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Abstract: The California Community Environmental Health Screening Tool (CalEnviroScreen)
advances research and policy pertaining to environmental health vulnerability. However,
CalEnviroScreen departs from its historical foundations and comparable screening tools by no
longer considering racial status as an indicator of environmental health vulnerability and predictor
of cumulative pollution burden. This study used conceptual frameworks and analytical techniques
from environmental health and inequality literature to address the limitations of CalEnviroScreen,
especially its inattention to race-based environmental health vulnerabilities. It developed an adjusted
measure of cumulative pollution burden from the CalEnviroScreen 2.0 data that facilitates multivariate
analyses of the effect of neighborhood racial composition on cumulative pollution burden, net of
other indicators of population vulnerability, traffic density, industrial zoning, and local and regional
clustering of pollution burden. Principal component analyses produced three new measures of
population vulnerability, including Latina/o cumulative disadvantage that represents the spatial
concentration of Latinas/os, economic disadvantage, limited English-speaking ability, and health
vulnerability. Spatial error regression analyses demonstrated that concentrations of Latinas/os,
followed by Latina/o cumulative disadvantage, are the strongest demographic determinants
of adjusted cumulative pollution burden. Findings have implications for research and policy
pertaining to cumulative impacts and race-based environmental health vulnerabilities within and
beyond California.

Keywords: cumulative impact; ambient air pollution; environmental health; environmental justice;
race; Latina/o; segregation; spatial analysis; CalEnviroScreen; California

1. Introduction

1.1. Background

Episodic political and legal disputes occurred in the 1960s and 1970s in the United States over
environmentally hazardous working and residential conditions for various nonwhite and low-income
populations [1,2]. The environmental justice (EJ) movement emerged in the 1980s over the siting of
hazardous land uses in socially marginalized communities, and it motivated a nationwide study that
argued a community’s nonwhite composition was a primary indictor of hazardous waste location [3].
Prominent EJ and civil rights advocate, Reverend Benjamin Chavis, associated these findings in
1992 with the broader problem of “environmental racism.” This problem is typically understood as
the unequal enforcement of environmental laws; systematic exclusion from environmental science,
movements, and policy making; and the disproportionate burden of environmental health threats
experienced by racial minorities where they live, work, play, pray, and learn [4–6]. The Clinton
Administration passed federal EJ legislation to address claims of the EJ movement in the 1990s, and
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many states followed suit despite significant opposition from public administrators and business
representatives [7,8].

EJ claims also resonated with audiences across several scholarly realms. For example, historians
and social, environmental, and health scientists linked the problem of environmental racism,
and its associated environmental health disparities, to the enduring spatial relationships between
environmental hazards and segregated nonwhite residential settlements in the United States [6,9–16].
Environmental and public health researchers spanning academia, national scientific entities, and
various regulatory agencies also critiqued traditional environmental health risk assessment frameworks
and policies that focus too narrowly on single chemical exposures and ignore the social determinants
of environmental health [13,17–22]. Instead, they advanced the study of “cumulative impacts”: the
multiplicity of chemical exposures and effects that people and places experience, and the relationship
between those experiences and pre-existing biological, physiological, and social conditions of a human
settlement [23].

California is a nationally and internationally prominent site for advancing novel cumulative
impact analyses, which are linked to the state’s precedent-setting EJ and climate policies [5,18,24–33].
Legislation passed in 1999 created the legal definition of EJ in California as “the fair treatment of
people of all races, cultures, and incomes with respect to the development, adoption, implementation,
and enforcement of environmental laws and policies” [27] (p. 489). The following working definition
of cumulative impact emerged in the California Environmental Protection Agency’s (Cal/EPA)
multi-stakeholder EJ policy process during the 2000s and reflects established notions of cumulative
impact in the scientific literature wherein environmental health disparities are linked to biological,
physiological, social, and environmental factors:

“Cumulative impacts means exposures, public health or environmental effects from the combined
emissions and discharges in a geographic area, including environmental pollution from all sources,
whether single or multi-media, routinely, accidentally, or otherwise released. Impacts will take into
account sensitive populations and socio-economic factors, where applicable and to the extent data are
available” [34] (p. 648).

This definition of cumulative impact developed alongside the emergence of innovative cumulative
impact mapping techniques in California that preceded the EJ screening tool released by the U.S.
Environmental Protection Agency (U.S. EPA, Washington, DC, USA) in 2015 [35]. Four prominent
cumulative impact mapping tools in California are the Cumulative Environmental Hazard Inequality
Index (CEHII) [36,37], the Environmental Justice Screening Method (EJSM) [35,38,39] and its associated
Climate Change Vulnerability Screening Method (CCVSM) [25], the Cumulative Environmental
Vulnerability Assessment (CEVA) [26,40], and the California Community Environmental Health
Screening Tool (CalEnviroScreen) [34,41–43]. These cumulative impact mapping techniques similarly
model the spatial concentration of chemical and nonchemical environmental stressors, as well as
“intrinsic” genetic susceptibilities and health conditions and “extrinsic” social vulnerability factors
that are assumed to exacerbate the effects of environmental stressors [23].

