV-1 life cycle (Lara et al., 2010). Au-NPs
have also been demonstrated for their role as an antiviral agent.
Au-NPs biosynthesized by using garlic extracts showed potent
virucidal effects against the measles virus (Meléndez-Villanueva
et al., 2019).

Antifungal Activities of Nanoparticles
Unlike the antibacterial properties of metal NPs, there are limited
investigations on the antifungal activity of metal NPs. Some

studies have reported on the antifungal activity of different
metal NPs. Colloid Ag-NPs were reported to show antifungal
activity against A. niger and Penicillium citrinum (Zhang et al.,
2008). Haghighi et al. (2011) investigated the antifungal activity
of TiO2/ZnO nanostructures against C. albicans and found that
the TiO2/ZnO nanowires showed improved antifungal activity as
compared to both individual NPs. A significant improvement in
inhibition of growth of A. niger fungus was shown by the use of
ZnO nanoneedles which were synthesized through the co-
precipitation method (Singh J. et al., 2018). In one study, El-
Nahhal et al. (2020) synthesized ZnO-NPs by the deposition onto
cotton fibers and showed improved antifungal activity against
Microsporum cannis. Further, Khatoon et al. (2017) evaluated the
antifungal activity of Ag-NPs, synthesized by the tri-sodium
citrate assisted chemical approach. Authors found that the Ag-
NPs showed significant antifungal activity against Saccharomyces
cerevisiae and C. albicans fungi. Antifungal activity of Ag-NPs
prepared from the extract of a bacterial strain was demonstrated
against C. albicans fungus (Oves et al., 2016). Jayaseelan et al.
(2013b) showed improved antifungal activity of green
synthesized Au-NPs by the seed extract of Abelmoschus
esculentus plants against Puccinia graminis, C. albicans, A.
niger, and A. flavus. The growth of two different species of
Candida fungus viz. Candida tropical and C. albicans were
found to be inhibited by the graphene oxide-based silver
nanocomposites (Li et al., 2013). Cu-NPshave also been
reported to show antifungal activity against C. albicans fungus
(Usman et al., 2013).

Advantages and Challenges of
Nanotechnology-Based Antimicrobial
Analysis
One of the promising approaches for the smart delivery of
antibacterial compounds is the use of nanocarriers (Din et al.,
2017). Several studies have demonstrated the advantage of
antimicrobial NPs over free antimicrobial compounds (Beyth
et al., 2015; Wang Y. et al., 2017; Varier et al., 2019). Stability,
solubility, and side effects are the important issues of pesticide use
which are reduced by nanocarriers. Nanocarriers have enabled
the use of a combination of more than one antimicrobial
compound into the carrier matrix (Karaman et al., 2017). The
surface alterations can be completed by focusing on ligands on
the nanocarriers that are not known by the immune system and
instead are explicitly focused on unique microbes. The
organization of antimicrobial agents utilizing NPs can enhance
the general pharmacokinetics by advancing the therapeutic index,
broadening drug circulation, and maintaining controlled drug
discharge. Many pathogenic bacteria develop antibacterial
resistance which is prevented by the use of antibacterial NPs
(Baptista et al., 2018). Bacteria finds it very difficult to develop
resistance against antibacterial NPs because of the modularity in
their design. Antibacterial NPs are composed of an antibacterial
core material (e.g. metal or metal oxide) surrounded with an
antibacterial polymeric shell or coating, in which antibiotic drugs
could be loaded (Lam et al., 2016). Wu et al. (2016) reported the
destruction of bacterial cell walls through a nano-piercing process
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after the dissolution of the polymeric shells by the core material of
zinc dopped copper oxide antibacterial NPs. Differing
opportunities for combination therapy along with existing
antimicrobials to arrive at synergistic impacts are clear. In
spite of the fact that NP-based antibacterial treatments
guarantee huge advantages and advances in tending to the key
obstacles in treating infectious diseases, there are difficulties in
interpreting this energizing innovation for clinical use (Karthikeyan
et al., 2016). These incorporate assessing the collaborations of NPs
with cells, tissues, and organs, which as needs be recalibrates dosages
and distinguishes legitimate organization courses to acquire
therapeutic impacts. Henceforth, to give a clinical interpretation of
nanomaterials, normalized in vitro experimentations that will give in
vivo applicable information ought to be built up (Huh and Kwon,
2011).

