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Abstract
The neurobiological and neurochemical mechanisms underlying the pathophysiology of bipolar disorder are complex and not 
yet fully understood. From circadian disruption to neuroinflammation, many pathways and signaling molecules are impor-
tant contributors to bipolar disorder development, some specific to a disease subtype or a cycling episode. Pharmacological 
agents for bipolar disorder have shown only partial efficacy, including mood stabilizers and antipsychotics. The purinergic 
hypothesis for bipolar disorder emerges in this scenario as a promising target for further research and drug development, 
given its role in neurotransmission and neuroinflammation that results in behavioral and mood regulation. Here, we review the 
basic concepts of purinergic signaling in the central nervous system and its contribution to bipolar disorder pathophysiology. 
Allopurinol and novel P2X7 receptor antagonists are promising candidates for treating bipolar disorder. We further explore 
currently available pharmacotherapies and the emerging new purinergic targets for drug development in bipolar disorder.
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Key Points 

The new generation of P2X7 receptor antagonists repre-
sents a potential breakthrough in treatments for bipolar 
disorder.

There is a promising antimanic effect of allopuri-
nol but additional well-designed research on the 
topic is required.

Modulation of the P2X4,  A1,  A2A, and P2Y1 recep-
tors are possible new targets encouraged to be further 
explored for drug development in bipolar disorder.

1 Introduction

Bipolar disorder (BD) is a major neuropsychiatric condi-
tion with complex and multicomponent pathophysiology, 
involving changes in a wide range of neurocircuitries and 
signaling pathways [1]. Patients with BD experience dif-
ferent symptoms within the disease spectrum, cycling from 
severe depression to substantial euphoria, known as mania. 
It has been well established that genetic and epigenetic fac-
tors, metabolic and biochemical pathways, structural and 
functional brain alterations, and social and environmental 
triggers may contribute to the disorder’s onset, develop-
ment, and progression [2]. Many molecular hypotheses 
have emerged to explain its vast neurobiological spectrum, 

including changes in neurotransmission systems such as the 
γ-aminobutyric acid (GABA)ergic, glutamatergic, and dopa-
minergic systems [3–6].

BD affects about 39.5 million people worldwide [7]. It is 
a severe, chronic, and debilitating disease in which patients 
exhibit an overall impairment in autonomy and cognitive 
and psychosocial functioning [8]. The many facets of BD 
and such a broad umbrella of symptoms and phenotypes 
often lead to misdiagnosis, resulting in delayed initia-
tion of appropriate treatments [9, 10]. Current therapeutic 
approaches rely mainly on managing and preventing manic 
and depressive episodes with mood stabilizers, adjunctive 
antipsychotics, and/or antidepressants; however, long-term 
treatment is still challenging and with limited effectiveness 
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[11]. Hence, it is of great relevance for BD management that 
new pharmacotherapies are developed, aiming to stabilize 
mood, restrain disease progression, protect against neuro-
degeneration, minimize dangerous behavior and suicide 
attempts, attenuate side effects, increase life expectancy, 
and improve overall quality of life.

From the neurobiological perspective, the purinergic sys-
tem has gained considerable attention given that adenosine 
and adenosine 5′-triphosphate (ATP) are signaling mol-
ecules that modulate neurotransmission and neuroinflam-
mation pathways linked to behavioral and mood regulation 
mechanisms relevant for BD [12]. Therefore, in this review 
we explore the role of purinergic signaling in BD patho-
physiology and provide an overview of current and potential 
new purinergic targets for drug development.

2  Purinergic System in the CNS

ATP is a nucleotide stored intracellularly, and its signaling 
is vital for the energy production of all cellular processes. 
ATP reaches the extracellular space by different mecha-
nisms, including: (1)  Ca2+-dependent exocytosis [13]; (2) 
connexin hemichannels and pannexin channels, according to 
its concentration gradient; (3) cell membrane damage from 
injured cells [14]; and (4) P2X7 receptor (P2X7R)-induced 
transmembrane pore after sustained activation. The latter 
mechanism, however, is still debated [15, 16]. In the central 
nervous system (CNS), ATP can be physiologically released 
from neurons [17], astrocytes [18], and microglial cells [19] 
by exocytosis. In addition, ATP is classified as a neuro-
transmitter and can also be co-released with acetylcholine, 
noradrenaline, GABA, dopamine, and glutamate [20, 21].