The CEHII, EJSM, CEVA and CalEnviroScreen have also informed scholarly and public
deliberation over how best to identify heavily impacted communities and the extent to which financial
and other resources should be channeled into those communities to improve their health and wellbeing.
CalEnviroScreen is noteworthy in this regard. Researchers used CalEnviroScreen to model ovarian
cancer survival rates [44], predict spatial patterns in disease burden [45], evaluate electrical grid siting
alternatives [46], and corroborate environmental racism and cumulative impact claims by community
members opposing the siting of a new hazardous waste facility in their community [47]. In addition,
CalEnviroScreen is the only screening tool among these four with statewide coverage, and it is meant
to assist the State of California in locating the most environmentally burdened, “disadvantaged
communities,” for the targeted receipt of a quarter of the Greenhouse Gas Reduction Funds obtained
through California’s carbon cap-and-trade program [33]. Thus, CalEnviroScreen is unique in its
statewide coverage, scholarly relevance, and political and economic implications.
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1.2. Objectives and Hypotheses

CalEnviroScreen is distinct in other ways that are of central concern to the present study.
CalEnviroScreen, version 1.0, released at the zip code level in 2013, built upon earlier pilot
studies [17,18,28,30,34,41] and modeled cumulative impacts using the multiplicative framework
displayed in Figure 1. CalEnviroScreen 1.0 followed established environmental inequality and public
health literature, and it paralleled the CEHII, EJSM and CEVA tools by including neighborhood
racial composition—i.e., the percent of nonwhite and Latina/o residents—as one of its extrinsic
socioeconomic indicators. Other socioeconomic indicators included the spatial concentration of limited
educational attainment, limited English-speaking ability, and relative poverty from the American
Community Survey. These indicators were combined into a composite cumulative impact score by
standardizing them with sensitive population indicators (the spatial concentration of the young and
elderly, asthma-induced emergency room visits, and low infant birth weight) and pollution burden
indicators measuring environmental exposures and environmental effects (air-, water-, and land-based
emissions and contamination).

Figure 1. Multiplicative approach of CalEnviroScreen 2.0 (original adaptation from Faust et al. [43]).

The first matter of concern to the present study is that subsequent versions of CalEnviroScreen
diverged from the scholarly literature and comparable California cumulative impact screening methods
by excluding its racial composition variable. There remains some speculation over the removal of the
race variable. This is especially true for EJ advocates who maintain that racial factors significantly and
independently influence the distribution of cumulative environmental health burdens in California.
EJ advocates’ claims are supported by environmental health and sociological research, which generally
finds that nonwhite racial segregation is a “structural factor” in spatially concentrating socioeconomic
disadvantage, poor health outcomes, and disproportionate environment pollution burden [11]. These
race-based environmental health vulnerabilities are often attributed to the legacy of systematic housing
market discrimination, real estate steering practices, and blocked channels of residential and economic
mobility, which tend to place nonwhites, especially blacks and Latinas/os, at heightened risk of
exposure to industrial and transportation-related health hazards in California and through much of
the United States [1–6,9–16].

The Office of Environmental Health Hazard Assessment (OEHHA) is Cal/EPA’s primary scientific
organization and lead agency on developing CalEnviroScreen [17,18,34,41]. Its stated mission “is to
protect and enhance public health and the environment by scientific evaluation of risks posed by
hazardous substances” [48]. OEHHA removed race from CalEnviroScreen 1.1 to make it more
widely applicable to state entities prohibited from including racial factors in their decision-making
processes [49]. However, OEHHA committed to conducting supplemental analyses on the correlation
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between racial composition, pollution burden, and composite cumulative impact scores in version 1.1
and subsequent versions of CalEnviroScreen [49].

Cushing et al. [42] analyzed data from CalEnviroScreen 1.1 and 2010 decennial census data on
racial composition at the zip code level. That study found that the percent of nonwhite populations,
especially those identifying as Latina/o or black, was positively associated with cumulative impact
scores. The magnitude of the disparities vis-à-vis the state’s non-Latina/o white population uncovered
in that study indicated that Latinas/os, followed by blacks, are most likely to live in zip codes that had
the highest level of susceptible populations, social vulnerability, and total pollution burden. These
relationships were robust when controlling for population density and comparing outcomes between
additive and multiplicative cumulative impact scoring procedures.

OEHHA’s [50] supplemental analysis of census tract-level data in CalEnviroScreen 2.0 found
similar disparities for neighborhoods with higher concentrations of Latinas/os and blacks as found
in CalEnviroScreen 1.1. However, no study to date has extended such inquiry with multivariate
regression analyses of CalEnviroScreen 2.0 despite its developers’ call to pursue such analysis [34,41,42].
Multivariate analyses have been completed on the recently released CalEnviroScreen 3.0, but that
study did not include local racial composition in the analyses [45].

This article seeks to address these research gaps and “retool” CalEnviroScreen 2.0 (the most
current version of the screening tool at the time this analysis was completed) using publicly available
data sources that permit full replication of the analysis presented below. This article assesses the
bivariate relationships between individual pollution burden indicators and the cumulative pollution
burden score. It applies conceptual frameworks from environmental health and inequality literature
and develops an adjusted measure of cumulative pollution burden from the CalEnviroScreen 2.0 data
that excludes traffic density and facilitates multivariate analyses of the effect of neighborhood racial
composition on cumulative pollution burden, net of other predictors of concentrated environmental
health hazard. Principal component analyses are employed to reduce correlated population
vulnerability indicators into the three separate composite measures at the census tract level.
Economic disadvantage signifies the correlations between limited educational attainment, relative
poverty, and unemployment. Black cumulative disadvantage represents the consistent associations
between the concentration of blacks, economic disadvantage, low birth weight, and asthma-related
hospitalizations. Latina/o cumulative disadvantage similarly reflects the consistent relationship
between the concentration of Latinas/os, economic disadvantage, limited English-speaking ability,
low birth weight, and asthma-related hospitalizations.