Biostimulants
Biostimulants are natural or artificial substances, generally used
for the improvement of the quality of the plants. They promote
plant growth, increase tolerance against biotic and abiotic
stresses, and enhance the yield and quality of crop plants. The
need for fertilizers has also reduced because of use of
biostimulants (Rouphael and Colla, 2020). NPs can also be
used as biostimulants as they enhance the quality of crops.
Several studies have reported on the biostimulant properties of
different NPs (Byczyńska, 2017; Juárez-Maldonado et al., 2019;
Kumaraswamy et al., 2019). Van et al. (2013) demonstrated the
increase in the chlorophyll content, net photosynthetic rate, and
nutrient uptake in coffee plants after treatment with CS-NPs.
Further, Kumaraswamy et al. (2019) reported the biostimulant
properties of the salicylic acid chitosan nanoparticles (SA-CS
NPs) for promoting plant growth and defense mechanisms in
maize. Different mechanisms such as elevation of antioxidant-
defense enzyme activities, balancing of reactive oxygen species
(ROS), and cell wall reinforcement by lignin deposition were used
by SA-CS NPs to enhance the growth and defense system of the
maize plants. Selenium nanoparticles (Se-NPs) biosynthesized by
Trichoderma spp. showed growth-promoting characters in Vigna
radiata plants (Keswani et al., 2014; Keswani et al., 2016; Bărbieru
et al., 2019). Venkatachalam et al. (2017) studied the plant
growth-promoting role of phycomolecules coated ZnO-NPs
with phosphorus (P) supplementation in cotton and observed
that the combination of bioengineered ZnO-NPs with P
supplementation resulted into an increase in biomass,
photosynthetic pigments, total soluble proteins, and
antioxidant enzyme activities. Nano-silver also possesses the
plant growth-promoting characteristics which can be used as a
potential plant biostimulant (Byczyńska, 2017).

Pesticide Carriers
It has been estimated that almost 90% of applied pesticides are
lost due to leaching, evaporation, and degradation (Lushchak
et al., 2018). The loss of pesticides causes environmental pollution
and increases the cost of pest management. The use of NPs as
pesticide carriers have many advantages viz., enhanced
bioavailability, improved specificity, ease and safety in
handling, minimum ecological damage, and lower application

rates (Worrall et al., 2018). Different NPs as pesticide carriers are
listed in Table 2. The increased cost and toxicity of low water-
soluble insecticides can be minimised by the use of NPs as carriers
which can increase the solubility (Campos et al., 2018). Several
studies have reported the use of NPs for the smart delivery of
various insecticides (Lu et al., 2013; Zhang et al., 2013; Wang Y.
et al., 2014; Campos et al., 2018). Lu et al. (2013) demonstrated
the role of CS-NPs as a carrier for azadirachtin for the sustained
release of insecticide. An increase in uptake and higher toxicity of
thiamethoxam insecticide was reported against Helicoverpa
armigera larvae when intercalated with dendrimer NPs (Liu X.
et al., 2015). In another study, Nguyen et al. (2014) showed an
increase in toxicity of layered double hydroxides (LDH) NPs
encapsulated with anacardic acid against Spodoptera litura.
Anacardic acid alone did not show higher mortality against S.
litura but after loading with LDH NPs, an improvement in
toxicity was observed. Evaporation of the active molecules of
the pesticides after an application is a common problem
associated with the loss of pesticides. Essential oils show
insecticidal properties but such properties rapidly evaporate
due to their chemical instability in the presence of air, light,
moisture, and high temperatures. A decrease in evaporation of
Artemisia arborescens L. essential oil was reported when
encapsulated with solid lipid NPs (Lai et al., 2006). Further,
Yang et al. (2009) reported the increase in mortality rate from 11
to 80% of essential oil of garlic intercalated with polyethylene
glycol NPs against red flour beetles (Tribolium castaneum) in rice
plants. In another study, α- pinene and linalool were loaded into
silica NPs and applied to castor leaves and then infested with S.
litura and castor semi looper. It was found that both insects
showed lower feeding activity on treated castor leaves and
ultimately led to death due to starvation (Rani et al., 2014).
The stability of the active molecules of the insecticides is also an
important concern because it decreases the use of insecticides
which is essential for environmental health.