Extracellular ATP acts on purinergic receptors P2X 
(P2XR) and P2Y (P2YR), inducing several intracellular 
signaling cascades. P2X(1-7)R are ionotropic receptors 
that elicit  Ca2+ and  Na+ influx, and  K+ efflux under activa-
tion [22]. P2XR can occur as homomeric or heteromeric 
assemblies and consist of three subunits [22]. P2Y(1, 2, 4, 
6, 11, 12, 13 or 14)R are metabotropic G-protein-coupled 
receptors sensitive to ATP, adenosine 5′-diphosphate (ADP), 
uridine 5′-tri- or diphosphate (UTP or UDP, respectively), or 
UDP-glucose, which will either activate or inhibit adeny-
lyl cyclase, or activate phospholipase C [23]. These recep-
tors are present in neurons, astrocytes, microglial cells, and 
oligodendrocytes [23]. In the brain, the majority of P2XR 
and P2YR are expressed in the hippocampus where they 
can regulate glutamate release [24]. The P2Y1R activa-
tion induces dopamine release in the rat striatum [25], the 
medial prefrontal cortex, and the nucleus accumbens [26]. 
The P2X7R activation also facilitates glutamate, GABA, 
and nitric oxide release [27–30], and negatively modulates 
serotonin levels [31]. It also regulates N-methyl-d-aspartate 

receptor (NMDAR) expression and basal levels of brain-
derived neurotrophic factor in the hippocampus.

ATP is hydrolyzed into ADP, adenosine 5'-monophos-
phate (AMP), and adenosine by ectoenzymes that precisely 
control extracellular purine concentration. These cell sur-
face enzymes are part of the family named ectonucleotidases, 
which mainly comprises the ecto-nucleoside triphosphate 
diphosphohydrolases (ENTPDases), pyrophosphohydro-
lases/phosphodiesterases (NPP), and ecto-5′-nucleotidase. 
ENTPD1, 2, and 3 (also known as CD39, CD39L2, and 
CD39L3, respectively) hydrolyze ATP and ADP into AMP 
[32]. NPPs hydrolyze ATP directly into AMP, generat-
ing pyrophosphate [33]. The final ectonucleotidase in the 
chain, ecto-5′-nucleotidase (also known as CD73), hydro-
lyzes AMP into adenosine [33]. Adenosine is inactivated 
by adenosine deaminase (ADA), generating inosine, which 
is further metabolized into hypoxanthine, xanthine, and 
uric acid (UA) (Fig. 1a). Inosine can modulate inflamma-
tion, neuroprotection, pain, and cognition [34], while UA is 
associated with sleep, locomotion, cognition, impulsivity, 
and mood [35–37]. Remarkably, this fine-tuning regulation 
by ectonucleotidases is strictly necessary as both ATP and 
adenosine can act as neuromodulators and frequently have 
counteracting effects.

Adenosine, in its turn, exerts multiple brain functions 
through the adenosine/P1 receptors, which are classified 
as  A1R,  A2AR,  A2BR, and  A3R. Adenosine receptors are 
metabotropic G-protein-coupled receptors that mainly 
activate or inhibit adenylyl cyclase [38]. The  A1R is the 
most abundant P1 receptor expressed in the CNS [38]. 
Adenosine is well known for exerting neuroprotective 
properties in the CNS, mediated by  A1R activation and 
 A2AR inhibition [39]. The  A2AR also mediates several 
essential functions in brain homeostasis, such as neuro-
transmitter release.  A2AR is mainly expressed in dopa-
minergic areas, such as the striatum, nucleus accumbens, 
and olfactory tuberculum [38]. In the striatopallidal 
GABAergic neurons in the striatum,  A2AR interacts with 
the dopamine D2 receptor (D2R), forming a heterodi-
mer that results in decreased D2R affinity to dopamine 
when  A2AR is activated [40] (Fig. 1b). Moreover, it is 
well accepted that adenosine can modulate spontaneous 
locomotor activity through striatal  A2AR that interacts 
with D2R and dopamine D1 receptor (D1R) of the mes-
olimbic dopamine circuits [41–43]. In addition,  A2AR 
interact with metabotropic glutamate 5 receptor in the 
striatum [44, 45] and hippocampus [46].  A2AR stimula-
tion also facilitates glutamate release [39] and GABA 
release [47] from the hippocampus [48], whereas  A1R 
counteracts  A2AR effects by inhibiting glutamatergic neu-
rotransmission [49, 50]. As adenosine receptors interact 
and modulate glutamate and dopamine receptor activ-
ity, pathological adenosinergic signaling has become a 
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Fig. 1  Purinergic signaling in bipolar disorder (BD). a Overview 
of physiological purine metabolism. Adenosine 5′-triphosphate 
(ATP)  is hydrolyzed by ectonucleoside triphosphate diphosphohy-
drolases (ENTPDases) or ecto-nucleoside pyrophosphohydrolases/
phosphodiesterases (NPPs) into adenosine 5'-monophosphate (AMP), 
which is hydrolyzed into adenosine  (ADO) by ecto-5′-nucleotidase. 
Adenosine deaminase (ADA) converts adenosine into inosine (INO), 
further metabolized into hypoxanthine (HXAN), xanthine (XAN), 
and uric acid (UA). b Proposed mechanisms in purinergic dysfunc-
tion contributing to BD pathophysiology. It is described that P2X7 
receptor (P2X7R) activation drives neuroinflammation, oxidative 
stress, and gliosis in preclinical studies. Few reports scrutinized 
the direct role of P1 receptors in BD; however, it is known that  A1 
receptor  (A1R) is primarily  neuroprotective and its activation pro-
motes an antidepressant-like effect, whereas  A2A receptor  (A2AR) 
is mainly proinflammatory and its inhibition may promote impul-
sivity, which can be associated with suicidal behavior.  A1R-A2AR 
heteromeric interaction modulates glutamate activity and induces 
hyperactivation of N-methyl-d-aspartate receptor (NMDAR), which 
is exacerbated in BD pathology. Additionally, heteromeric formation 
between adenosine   A2A  and dopamine D2 receptors  (A2AR-D2R)  in 
basal ganglia regulates corticostriatal dopamine neurotransmission, 