The final aspect of the analysis uses spatial error regression models to assess the effects of
the population vulnerability indicators on percentiles of the adjusted cumulative pollution burden
indicator, net of other predictors of environmental health hazard concentration. Those other predictors
include regional controls for tract location in select air basins of California and plausible emission
sources in CalEnviroScreen (i.e., traffic density) and previously not included in CalEnviroScreen
(i.e., the extent of industrial land zoning). The regression analyses test the following four hypotheses
derived from previous research [10,11,25,26,36,37,39,40,42,51–54]. These hypotheses emphasize the
significant positive effects that the residential segregation (i.e., elevated tract-level concentrations) of
blacks and Latinas/os have independently—and in combination with other intrinsic and extrinsic
vulnerability factors—on the concentration of cumulative environmental pollution burden in California
and throughout the United States.

• Hypothesis 1 (H1): The nonwhite environmental inequality hypothesis states that the spatial
concentration of blacks and Latinas/os will be positively associated with cumulative pollution
burden, net of other population vulnerability, emission, and spatial factors.

• Hypothesis 2 (H2): The black environmental inequality hypothesis states that the spatial concentration
of blacks will be the strongest racial predictor of cumulative pollution burden, net of other
population vulnerability, emission, and spatial factors.
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• Hypothesis 3 (H3): The Latina/o environmental inequality hypothesis states that the spatial
concentration of Latinas/os will be the strongest racial predictor of cumulative pollution burden,
net of other population vulnerability, emission, and spatial factors.

• Hypothesis 4 (H4): The Latina/o cumulative disadvantage hypothesis states that the spatial
concentration of Latinas/os, limited English-speaking ability, economic disadvantage, and
health vulnerability will predict more variation in cumulative pollution burden than the spatial
concentration of blacks, economic disadvantage, and health vulnerability, net of emission and
spatial factors.

This study finds that all measures of population vulnerability used in the regression analyses have
positive bivariate associations with adjusted cumulative pollution burden. However, the regression
analyses ultimately support the Latina/o environmental inequality hypothesis (H3) and the Latina/o
cumulative disadvantage hypothesis (H4). Regression analyses suggest that tract-level concentrations
of Latinas/os and Latina/o cumulative disadvantage are the strongest demographic determinants
of adjusted cumulative pollution burden, net of other indicators of population vulnerability, traffic
density, industrial zoning, and local and regional clustering of cumulative pollution burden. These
findings have significant implications for research and policy pertaining to cumulative impacts and
race-based environmental health vulnerabilities within and beyond California.

2. Materials and Methods

2.1. Units of Analysis

Census tracts defined for the year 2010 are the units of analysis used in this article. These units
offer less precision in characterizing human residential settlement patterns and environmental health
vulnerability than census block groups or census blocks. However, CalEnviroScreen 2.0, released in
October 2014, used census tracts in response to public comments that critiqued previous iterations’ use
of zip codes [34,41,42,49]. OEHHA [55] justified the use of census tracts based on their finer spatial
resolution and concordance with county boundaries, as well as the greater degree of homogenous
populations and more reliable demographic data available from the U.S. Census and the American
Community Survey at that level of analysis. Additional data sources used in the present study were
standardized to 2010 tract definitions to facilitate their merger with the CalEnviroScreen 2.0 data. There
were 8035 tracts in the complete CalEnviroScreen dataset, with a mean, minimum, and maximum area
of 50.87, 0.0002, and 421.51 km2, respectively.

2.2. CalEnviroScreen 2.0 Indicators

A detailed description of the data sources, analytical techniques for processing those data, and
scientific rationale for each individual environmental exposure, environmental effects, sensitive
population, and socioeconomic indicator in CalEnviroScreen 2.0 are discussed elsewhere [43].
In summary, the indicators were chosen because they were current, complete, and valid. They also
related to various aspects of Cal/EPA’s cumulative impact definition, were of policy-significance
to Cal/EPA, adequately represented pollution burden and population characteristics of California
(as understood by CalEnviroScreen developers), and could be estimated reliably at the tract-level.

2.2.1. Environmental Exposures

CalEnviroScreen includes four measures of ambient air pollution exposure. The first two
measures derive from the California Air Resources Board (CARB) air monitoring network. High
ozone concentration was measured as the three-year average estimate of daily maximum 8-h ozone
concentration from 2009 to 2011 that exceeded the 8-h standard of 0.070 parts per million for
California [43]. The annual mean concentration of PM2.5 from 2009 to 2011 is another CalEnviroScreen
indicator of ambient air pollution exposure. CalEnviroScreen also features diesel PM emission estimates
from CARB and the San Diego Association of Governments (SANDAG) for on-road and non-road
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sources for a summer (July) 2010 day measured in kilograms per day. Toxicity-weighted manufacturing
facility and off-site incinerator air-toxic concentrations in 2010 represent the fourth indicator of ambient
air pollution exposure in CalEnviroScreen 2.0. This indicator came from the Geographic Microdata
for all 2010 Toxic Release Inventory (TRI) air releases in the U.S. EPA Risk Screening Environmental
Indicators (RSEI) model.

Two additional environmental exposure indicators found in CalEnviroScreen 2.0 are associated
with ambient air pollution. The first of which is agricultural pesticide use density, derived from
the California Department of Pesticide Regulation pesticide use reporting database. This measure
covers the total pounds per tract area of 69 pesticides applied in production agriculture from 2009
to 2011 that are deemed especially hazardous and highly volatile to airborne dispersion. Traffic
density, derived from the California Department of Public Health (CDPH) and SANDAG, is another
CalEnviroScreen environmental exposure indicator associated with ambient air pollution. It is the
summed traffic volume within 150 m of a census tract boundary in 2004, adjusted by road segment
length (vehicle-kilometers per hour) and divided by the total road length (kilometers).

The drinking water contamination index was the final and most recent environmental exposure
indicator added to CalEnviroscreen 2.0. It is compiled from data managed by the CDPH, the
California State Water Resources Control Board (SWRCB), the U.S. EPA, and the U.S. Geological
Survey. In summary, the index is calculated by summing percentiles of the average water contaminant
concentrations or violation index (i.e., the sum of violations of the Maximum Contamination Level
for any chemical contaminant and Total Coliform rule) from one compliance cycle of 2005 to 2013 for
drinking water systems in California.