Several studies have reported the incorporation of different
fungicides with NPs and their enhanced activity against different
fungi. Various problems associated with fungicides such as low-
water-solubility, volatilization, and stability were resolved by the
loading of fungicides into NPs. Hatfaludi et al. (2004) reported
increased toxicity by the use of fluorescence-labeled
Pectobacterium cypripedii ghosts as a carrier of fungicide
tebuconazole against different fungal pathogens such as Erysiphe
graminis, Leptosphaeria nodorum, Pyrenophora teres, and
Sphaerotheca fuliginea. An increase in inhibition against
Colletotrichum gossypii Southw was also seen when
pyraclostrobin was intercalated into chitosan-lactide copolymer
NPs (Xu et al., 2014). Pyraclostrobin loaded NPs showed improved
fungicidal activity againstColletotrichum gossypii Southw after long
post-treatment which further presented controlled release
properties. In another study, Ilk et al. (2017) used lecithin/CS-
NPs to improve the inhibition efficacy of kaempferol fungicide
against Fusarium oxysporum. Several studies have reported the
improvement of the low solubility of tebuconazole and
chlorothalonil fungicides by loading into various kinds of NPs.
Liu et al. (2001) successfully incorporated tebuconazole and
chlorothalonil into polymeric NPs and treated southern pine
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sapwood samples. It was found that the treated samples indicated
enhanced resistance against the wood decay fungus Gloeophyllum
trabeum. Further, Liu et al. (2002) created the smaller and more
stable surfactant free NPs after loading with chlorothalonil and
tebuconazole which ultimately increased the uptake into the wood.
It also showed high inhibition activity against G. trabeum and
Trametes versicolor.

Volatilization of essential oils with fungicidal activity is an
important issue regarding the use of fungicides. Some essential oil
components with antifungal activity, such as allyl isothiocyanate,
carvacrol, cinnamaldehyde, diallyl disulfide, eugenol, thymol, and
thymoquinone were encapsulated into mesoporous silica NPs.
Encapsulated compounds showed enhanced activity against A.
niger and also showed long-term effects by controlled release and
ease of application as compared to fungicides alone (Janatova
et al., 2015). Further, Nasseri et al. (2016) loaded Zataria
multiflora essential oil into solid lipid NPs and showed
enhanced efficacy against different fungal pathogens such as
Aspergillus ochraceus, A. niger, A. flavus, Alternaria solani, R.
solani, and Rhizopus stolonifer. Another major pesticide issue is
the movement of water and chemicals through soil called leaching
which affects the usage of pesticides. Metalaxyl fungicide
encapsulated with MSN was investigated for the reduced loss
and changed release profile. MSN entrapped fungicides showed
controlled release behaviour as about only 11.5% of the free
metalaxyl was released into the soil over a time period of 30 days
as compared to the free fungicides in which 76% was released
within the same time period (Wanyika, 2013). Campos et al.
(2015) prepared two different types of NPs, polymeric, and solid
lipid NPs loaded with a combination of tebuconazole and
carbendazim and investigated their controlled release behavior
and storage properties. After the loading of fungicides with NPs,
their release profile and toxicity was changed. Slow controlled
release, enhanced stability and fungicidal activity against R. solani
were seen in validamycin loaded nanosized calcium carbonate as
compared to fungicide alone (Qian et al., 2011). Further, Kumar
et al. (2017) studied the bio-efficacy of polymeric NPs loaded with
carbendazim against F. oxysporum and Aspergillus parasiticus
and found that after incorporation of fungicide with NPs, the
inhibition activity was enhanced. Moreover, Zhao X. et al. (2017)
studied the uptake and distribution of the pyrimethanil loaded
mesoporous silica NPs in cucumber plants and reported lower
accumulation of fungicide loaded NPs in the edible parts of the
plants.