which is hyperactive in patients with BD. c P2X7R single nucleotide 
polymorphisms (SNPs) associated with BD. The SNP rs208294 pro-
motes gain of function of the P2X7R, and is associated with familial 
BD, increased illness time, and comorbidities with other mood disor-
ders. The SNP rs3751143 promotes loss of function of P2X7R, and 
patients with BD possess the allele that preserves P2X7R function. d 
Proposed purinergic-based treatments for BD. Allopurinol is a prom-
ising therapeutic  strategy; it can decrease UA levels and increase 
ADO availability, both dysregulated in patients with BD. Dipyrida-
mole also acts on rising ADO levels and consequently modulates P1 
receptors, showing beneficial effects in patients with BD. P2X7R 
antagonism has been proven effective in preclinical studies, and there 
are promising novel P2X7R antagonists able to cross the blood–brain 
barrier that could be explored in clinical trials. − indicates lower lev-
els compared to healthy controls, = indicates equal levels compared 
to healthy controls, + indicates a subtle increase in levels compared 
to healthy controls, ++ indicates a moderate increase in levels com-
pared to healthy controls, +++ indicates a high increase in lev-
els compared to healthy controls, DA dopamine, ENT equilibrative 
nucleoside transporter, MDD major depressive disorder, NT5E ecto-
5′-nucleotidase, PNP purine nucleoside phosphorylase, XO xanthine 
oxidase. Figure created with BioRender.com



790 M. C. B. Gonçalves et al.

relevant hypothesis for psychiatric disorders [51–53], 
especially BD and schizophrenia [54–56].

Both ATP and adenosine are immunomodulators that 
act during brain inflammatory processes in opposite 
directions [57]. ATP acts as a damage-associated molecu-
lar pattern (DAMP) when released by injured or stressed 
cells, triggering proinflammatory cascades [58, 59], 
whereas adenosine acts as an immunosuppressant [60]. 
As a DAMP, ATP activates nuclear factor-κB signaling 
and consequently upregulates proinflammatory cytokines 
and NOD-, LRR-, and pyrin domain-containing protein 
3 (NLRP3) inflamassome [61]. P2X7R activation is an 
essential step in the NLRP3 cascade. It activates cas-
pase-1 and converts pro-interleukin-1β and pro-interleu-
kin-18 into their mature forms, increasing their release 
[61, 62]. The microglial P2X7R is the major known mod-
ulator of inflammation among P2 receptors. Its activation 
by millimolar ATP concentration elicits proinflammatory 
and immunostimulatory effects, promoting the produc-
tion and release of proinflammatory cytokines, including 
interleukin-1β, interleukin-6, and tumor necrosis factor 
[57, 63]. This effect activates microglial cells and induces 
the release of additional ATP to the extracellular space. 
As a feedback loop, exacerbated ATP levels in the extra-
cellular space will establish an excitotoxic microenviron-
ment [64]. Consequently, primarily via P2X7R activation, 
the purinergic system has been strongly associated with 
neurodegenerative processes and neuropsychiatric disor-
ders with a neuroinflammatory and excitotoxic compo-
nent, including BD [51, 65].

3  Pathophysiology and Treatment 
Strategies for BD

3.1  ATPergic Signaling and Genetic Predisposition 
to BD

The P2X7R has emerged as a promising target to study 
the genetic predisposition in BD as its gene is highly 
polymorphic [66]. Genome-wide association studies have 
identified the region 12q23-q24 as a locus with genes 
influencing susceptibility to BD [67–69]. Furthermore, 
P2X7R and P2X4R genes are located on chromosome 12 
in close proximity, at 12q24.31 and 12q24.32, respectively 
[66, 70]. Similar functions that trigger proinflammatory 
cascades [71] and evidence for a P2X4-P2X7 heteromeric 
formation were found [72, 73], although this association 
is still questioned [74, 75].