2.2.2. Environmental Effects

CalEnviroScreen 2.0 featured two environmental effects indicators that operationalized water-
and land-based contamination in California. Proximate impaired water body pollutants were one
such measure. It was calculated from SWRCB data by summing percentiles of pollutants across all
water bodies listed as impaired under Section 303(d) of the Clean Water Act as of 2010. All scores
were summed at the census tract level so as not to double-count the same pollutant across multiple
waterways proximate to the tract. The indicator of proximity-weighted leaking underground storage
tank sites represents the second indicator of contamination in the water environment. Derived from
SWRCB data, it accounts for all sites with valid geographic coordinates that present an environmental
hazard or risk to groundwater.

Three land-based environmental effects indicators were proximate cleanup sites, solid waste sites
and facilities, and permitted hazardous waste sites and large quantity generators. Proximate weighted
cleanup sites were derived from California Department of Toxic Substances (DTSC) and U.S. EPA data.
This indicator includes all sites with valid geographic coordinates, presence of hazardous waste, or
possessing potential environmental risk. This measure includes U.S. EPA-defined Superfund sites and
California State response sites along with lower-risk cleanup sites in California. Proximate weighted
solid waste sites and facilities were derived from California’s Solid Waste Information System; the
Closed, Illegal, and Abandoned Disposal Sites Program; and the Department of Resources Recycling
and Recovery. This measure includes all confirmed closed, illegal, and abandoned solid waste sites,
and active solid waste sites with valid geographic coordinates as of 2010. All permitted hazardous
waste sites and large quantity generators with valid geographic coordinates were found in DTSC
records. This measure includes high-risk hazardous waste landfills whose permit under the Resource
Conservation and Recovery Act (RCRA) was expired for at least 10 years or was in interim status.
Large quantity generators (i.e., those that produced more than 13.1 tons (i.e., 1000 km) of waste per
month for at least one year between 2010 and 2012) and generators producing waste regulated under
RCRA were included in the analysis and were weighted based on the annual rate of waste generation.



Int. J. Environ. Res. Public Health 2018, 15, 762 7 of 26

2.2.3. Cumulative Pollution Burden

As illustrated in Figure 1, the cumulative impact score of CalEnviroScreen 2.0 is the product of
the cumulative pollution burden and population characteristic scores—both of which range from 0
to 10. The calculation of the original percentile ranking of tract-level cumulative pollution burden
scores in CalEnviroScreen 2.0 are described in Faust et al. [43] and can be summarized as follows. First,
the raw values for each environmental exposure and effects indicator were assigned a percentile rank
based on their relative value to other values for that indicator for all census tracts in California. The
environmental effects indicators received half weights (i.e., multiplied by 0.50) because they were
believed to contribute less to the cumulative pollution burden than the exposure indicators. Census
tracts that had no value for an indicator were excluded from the percentile ranking and assigned a 0
percentile score to mitigate against underestimating the relative pollution burden of tracts that were
impacted by only select types of environmental exposures and/or effects.

The sum of the seven environmental exposure indicator percentiles and the half-weighted five
environmental effect indicator percentiles were then divided by 9.5. That denominator was the
sum of the total environmental exposure indicators (7) and the product of half-weighting the total
environmental effects indicators (i.e., 0.5 × 5 = 2.5). Tracts had their denominator reduced according
to the number of environmental exposure indicators that had missing values (PM2.5 concentrations,
high ozone concentrations, the drinking water contamination index, and/or facility and incinerator
air-toxic hazard levels). The averaged cumulative pollution burden percentiles were scaled to a range
of zero to ten by: (1) dividing them by the highest average cumulative pollution burden percentile
in California (i.e., 82.49); and (2) multiplying the result by ten. The CalEnviroScreen 2.0 cumulative
impact score results from multiplying that product by the similarly-derived population characteristics
score. However, cumulative pollution burden scores can be understood on their own terms by using
the cumulative pollution score or the percentile ranking of that score based on its relative value to other
cumulative pollution scores for all 8035 California census tracts that were included in the analysis.

The CalEnviroScreen 2.0 cumulative pollution burden measure helps to identify where multiple
environmental exposures and effects concentrate in physical space. However, including traffic density
in the cumulative pollution burden measure may be problematic because traffic density is not a
pollutant, per se. To be sure, exposure to dense traffic is associated with adverse human health
outcomes [43,56], and traffic density can be a valid proxy for near-road air pollution, particularly in
the context of air monitoring networks that are ill-suited to track such forms of air pollution [57–59].

However, California’s air monitoring network is rather dense [43]. In addition, similar to what is
found elsewhere, traffic density is an established source of PM2.5 and diesel PM [60] and ozone-forming
precursors [61], and thus the ambient air pollution that contributes significantly to cumulative pollution
burden in California as shown below. Including traffic density in the cumulative pollution burden
measure thus limits one’s ability to empirically assess the extent to which traffic density is a predictor of
cumulative pollution burden, net of other factors, in California. This study therefore uses an adjusted
cumulative pollution burden percentile ranking that excludes the traffic density. Accordingly, six
environmental exposure indicator percentiles were summed with the half-weighted five environmental
effect indicator percentiles and were divided by 8.5, except for when the denominator was reduced
due to missing values for a given environmental exposure indicator. The average adjusted cumulative
pollution burden percentile was then scaled by dividing it by the highest average adjusted cumulative
pollution burden score (i.e., 82.95) and multiplying the result by ten. The adjusted cumulative pollution
burden score was assigned a percentile rank based on its relative value to other cumulative pollution
scores for all 8035 California census tracts. The remainder of this study used the adjusted cumulative
pollution burden percentile ranking as its main dependent variable.