Herbicides play a vital role in integrated weed management
programs. The major concern of the herbicides is their non-target
toxicity. Encapsulation of herbicides with NPs provides a better
solution for the non-target toxicity of the herbicides. The
development of NP-based herbicides has also included a wider
variety of NPs. Maruyama et al. (2016) reported the improved
mode of action and reduced toxicity of Imazapic and Imazapyr
herbicides after loading with CS-NPs. Authors also studied the
effect of herbicide loaded NPs on the soil microbiota and found
no changes in the number of soil bacteria. An increase in
physicochemical stability and high encapsulation efficiencies
were reported in solid lipid NPs loaded with simazine and
atrazine herbicides (de Oliveira et al., 2015). Herbicide loaded

NPs showed enhanced toxicity and no activity against target
Raphanus raphanistrum and non-target plants (Zea mays),
respectively, as compared to herbicides alone. Further, de
Oliveira et al. (2016) compared the effects of the clomazone
herbicide in both its free form and associated with chitosan-
alginate NPs. Loading of herbicides with NPs also reduces the
problem of leaching.

Additionally, Chidambaram (2016) used rice husk
nanosorbents encapsulated with 2, 4-dichlorophenoxyacetic
acid herbicide and showed the controlled release profile,
reduced leaching activity and enhanced toxicity against the
target plant (Brassica sps.) as compared to herbicides alone.
The release profile, stability, and storage were seen to be
improved in the alginate/CS-NPs intercalated with paraquat
herbicide (dos Santos Silva et al., 2011). The behaviour of
herbicides in terms of chemical stability, solubility,
bioavailability, photodecomposition, and soil sorption was
changed by the incorporation of herbicides into the poly
(ε-caprolactone) nanocapsules (Grillo et al., 2012). Further,
Grillo et al. (2014) prepared herbicide atrazine loaded with
poly (ε-caprolactone) nanocapsules and showed the increased
physico-chemical stability and herbicide release profile. Herbicide
paraquat was also encapsulated into CS-NPs by Grillo et al.
(2015) and they reported the increased stability and reduced
non-target toxicity of the herbicides.

Internet of Nano Things (IoNT)
It has been discussed in the above sections that nanotechnology is
considered as an upfront technology to design and develop
nanometers scale devices. The Internet of Things (IoT) is the
intelligent interaction of different sensors and the main
application of IoT has been discussed in the field of
nanotechnology to offers effective solutions and opportunities
in the area of pharmaceutical industries, agriculture, military and
computing systems (Atlam et al., 2018). The IoNT (internet of
nano things) is the replacement of sensors by nanosensors, which
established a new aspect of IoT in the field of nanotechnology.
Therefore, the interconnection of nanodevices and nanosensors
with the internet contains a light-emitting diode referred to as
IoNT (Internet of Nano Things). IoNT is introduced by Akyildiz
and Jornet (Akyildiz and Jornet, 2010) where it is operated by
terahertz frequencies using graphene-based nano-antennas. The
dimension of this nanomachine ranges between 1 and 100 nm
(Chaudhry et al., 2017; Miraz et al., 2018). According to the (UN
DESA report, 2015) (UN DESA report ‘World Population
Prospects: the 2015 revision), the world population is
estimated to reach 9.7 billion by 2050 which will cause severe
food scarcity. Fortunately, IoNT will open-up the domain in the
agricultural field with more confidence to produce more adequate
food supplies by enhancing crop production. IoNT reduces the
harmful influences on the environment significantly (Patil et al.,
2012; Nida et al., 2015; Maksimović and Omanović-Mikličanin,
2017). The use of IoNT enhances the utilization of inputs in
agriculture such as water, soil, pesticides, fertilizers, etc., reduces
production costs, creates high profitability, and ensures
sustainability and environmental protection. Even with more
future adaptability aspects, the IoNT faces several challenges
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due to privacy and security concerns. IoNT uses two systems of
communication: Electromagnetic Nano-Communication and
Molecular Communication (Lakshmi, 2018). Therefore,
through the development of nanomachines, IoNT has a
wonderful impact and significantly adds to revolutionizing
agriculture practices to make the food industry more efficient,
sustainable, and safe (Maksimović and Omanović-Mikličanin,
2017). There is a wide range of IoNT applications that have been
reported. IoNT can be applied in a body sensor network (BSN) in
which it plays a crucial role in the collection of data on the
biological activity of patients. It also can be applied for
environmental monitoring, such as temperature or air
pollution. (Nayyar et al., 2017). In agriculture, it develops
various exactitude agricultural practices which leads to the
growth of crops and monitoring of animal, grass or pesticide
and insecticide (Balasubramaniam and Kangasharju, 2013;
Jarmakiewicz and Parobczak, 2016; Nayyar and Puri, 2016;
Nayyar et al., 2017).