A massive effort has been directed to understand the role 
of P2X7R single nucleotide polymorphisms (SNPs) in BD. 
However, the current evidence for the involvement of the 
majority of the studied targets is controversial, including 

the P2X7R SNP rs2230912 [76–83] and rs1718119 [84]. 
A study conducted with British individuals did not detect 
any association between nine promising P2X7R SNPs 
(rs591874, rs208293, rs1186055, rs208298, rs503720, 
rs1718133, rs1718119, rs2230912, and rs1621388) and BD 
susceptibility [80]. P2X7R SNPs that have not been refuted 
yet are the rs208294 and the rs3751143. The rs208294 cod-
ing for His155Tyr promoted the gain of function of the 
P2X7R. It was associated with familial major depressive 
disorder (MDD) and BD, including increased illness time 
and comorbid anxiety, alcoholism, psychotic symptoms, and 
suicide attempts [78]. On the contrary, the rs3751143 coding 
for Glu496Ala promoted the loss of function of the P2X7R. 
The decreased 1513C allele frequency and the tendency of 
increased 1513 AA/AC genotype were found in patients with 
BD, suggesting that P2X7R functionality is preserved in 
these patients compared to healthy individuals [85] (Fig. 1c). 
Linkage disequilibrium, functional effects, and haplotype 
block structure (regions with high linkage disequilibrium) 
might explain these controversial findings within the genome 
[86]. Some authors have described haplotype blocks in the 
P2X7R gene [66, 87], which might partially explain the fail-
ure of previous association studies. Nevertheless, preclinical 
studies strongly support the beneficial effect of the P2X7R 
inhibition, which will be discussed in the upcoming sections.

To our knowledge, no studies have found an associa-
tion between functional SNPs in the P2X4R gene and BD 
susceptibility [76]. Furthermore, no preclinical or clini-
cal study directly evaluated the modulation of P2X4R in 
BD. Nonetheless, growing preclinical evidence indicates 
the role of P2X4R in modulating dopamine transmission. 
Mice deficient in the P2X4R gene presented with increased 
striatal tyrosine hydroxylase, dopamine transporter, and 
D1R and D2R expression. Remarkably, both deletion and 
activation of the P2X4R induced impairment in prepulse 
inhibition, whereas selective D1R and D2R antagonists 
reverted this deficit [88, 89].

Moreover, P2X4R knockout mice also exhibit altera-
tions in the subunit expression of glutamate receptors, 
such as  NMDAR and α-amino-3-hydroxy-5-methyl-4-
isoxazolepropionic acid receptors, and  GABAA receptors in 
several brain regions [90, 91]. Behaviorally, other reports 
corroborate that P2X4R knockout mice present deficits in 
sensorimotor gating and social behavior, including increased 
ethanol intake [90, 91]; however, no anxiety-like behavior 
or altered locomotor activity were found [90]. In addition, 
a recent study showed that increased P2X4R density in 
the knock-in mice hippocampus induced synaptic deficits, 
anxiolytic-like behaviors, and impaired spatial memory 
processing [92]. Corroborating these findings, ivermec-
tin, a potent P2X4R positive allosteric modulator, induced 
anxiolytic-like and depressive-like behaviors in mice [93]. 
These data support the hypothesis that P2X4R may modulate 
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dopaminergic, glutamatergic, and GABAergic neurotrans-
mission, suggesting its participation in reward mechanisms 
and ethanol abuse with particular relevance to BD pathogen-
esis and progression.

3.2  The Purinergic Hypothesis for BD: A Look Into 
Hyperuricemia

Whilst the purinergic hypothesis for BD has been mostly 
explored in the past two decades after being revisited by 
Machado-Vieira et al. [94], the link between components of 
the purinergic system and mood fluctuation was described 
more than a century ago [95]. The first insights date from 
1846 owing to the accidental discovery of lithium salts as 
mood stabilizers for patients with gout and hyperurice-
mia, which are conditions known by the increased levels 
of peripheral UA [95]. Elevated amounts of UA were then 
firstly reported in 1968 by Anumonye et al. in the urine, but 
not in the blood, of patients with BD, including those receiv-
ing lithium treatment [96].