Figure 2 shows the quintile ranges of the adjusted cumulative pollution burden rankings for
8035 census tracts in California. A visual inspection of the maps suggests that elevated levels of
adjusted cumulative pollution burden are concentrated in the San Joaquin Valley (SJV) and South
Coast air basins. Additional bivariate correlations support this initial observation. Using data for



Int. J. Environ. Res. Public Health 2018, 15, 762 8 of 26

the 15 air basins of California [62] that are discussed further below, it was found that the percentile
rankings of adjusted cumulative pollution burden are only positively correlated with the percent of
tract intersection in the South Coast air basin (Pearson r = 0.525, p < 0.001) and the percent of tract
intersection with the SJV air basin (Pearson r = 0.284, p < 0.001) (N = 8035).

Figure 2. Quintile ranges of adjusted cumulative pollution burden without traffic density in California,
the South Coast air basin, and the San Joaquin Valley air basin.

2.2.4. Sensitive Populations

CalEnviroScreen’s indicators of sensitive populations represent the intrinsic biological and
physiological susceptibilities and pre-existing health conditions that are believed to amplify the
effects of environmental stressors [23]. Children and elderly populations are sensitive receptors for
environmental stressors, and they are represented with 2010 Decennial Census data on the percent of
population in a tract that is less than 10 or over 65 years of age [43]. Health vulnerability is another
indicator of sensitive populations, and it was operationalized in two ways from CDPH data [43]. In one
instance, it was a spatially modeled, average age-adjusted rate of emergency department visits for
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asthma per 10,000 people from 2007 to 2009. In another instance, health vulnerability was measured
with a spatially-referenced indicator of low birth weight (LBW) births. This measure was derived by
using California birth records on the extent of live, singleton births from 2006 to 2009 that weighed less
than 2500 grams. Mothers’ residential addresses at birth were used to geocode the births.

2.2.5. Socioeconomic Factors

The extrinsic, socioeconomic factors in CalEnviroScreen 2.0 were all derived from five-year
average estimates from 2008 to 2012 in the American Community Survey. They are all reflected
as estimated percentages of the population or households in a tract. Estimates were considered
reliable and incorporated into CalEnviroScreen if their standard error was less than half the estimate
or were less than the mean standard error for all indicator estimates for California census tracts.
The socioeconomic indictor, linguistic isolation, is measured in CalEnviroScreen as the percent of
households in tract in which no individual of at least 14 years of age speaks English “very well” or
speaks English only. It is highly correlated with the presence of nonwhite populations in a census tract
and is a predictor of elevated pollution burden, especially ambient air pollution burden, throughout
the United States [52].

The remaining three socioeconomic indicators represent various aspects of economic disadvantage
and vulnerability of neighborhood exposure to environmental health hazards [36,37,39,40,52]. The
first of which is limited education attainment, measured in CalEnviroScreen as the percent of tract
population over 25 years of age with less than a high school education. Second, the tract unemployment
rate is represented by the percent of tract population over 16 years that are unemployed and eligible for
the labor force. Lastly, the tract relative poverty rate is operationalized as the percent of tract population
whose income in the previous year is below two times the federal poverty level (e.g., a single household
income of $21,000 a year), which is thought to be an important threshold for households to secure
basic necessities [36].

2.3. Data External to CalEnviroScreen 2.0

Additional publicly-available data sources external to CalEnviroScreen 2.0 were used to analyze
the relationship between adjusted cumulative pollution burden and other tract-level measures not
included in the screening tool but that are established correlates of concentrated environmental health
hazard within and beyond California. These additional data sources are discussed in more detail below.

2.3.1. Racial Composition

Previous research on CalEnviroScreen 1.1 at the zip code level [42] and CalEnviroScreen 2.0 at
the tract level [50] indicate that cumulative impact scores had stronger positive associations with the
concentration of Latinas/os and blacks than any other racial group. Racial composition measures
were derived from 2010 Decennial Census data to establish the primary tract-level racial statuses that
are associated with cumulative pollution burden in California. Consistent with previous research on
spatial patterns of racial residential segregation and environmental inequality outcomes using the
census data [63,64], this portion of the analysis used the percent of tract population that identifies as
Latina/o and separate measures of the tract population that identify as non-Latina/o and white, black,
American Indian, Asian, Pacific Islander, some other racial classification, or multiracial. Bivariate
analyses that used these measures of racial composition indicated that the percentile rankings of both
the CalEnviroScreen 2.0 and the adjusted cumulative pollution burden scores were only positively
correlated with the percent of tract population that identified as Latina/o and the percent of tract
population that identified as non-Latina/o black. Accordingly, the remainder of the analyses used
these two racial composition indicators of population vulnerability. Doing so facilitated tests of the
four hypotheses described in Section 1.2.



Int. J. Environ. Res. Public Health 2018, 15, 762 10 of 26

2.3.2. Industrial Zoning

This study also supplements CalEnviroScreen 2.0 data with a tract-level measure of industrial
zoning designations as of 2004 from the first ever statewide general plan database for the State of
California created by the California Resources Agency and the University of California, Davis [65].
Polygons coded as “industrial, which includes heavy industry and light industry,” were extracted from
the 2004 general plans shapefile and intersected with 2010 census tract boundaries to derive a measure
of the percent of tract area that was zoned industrial. There are two main benefits of including this
measure in the analysis. First, many CalEnviroScreen pollution burden indicators reflect the adverse
environmental health hazards of industrial activity, but none of them operationalize the extent to
which census tracts are zoned industrial. California land use guidance and social science and historical
research indicates that industrial zoning is an important determinant of where environmental health
hazards are found [5,11,16,66]. Second, this measure temporally coincides with the 2004 traffic density
variable described above—both of which are used as complimentary “emission source” predictor
variables in the bivariate and multivariate analyses of variation in adjusted cumulative pollution
burden percentiles. Assessing the relative effects of those temporally-matched traffic density and
industrial zoning indicators have on subsequent pollution burden can further inform regulatory
considerations of how best to address cumulative pollution burden in California census tracts.