Future Perspectives
In this review, we have discussed detailed information about
NPs such as their definition, types, synthesis, characterizations,
properties, and applications. Several studies have shown that
nanotechnology plays a very important role in commercial
development. It is improving the everyday lives of human
beings by increasing their performance and competence with
daily objects. This technology has been used to provide a safe
environment by improving air and water quality and also
provides renewable energy sources for a sustainable future.
We need to find more breakthroughs and novel prospects for
advances in nanotechnology to develop the world economy.
NPs are used in several fields such as agriculture, electronics,
food, medical diagnostics, and pharmaceutical industries. This
review discussed the roles of nanomaterials to show their great
promise in agricultural fields. The interaction of plants with NPs
results in various changes in morphological parameters,
physiological parameters, and at the genotoxic level. It helps
in the growth of plants through changes in their metabolic
processes. It is being focused on to enhance the targeted delivery
of fertilizers and pesticides and is used to minimize waste
production through nano-based approaches. Currently,
engineered NPs have been used widely to enhance crop
production. Through nanotechnology, crop disease
suppression can be explored adequately to enhance crop
production. As we have discussed, apart from crop
production NPs can also be used for medical diagnosis due
to their surface chemistry, biocompatibility, stability, and

regulating toxicity in biological systems. Therefore,
nanotechnology needs to be studied intensively to analyse its
long-term toxicity. The overall studies have stated that the
application of NPs need more optimization for synthesis,
mechanisms, and biofunctionalization of NPs. These NPs as
nanobiosensors may improve plant development by detecting
phytoregulators and secondary metabolites. Even with more
studies, genome editing still remains an immense challenge,
therefore with the help of NPs, CRISPR-Cas9 technology will
provide great innovations to plant genetics. Significant research
should be dedicated to this field; it will result in great benefit to
plants as well as humans, and create more efficient and
environmentally friendly approaches. Apart from that, most
of endophytic microorganisms are unexplored and
uncultivated, therefore it’s very important to focus research
on developing innovative processes for the identification and
isolation of the endophytic microorganisms in the green
synthesis of metal NPs.
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GLOSSARY

Ag Silver

Ag2O Silver oxide

Ag-NPs Silver nanoparticles

Al Aluminium

Al2O3 Aluminium oxide

Al2O3-NPs Aluminium oxide nanoparticles

Au Gold

Au-NPs Gold nanoparticles

Bi Bismuth

Bi2O3 Bismuth sesquioxide

CaO Calcium oxide

Cd Cadmium

CLS Curvularia leaf spot

CNT Carbon nanotubes

Co Cobalt

CS-NPs Chitosan nanoparticles

CTAB Cetyl trimethylammonium bromide

Cu Copper

Cu-NPs Copper nanoparticles

CuO Copper oxide

CuO-NPs Copper oxide nanoparticles

CVD Chemical vapour deposition

DTT Dithiothreitol

Fe Iron

FeO Ferrous oxide

GFP Green fluorescent protein

GNPs β-d-Glucan nanoparticles

IgA Immunoglobulin A

IoNT Internet of nano things

ISR Induced systemic resistance

LDL Low density lipoprotein

Mg Magnesium

MnO2 Manganese dioxide

MgO Magnesium oxide

MgO-NPs Magnesium oxide nanoparticles

MLVs Mutilamellar vesicles

MSCs Mesenchymal stem cells

MSN Mesoporous silica nanoparticle

Ni Nickel

NNI National nanotechnology initiative

NPs Nanoparticles

PAL Phenylalanine ammonia lyase

Pb Lead

Pd Palladiumn

POX Peroxidases

PRSV papaya ring spot virus

Pt Platinum

ROS Reactive oxygen species

Sb Antimony

SDR Spinning disc reactor

SDS Sodium dodecyl sulphate

Ta Tantalum

Ti Titanium

TiO2 Titanium dioxide

TiO2-NPs Titanium dioxide nanoparticles

UVs Unilamellar vesicles

Zn Zinc

ZnO Zinc oxide

ZnO-NPs Zinc oxide nanoparticles
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