Current knowledge indicates that blood levels of UA in 
patients with BD, during mania, depression, or remission, 
are higher than in healthy controls [97] (Fig. 1d). While 
higher levels of peripheral UA are associated with manic 
and hypomanic episodes, lower levels are observed during 
depressive episodes [98–101]. Still, a decrease in UA levels 
during mania indicates lower severity of the episode; how-
ever, such a correlation was not observed during a depres-
sive episode, as measured by the Young Mania Rating Scale 
and Hamilton Depression Rating Scale, respectively [97]. 
Of note, patients with MDD have shown the lowest levels 
of UA when compared to patients with BD or healthy sub-
jects. These findings indicate an emerging role of UA as a 
biomarker for BD [102], potentially able to distinguish BD 
and MDD [103–106]. However, notwithstanding the current 
evidence, the UA-based discrimination between BD phases 
or between BD and MDD was only partially supported when 
further analyzed using a meta-analytical approach [107].

UA levels are also enhanced in metabolic syndrome, a 
prevalent (approximately 37%) comorbidity in patients with 
BD, especially in those receiving antipsychotic treatment 
[108–110]. Still, the effect of BD on hyperuricemia seems 
mostly direct, being only partially mediated by metabolic 
abnormalities [111]. From the pharmacotherapy perspec-
tive, psychotropic and antipsychotic drugs commonly con-
sidered in the psychiatric clinic for BD management might 
have different effects on serum UA levels. For example, it 
has been shown that lithium [96], carbamazepine [112], phe-
nytoin [112], aripiprazole [113], a combination of zotepine 
and mood stabilizers (lithium or sodium valproate) [114], 
and a combination of quetiapine and sodium valproate 
[115] are likely to reduce peripheral UA levels. In contrast, 
sodium valproate monotherapy [112], phenobarbital [112], 

haloperidol [116], and risperidone [117] may increase UA 
levels.

3.3  Adenosinergic Dysfunction and Its Impact 
on Other Neurotransmission Systems

Increased UA levels might reflect an abnormal purine turno-
ver with a consequent reduction in adenosine levels [36]. 
Peripheral adenosine levels were found reduced in patients 
with BD during the euthymic phase, with lower levels 
linked to higher functional impairment [118]. The authors 
suggested that, at low levels, adenosine would not exert its 
neuroprotective role, possibly impacting immune response 
and neuroinflammation [118].

The purinergic system, mainly via adenosine, can also 
regulate circadian rhythms, modulating the physiological 
response to light [53, 119]. It has been recently proposed 
that downstream signaling of  A1R and  A2AR antagonism 
controls clock genes PER1 and PER2 activity both in vitro 
and in vivo via  Ca2+-extracellular-regulated kinase-AP-1 
pathway [119]. Although the causal mechanisms involved 
in the connection between circadian rhythm disruption and 
mood disorders are yet to be reasoned [120], sleep cycle 
impairment is highly prominent in most patients with BD, 
being clinically associated with disease onset and develop-
ment [121–126]. Thus, further understanding on the role of 
adenosinergic signaling in the context of mood control can 
be an attractive approach with potential therapeutic implica-
tions for BD.

Most evidence of adenosine receptor dysregulation in 
mood disorders comes from MDD [53, 127]. Their role in 
BD can be hypothesized from the therapeutic effect of carba-
mazepine, the first anti-seizure drug used for BD back in the 
1970s. Carbamazepine is currently considered a second-line 
mood stabilizer with limited applicability for treating acute 
mania and mixed episodes or for maintenance and preven-
tive therapy [128–131]. Its mechanism of action includes 
the antagonism of  A1R, which results in long-term mRNA 
upregulation and an increased number of  A1R receptors. 
This was shown to directly potentiate phospholipase C activ-
ity in primary astrocytes isolated from low-rich adenosin-
ergic regions of the rat brain [132]. Of note,  A1R activation 
has proven to exert antidepressant-like effects in preclinical 
studies, potentially linked to glutamatergic modulation [53, 
133].

As mentioned above, adenosine-mediated neuroprotec-
tion is mainly attributed to  A1R activation and  A2AR block-
ade [39]. The evidence of the  A1R-A2AR heterodimer forma-
tion on striatal glutamatergic terminals [134] raises attention 
to the regulatory effect of different concentrations of adeno-
sine over glutamate-mediated excitatory activity, which is 
enhanced in patients with BD [135] (Fig. 1b). A dopaminer-
gic signaling imbalance has also been extensively discussed 
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as a major contributor to mood alterations, especially in BD 
[136]. The capability of adenosine receptors to form heter-
odimers with dopamine receptors becomes especially rel-
evant in this context, as  A2AR-D2R heterodimers in the basal 
ganglia regulate corticostriatal dopamine neurotransmission, 
found hyperactive in patients with BD [137, 138] (Fig. 1b). 
Adenosine-dopamine might also interact to modulate gluta-
matergic neurons in the hippocampus [53], although there 
is no evidence pointing to such a mechanism specifically in 
BD. The most promising hypothesis by which adenosiner-
gic-dopaminergic interactions might control mood suggests 
the balance between excitatory (glutamate) and inhibitory 
(GABA) neurotransmission along with heteromeric forma-
tion, as recently reviewed [127]. Further research is still 
necessary to determine any mechanistic causality and clini-
cal relevance and applicability of targeting adenosinergic-
dopaminergic heteromers as a therapeutic approach for BD.