2.3.3. Regional Controls: Tract Containment in California Air Basins

Additional measures were used to account for the spatial clustering of adjusted cumulative
pollution burden in California. The selection of these measures considered several factors, including the
regional clustering of adjusted cumulative pollution burden summarized above and previous analyses
of zip code-level CalEnviroScreen 1.1 data, which found that the San Joaquin Valley (SJV) and Greater
Los Angeles area in Southern California had the highest cumulative impact scores among regions in the
state [42]. In addition, complimentary cumulative impact mapping studies using the CEHII [36,37], the
CEVA [26,40], and the EJSM [25,35,38,39] focus on both regions given their significant environmental
health risks and unequal cumulative pollution burdens for nonwhites and other socially-marginalized
populations. Given these insights and previous environmental inequality research on the social
and spatial dimensions of cumulative ambient air pollution burdens in California [67], the spatial
regression analyses featured below include separate variables for the percent of tract area that intersects
boundaries for the SJV and South Coast air basins [62]. These and the 13 other California air basins
are defined in state statute, and they are differentiated by their meteorological, geographic, and air
pollution and transport characteristics. The SJV air basin includes Fresno, Kern, Kings, Madera,
Merced, San Joaquin, Stanislaus and Tulare Counties. The South Coast air basin includes Los Angeles,
Orange, Riverside, San Bernardino, and Ventura Counties.

2.4. Analytic Strategy

This section summarizes the analytic strategy used in the remainder of this study. First, principal
component analyses (PCA) specify dimensions of population vulnerability that are significantly
associated with adjusted cumulative pollution burden. A series of bivariate correlation analyses
demonstrate the validity of the adjusted cumulative pollution burden measure. Then, spatial error
regression models assess the effects of population vulnerability factors on adjusted cumulative
pollution burden, net of emission sources (i.e., industrial zoning and traffic density) and spatial
dynamics (i.e., spatial dependencies in the model parameters and the SJV and South Coast air
basin regional controls). Figure 3 visualizes the conceptual framework that guides the spatial
regression analyses.
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Figure 3. Conceptual framework for modeling the factors that predict adjusted cumulative pollution
burden patterns.

2.4.1. Principal Component Analyses

Many population vulnerability indicators featured in this study are highly correlated with
each other. Principal component analysis (PCA) is one approach used in the social science
environmental inequality literature to identify and mitigate such issues of collinearity between
population vulnerability indicators [52,53]. Substantively speaking, PCA can also be a useful tool
to develop composite measures that represent underlying and complex dimensions of population
vulnerability (or other analytical constructs) that cannot be captured using separate indicators of
vulnerability [45]. The PCAs included the Latina/o and non-Latina/o black tract composition variables,
and all population vulnerability indicators in CalEnviroScreen, except for the children and elderly
measure. The incorporation of those variables into the PCA was justified by the common correlation
between them and cumulative pollution burden as demonstrated below, as well as established
sociological conceptualizations of how various neighborhood-level demographic variables combine to
create social disadvantage and vulnerability of exposure to environmental hazards [52,53,68].

In each PCA, unrotated factor solutions were extracted by analyzing the correlation matrix
involving each component variable in a maximum of 25 iterations and using eigenvalues greater
than 1.00. Missing values were excluded through listwise deletion. A regression method was then
used to produce each factor score, which can be interpreted as the standardized linear combination
of factor loading weights for each component variable. The validity of the factors were assessed by
estimating the total variance explained by each factor component. Cronbach’s alpha scores calculated
from additional scale analyses of the factor components informed assessments of the reliability of
the factor results. This approach contrasts, for example, with research that used hundreds of input
variables and produced multiple factor solutions of “social vulnerability” to environmental hazards
throughout the United States [69]. However, this approach accords with social science environmental
inequality literature [52,53] and is further justified given the limited number of inputs used and the
ease of interpreting the underlying structure of population vulnerability for these California-based
population vulnerability factors.

Table 1 summarizes the factor results from the three separate PCAs. The first factor reduces the
highly correlated unemployment rate and the low educational attainment and income variables into a
composite measure of “economic disadvantage.” This factor is highly reliable and valid given its high
Cronbach’s alpha score (0.776), eigenvalue (2.262), and 75.40 percent of variance explained in the factor
components. The economic disadvantage factor is used in the analysis below primarily as a means to
address issues of multicollinearity between its components parts while including a multidimensional
measure of economic disadvantage that is separate from linguistic isolation and racial composition
when modeling the effects of population vulnerability, net of other factors, on adjusted cumulative
pollution burden.