Finally, one of the clinical features of BD that has 
received less attention from the molecular perspective is 
the substantially increased suicide risk among patients. It is 
expected that 30–50% of patients with BD will attempt sui-
cide once in their lifetime, and 15–20% will commit suicide 
[139]. Although there is a lack of evidence directly linking 
purinergic signaling to suicidal behavior, some hypotheses 
have been recently proposed. A reduction in adenosinergic 
signaling through the inhibition of  A2AR is thought to play 
a role in suicidal behavior by promoting impulsivity, a com-
mon trait in patients with BD [140]. Interestingly, UA levels 
have also been positively correlated with impulsive traits 
during a manic episode [100]. An expanded hypothesis has 
also proposed a role for neuroinflammation and glutamate-
derived excitotoxicity mediated by P2X7R activation and 
 A1R-A2AR heterodimer response to accumulated adeno-
sine resulting from hyperactivation of the NMDAR and 
decreased activity of the enzyme ADA [141].

4  Current Therapeutic Strategies for BD 
Targeting the Purinergic Signaling

4.1  Lithium, The Gold Standard Mood Stabilizer

Lithium is still the first-line therapy for BD, even with its 
mechanism of action remaining only partially understood 
[142, 143]. A systematic review and meta-analysis, includ-
ing seven clinical trials reports on the efficacy and effective-
ness of lithium, revealed that it remains the most efficient 
long-term treatment option for preventing overall mood 
switches, especially for managing manic episodes [144]. 
Purinergic signaling has been suggested as one of the sys-
tems mediating the biological effects of lithium, either as 
a neuroprotective or a nephrotoxic drug [145–148]. It was 
previously shown that lithium increases ATP and AMP 

hydrolysis, and is neuroprotective against ATP-induced cel-
lular death by acting on P2X7R in rat hippocampal slices 
[149]. More recently, an in vitro study conducted in murine 
neuronal and microglial cell lines corroborated the neuro-
protective action of lithium against ATP-induced cell death 
and revealed a neuronal rather than a microglial response 
for this effect [145]. Molecular studies using a multinuclear, 
multi-dimensional, solid-state, nuclear magnetic resonance 
approach have shown that lithium binds to ATP [150, 151], 
suggesting a direct mode of action via a lithium-ATP com-
plex in which its consequences should be further explored 
in vitro and in vivo.

4.2  The P2X7R Antagonism

P2X7R antagonism has been shown as a promising BD 
therapeutic candidate in preclinical models of mania. In 
addition to the translational limitations of modeling bipo-
lar disorder in animals, amphetamine-induced hyperactive 
locomotion is still the most accepted and widely used model 
to mimic manic-like behavior, helping with the investigation 
of the molecular basis of mania. Both the pharmacologi-
cal blockade and the genetic deletion of the P2X7R were 
demonstrated to be effective in preventing the hyperloco-
motion induced by amphetamine [152–155]. Still, it was 
demonstrated that this receptor plays a role in the sustained 
neuroinflammation observed in a preclinical model of 
mania [152], and the observed behavioral effects on amphet-
amine-induced hyperlocomotion might be via dopaminergic 
and astrogliosis modulation [153] (Fig. 1d).

Despite the preclinical potential herein described, to our 
knowledge, there is no clinical trial currently investigating 
antagonists of P2X7R in patients with BD. The slow pro-
gression in this field might be due to the inherent challenges 
to developing brain penetrant P2X7R antagonists [155–158]. 
A few compounds have been identified, including JNJ-
54175446 [159] and JNJ-55308942 [160], as well as P2X7R 
positron emission tomography-computed tomography-iden-
tified ligands, which can potentially accelerate the transition 
into clinical drug development for neuropsychiatric disor-
ders [161]. The first investigational P2X7R antagonists have 
completed phase I trials. In a randomized single-ascending 
dose study in 77 healthy human subjects, JNJ-54175446 
in doses from 0.5 to 600 mg showed a safe and successful 
dose-dependent response, attenuating the P2X7R-mediated 
interleukin-1β release from isolated peripheral blood cells 
(indicating P2X7R antagonism) [162]. The compound dem-
onstrated a robust brain target engagement by using positron 
emission tomography imaging for P2X7R [163]. In addi-
tion, by using an oral dexamphetamine challenge model in 
64 healthy male individuals in a randomized, double-blind, 
placebo-controlled, multiple ascending dose trial for the 
P2X7R antagonist JNJ-54175446, it was demonstrated that 
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this compound was well tolerated and effective in suppress-
ing ex vivo lipopolysaccharide-induced release of cytokines 
(an indicator of P2X7R antagonism). A proof-of-concept 
study also showed increased locomotion and mood-elevating 
effects of 50–450 mg JNJ-54175446 administration over a 
baseline oral dexamphetamine (20 mg) challenge paradigm 
in a randomized, double-blinded, placebo-controlled, mul-
tiple ascending dose, crossover trial in 64 healthy male 
subjects [164]. The potential mood-modulating outcome 
observed can be considered of great relevance in the context 
of BD, although no specific trial addressing these patients 
has been proposed yet. Additionally, future trials should 
seek stronger external validity, enlarging the sample size, 
and minimizing stratification per age, sex, or other unjusti-
fied exclusion criteria.