The other two factors are limited when compared to related measures of “cumulative
disadvantage” in the sociological literature, which capture how institutional mechanisms contribute to
the accumulation of disadvantage and vulnerability over time for various racial groups [70]. However,
each factor of cumulative disadvantage produced from the PCAs in the present study are fairly reliable
and valid analytical constructs, and they represent how multiple dimensions of intrinsic and extrinsic
environmental health vulnerability tend to accumulate differentially in California neighborhoods
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with elevated concentrations of Latinas/os and blacks. Latina/o cumulative disadvantage is the most
reliable and valid cumulative disadvantage measure. It has a Cronbach’s alpha score of 0.805 and
eigenvalue of 3.836. Further, it explains 54.81 percent of variance in the factor components. Latina/o
cumulative disadvantage loads higher on Latina/o composition, linguistic isolation, and all aspects
of economic disadvantage (factor loadings ≥ 0.635) and lower on the intrinsic sensitive population
measures of percent low birth weights and asthma-related hospitalizations. Black disadvantage has
comparably low reliability and validity given its lower Cronbach’s alpha (0.712), eigenvalue (2.930),
and percent of variance it explains in its component parts (48.84%). Nonetheless, black cumulative
disadvantage loads high on all aspects of economic disadvantage and asthma-related hospitalization
rates (factor loadings between 0.858 and 0.720), and moderately-high on black composition and percent
low-birth weights.

Table 1. Principal component analysis results for economic disadvantage, black cumulative
disadvantage, and Latina/o cumulative disadvantage.

Variables
Factor Loadings

Economic
Disadvantage

Black Cumulative
Disadvantage

Latina/o Cumulative
Disadvantage

Percent of population > 25 without a high school
education 0.895 0.773 0.939

Percent of population living below two times the federal
poverty level 0.937 0.858 0.914

Percent of the population over the age of 16 that is
unemployed 0.763 0.720 0.635

Percent non-Latina/o black population 0.530
Percent Latina/o population 0.858

Percent linguistically isolated households 0.748
Percent low birth weight births 0.499 0.360

Age-adjusted asthma-related emergency department visits 0.741 0.539

Alpha 0.776 0.712 0.805
Eigenvalue 2.262 2.930 3.836

Percent of total variance explained 75.397 48.840 54.806
N 7780 7778 7610

The health vulnerability measures of asthma-related hospitalizations and percent low-birth
weights thus had comparatively lower influence on the composite Latina/o and black cumulative
disadvantage factors. As shown in Section 3.1, those health vulnerability measures also had
comparatively lower correlations with cumulative pollution burden than socioeconomic and racial
composition indicators of extrinsic vulnerability. Accordingly, this study followed previous cumulative
impact screening studies of the SJV that had similar findings and used the health vulnerability
indicators as a “reference layer” [40]—indicative of how health status amplifies socioeconomic
and race-based environmental health vulnerabilities of tract exposure to adjusted cumulative
pollution burden.

2.4.2. Spatial Regression Models

Preliminary diagnostic tests typically used in the environmental inequality outcomes
literature [53,67,71] revealed that the spatial error variant of the ordinary least squares (OLS) linear
regression model was the correct specification to account for spatial effects in regression analyses
featured in this study. Those analyses test which race-based environmental inequality hypothesis
(i.e., H1, H2, H3, and H4) presented in Section 1.2 best explains variation in tract exposure to adjusted
cumulative pollution burden. The spatial error model assumes that the explanatory variables alone
do not account for spatial autocorrelation in the model and that there is spatial dependence in the
regression errors [71]. The spatial error model uses a maximum likelihood method and addresses
the potential efficiency problem of having biased coefficient standard errors estimates [72] with the
addition of the spatially weighted error term (λWe) in the OLS regression equation. Spatial error
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models are defined in the following manner, which operationalizes the conceptual framework shown
in Figure 3:

y = α + ∑
k

βkXk + λWe + u

where y represents percentiles of adjusted cumulative pollution burden; α is the constant and β is the
coefficient for the k number of X population vulnerability, emission sources, and air basin regional
control variables; λ is the spatial autoregressive coefficient; W is the spatial weights matrix; e is the
random error term from the OLS model; and u is the spatially independent error term [72,73].

The spatial weights matrix helps to account for spatial dynamics that mediate the relationships
between population vulnerability, emission sources, air basin regional controls, and the outcome
measure of adjusted cumulative pollution burden. Specifying the correct spatial weights matrix for the
spatial error models involved extensive experimentation and consideration of comparable approaches
in previous environmental inequality outcomes research [53,67,71]. Ultimately, a row-standardized
second-order queen adjacency spatial weights matrix—when used with the regional controls for tract
intersection with the South Coast and SJV air basins—successfully accounted for spatial dependence
in the spatial error models. The matrix resulted in only seven “island” tracts without a neighbor out
of the 7610 tracts included in the regression analyses. There were a maximum of 71 and mean of
19 neighbors across the remaining 99.91 percent (N = 7603) tracts with a neighbor.

The spatial error regression models are estimated for 7610 tracts with non-missing data. Table 2
displays the descriptive statistics for all variables used in those models. The table includes the Moran’s
I values for each variable, which was calculated using the second-order queen adjacency spatial
weights matrix. The Moran’s I values indicate all the variables exhibit significant spatial clustering
and further justify the use of the spatial error regression approach in this article.

Table 2. Descriptive statistics of variables used in the spatial error regression analyses (N = 7610 tracts).

Variable Mean SD Min. Max. Moran’s I 1

Adjusted cumulative pollution burden percentile 50.23 28.77 0.01 99.99 0.768 ***
Economic disadvantage 0.00 1.00 −1.71 3.88 0.595 ***

Percent linguistically isolated households 11.25 10.98 0.00 79.10 0.586 ***
Percent Latina/o population 36.95 26.44 1.19 99.03 0.723 ***

Percent non-Latina/o black population 5.79 9.29 0.00 89.76 0.726 ***
Latina/o cumulative disadvantage 0.00 1.00 −1.66 3.12 0.669 ***

Black cumulative disadvantage 0.00 1.00 −1.79 4.76 0.686 ***
Percent industrial-zoned land 4.76 12.08 0.00 93.73 0.162 ***

Traffic density (1000 s) 1.26 1.22 0.00 43.56 0.281 ***
Percent tract in the South Coast air basin 43.40 49.53 0.00 100.00 0.989 ***

Percent tract in the San Joaquin Valley air basin 9.20 28.88 0.00 100.00 0.963 ***
1 A second-order queens adjacency spatial weights matrix and 9999 permutations were used in the Moran’s I
analyses. *** Pseudo p < 0.001 (two-tailed test).