Taken together, these studies reveal an interesting poten-
tial for clinical antagonism of P2X7R, which has been 
explored in different CNS disorders, such as amyotrophic 
lateral sclerosis [165] and MDD. A randomized, placebo-
controlled, double-blind trial is currently recruiting patients 
with MDD to primarily evaluate the effect of 50 mg/day JNJ-
54175446 on depressive symptoms scores after 8 weeks of 
treatment compared to baseline (ClinicalTrials.gov Identi-
fier: NCT04116606).

However, to our knowledge, no ongoing clinical trials 
are being conducted with any of the novel compounds for 
BD. At this stage, we can only speculate on the reasons: one 
possibility is related to pharmaceutical interests, given that 
MDD is still the most disabling psychiatric disease causing 
substantial social and economic impact; other than that it 
might also rely on the fact that the current evidence sup-
porting the role of P2X7R in mood disorders is much more 
robust towards MDD. This should be taken as an encourage-
ment for further investigation and validation of emerging 
hypotheses addressing BD through a purinergic perspective.

4.3  The Adenosine and UA Balance

Notably, drugs that increase adenosine levels, such as dipy-
ridamole and allopurinol, have been investigated as adjuvant 
purinergic modulators for the treatment of BD [54, 166]. 
Dipyridamole is an antiplatelet and antithrombotic drug with 
a complex mechanism of action, including the inhibition of 
cellular adenosine reuptake [167, 168]. Allopurinol, in its 
turn, is an urate-lowering drug primarily acting in decreas-
ing purine degradation through the inhibition of xanthine 
oxidase, thus treating hyperuricemia (high UA levels) [169]. 
Allopurinol has been used in different clinical contexts that 
include: (1) the management of patients with signs and 
symptoms of primary or secondary gout (acute attacks, 
tophi, joint destruction, UA lithiasis, and/or nephropathy) 
[170]; (2) the management of patients with leukemia, lym-
phoma, and malignancies who are experiencing elevations 

of serum and urinary UA levels due to the cancer therapy 
[171]; and (3) the management of patients with recurrent 
calcium oxalate kidney and urinary calculi whose daily UA 
excretion exceeds 800 mg/day in male patients and 750 mg/
day in female patients [172, 173]. Although no direct evi-
dence has confirmed a causal correlation, an allopurinol-
driven UA reduction is thought to result in increased adeno-
sine levels [54].

The first case report exploring the therapeutic poten-
tial of allopurinol in BD found an improvement in manic 
symptoms and a decrease in peripheral UA levels in two 
treatment-resistant patients with mania associated with 
hyperuricemia [174]. A double-blind, randomized, pla-
cebo-controlled trial including 41 patients with BD with 
moderate-to-severe mania evaluated the effect of allopu-
rinol (300 mg/day), lithium, and haloperidol compared 
to placebo for 8 weeks, observing an improvement of 
manic symptoms induced by allopurinol [175]. Similarly, 
a double-blind, randomized, placebo-controlled study 
investigated the use of a higher dose of allopurinol (600 
mg/day, n = 60) and dipyridamole (200 mg/day, n = 60) 
compared to placebo (n = 60) in addition to lithium for 4 
weeks. This study demonstrated that allopurinol not only 
improves manic symptoms in comparison to dipyridamole 
and placebo, but also correlates with decreased plasma UA 
levels [176]. Likewise, 50 in-patients with acute mania 
received allopurinol (600 mg/day) or placebo in addition 
to sodium valproate (15–20 mg/kg) for 4 weeks in a ran-
domized, placebo-controlled, double-blind trial, resulting 
in a similar antimanic action of allopurinol that was cor-
related with UA levels [177] (Fig. 1d).

In contrast, a nation-wide population-based longitudinal 
study in Denmark used a regression analysis to investigate 
new drug candidates for BD but no association between 
allopurinol and a positive outcome was found [178]. Addi-
tionally, a small double-blind, randomized, placebo-con-
trolled trial pilot on 27 patients with BD investigated the 
addition of allopurinol or placebo to the BD standard treat-
ments [179]. The study did not find any effect of allopuri-
nol on manic symptoms but revealed a greater therapeutic 
response in patients restricted to caffeine [179]. These 
findings suggest that caffeine intake should be both bet-
ter monitored and specifically addressed in future studies 
involving adenosinergic compounds for mood [179]. In 
addition, a large multi-center placebo-controlled trial per-
formed with 180 patients with BD in acute manic episodes 
over 6 weeks with allopurinol (300 mg/day) or placebo 
added to the standard BD treatment also showed no anti-
manic effect of allopurinol [180]. However, it is essen-
tial to note that these two studies share a few limitations, 
including the heterogeneity of the concurrent treatment 
that patients were submitted to, which makes isolating the 
effect of allopurinol challenging. Furthermore, it should 
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be considered that Fan et al. had a very small sample size 
[179] and Weiser et al. used the lowest dose of allopurinol 
[180], which might have limited the efficacy of the drug.

Nevertheless, a systematic review and meta-analysis 
have combined all the randomized controlled trials that 
used allopurinol and dipyridamole as adjuvant therapies in 
BD. This study promisingly revealed an overall significant 
reduction in manic symptoms in participants receiving the 
purinergic modulators compared with placebo [54] (Fig. 1d). 
Subsequently, further systematic reviews and meta-analy-
ses of randomized controlled trials focusing on allopurinol 
administration revealed a small-to-moderate effect size along 
with existent but limited beneficial effects of allopurinol as 
an add-on treatment for BD [181, 182]. It must be critically 
observed that the efficacy might be related to the primary 
antimanic medication regimen, with lithium showing the 
most promising combination [182]. Finally, a recent meta-
review and critical appraisal of the existing meta-analyses of 
randomized placebo-controlled trials have classified the cur-
rent evidence as of low quality, confirming a higher efficacy 
of allopurinol over placebo on attenuating manic symptoms 
[183]. Considering the limited evidence so far, the potential 
benefit of allopurinol as an adjunctive treatment for mania 
requires further investigation.

5  Limitations and Future Perspectives

The literature here discussed pointing to the role of 
purinergic signaling in BD pathophysiology and highlight-
ing new potential therapeutic targets for drug development 
still relies mostly on basic and preclinical research. While 
in vitro studies bring to light cellular and molecular mech-
anisms involved in specific pathophysiological pathways 
linked to BD, their overall health impact and clinical rel-
evance in the psychiatric clinic must be taken as minimal. 
Similarly, animal models are extremely limited in captur-
ing the complexity of human diseases, particularly psy-
chiatric disorders. Current animal models of mania fail on 
mimicking hypomanic and cycling states, and are mostly 
based on hyperlocomotion behavior, whereas manic 
behavior in humans is much more complex and involves 
several psychosocial, cognitive, and emotional facets. In 
addition, the difficulty of assertively assessing the neuro-
biological traits that distinguish bipolar depression from 
unipolar depression in preclinical models also limits the 
applicability and efficacy of potential drugs designed to 
target general aspects of a depressive episode in BD.

With these limitations in mind, the new generation 
of P2X7R antagonists configures the most promising 
new phase of accelerated discoveries to either mono-
therapies or adjunctive therapies for BD and related dis-
orders that affect the CNS. The use of allopurinol as an 

add-on therapy for BD, while promising and relatively 
well explored, still has many roadblocks associated with 
study design, heterogeneity of primary BD medication, 
as well as the doses and length of administration, limiting 
consistent conclusions from being drawn. Future research 
should focus on additional well-designed translational 
approaches, with more robust and clinically-oriented pre-
clinical studies followed by randomized multi-center clini-
cal trials with larger sample sizes. Special attention should 
be directed towards identifying biomarkers for BD to be 
used both as diagnostic tools and disease-specific targets 
for drug development. Notably, new methods to manage 
suicidal behavior, neuroinflammation, and neurotransmis-
sion imbalance, especially dopaminergic dysfunction, are 
of great relevance for BD.

6  Conclusions

Although limited clinical data are currently available, 
extensive basic and preclinical research points to the 
purinergic system as an important modulator of mood in 
the context of BD. Here, we highlighted a few promising 
purinergic targets and compounds to be further explored, 
including the modulation of P2X4R,  A1R,  A2AR, and 
P2Y1R. We encourage future research aiming to clarify 
the applicability, safety, and efficacy of current and new 
purinergic-targeting candidates such as allopurinol, aden-
osinergic compounds, and the novel P2X7R antagonists as 
therapeutic approaches for BD.
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