3. Results

3.1. Bivariate Analyses

Table 3 displays the Pearson correlation estimates between the CalEnviroScreen 2.0 and adjusted
cumulative pollution burden percentiles and the percentiles of individual pollution indicators used
in CalEnviroScreen 2.0. Percentile rankings do not permit one to discern the absolute magnitude
of pollution burden differences between census tracts, but they are central scoring techniques in
CalEnviroScreen 2.0 for stratifying tracts according to relative pollution burden in California [43].

Table 3 displays substantively similar positive associations between the individual pollution
burden indicators and the CalEnviroScreen 2.0 and adjusted cumulative pollution burden
indicators. The individual environmental exposures and effects indicators have differing associations
with cumulative pollution burden, as found in early CalEnviroScreen pilot data [41]. Both
cumulative pollution burden measures had the highest bivariate correlations with annual mean
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PM2.5 concentrations, toxicity-weighted manufacturing facility and off-site incinerator air-toxic
concentrations, and diesel PM emissions. These patterns indicate the importance of ambient air
pollution in contributing to concentrated cumulative pollution burdens in California. The drinking
water contamination index has a moderate correlation with both pollution burden indicators, while
high ozone and pesticide application concentrations have lower associations with cumulative pollution
burden. In addition, cumulative pollution burden percentile rankings using the CalEnviroScreen 2.0
and the adjusted approach that excludes traffic density are almost identical with a Pearson correlation
coefficient of 0.972 (p < 0.001).

Table 3. Pearson correlations between percentiles of CalEnviroScreen (CES) 2.0 cumulative pollution
burden and adjusted cumulative pollution burden, and individual pollution indicators.

Individual Pollution Indicators CES 2.0 Cumulative
Pollution Burden

Adjusted Cumulative
Pollution Burden N

Environmental exposures
High ozone 0.342 *** 0.398 *** 7970

PM2.5 0.726 *** 0.737 *** 7944
Diesel PM 0.560 *** 0.487 *** 8035

Facility & incinerator air-toxic hazard 0.604 *** 0.572 *** 8023
Agricultural pesticide density 0.125 *** 0.190 *** 8035

Traffic density 0.396 *** 0.181 *** 8035
Drinking water contamination index 0.505 *** 0.572 *** 8000

Environmental effects
Impaired water body pollutants 0.026 * 0.023 * 8035

Leaking underground storage tank sites 0.312 *** 0.306 *** 8035
Cleanup sites 0.435 *** 0.438 *** 8035

Solid waste sites & facilities 0.271 *** 0.302 *** 8035
Hazardous waste facilities & large quantity generators 0.468 *** 0.446 *** 8035

* p < 0.05; *** p < 0.001 (two-tailed test).

The biggest change evidenced in Table 3 is that traffic density has a moderate correlation with
CalEnviroScreen 2.0 cumulative pollution burden but a low correlation with adjusted cumulative
pollution burden. Excluding the traffic density variable has little substantive change on the cumulative
pollution burden percentile ranking. It also permits an assessment of the effect of traffic density on
cumulative pollution burden, which is heavily influenced by ambient air pollution attributable to
traffic-related sources [60].

Table 4 displays the extent to which racial composition and the sensitive population and
socioeconomic factors included in CalEnviroScreen 2.0 are significantly associated with the percentile
rankings of cumulative pollution burden in California. Raw values of the population vulnerability
variables, rather than their percentile rankings, facilitate easier interpretation of how the population
composition of tracts is associated with relative cumulative pollution burden. Similar to patterns
shown in Table 3, Table 4 indicates that the relationship between population vulnerability and the
percentile rankings of both cumulative pollution burden indicators are essentially the same.

Table 4 reveals three other noteworthy patterns. First, all the population vulnerability measures in
CalEnviroScreen 2.0 are positively associated with CalEnviroScreen 2.0 cumulative pollution burden
and adjusted cumulative pollution burden, except for the extent of children and elderly populations
in a census tract. This pattern indicates that, while such sensitive populations are at heightened
risk of experiencing adverse health conditions from environmental exposures [23,35], the extent of
their presence in a census tract is consistently a negative predictor of cumulative pollution burden
in California. Indeed, CalEnviroScreen 3.0 excludes the children and elderly indicator due to public
comments and internal evaluations by CalEnviroScreen developers that acknowledged this fact [74].
Second, the correlations between the other sensitive population indicators relating to tract-level
health vulnerability and cumulative pollution burden are positive but smaller in magnitude than
the correlations between most of the socioeconomic indicators of CalEnviroScreen and the racial
composition measures. This pattern compliments previous research on cumulative pollution burdens
in the SJV in which comparable health status measures were marginally related to cumulative pollution
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burden in comparison to socioeconomic factors [40]. Third, the extent of Latina/o presence in a tract
has the highest bivariate correlation with cumulative pollution burden.

Table 4. Pearson correlations between percentiles of CalEnviroScreen (CES) 2.0 cumulative pollution
burden and adjusted cumulative pollution burden and population vulnerability indicators.

Population Vulnerability Variables
CES 2.0 Cumulative

Pollution Burden
Percentile

Adjusted Cumulative
Pollution Burden

Percentile
N

Sensitive populations
Percent of population <10 and >65 years old −0.119 *** −0.105 *** 8024

Percent low birth weight births 0.137 *** 0.133 *** 7994
Age-adjusted asthma-related emergency department visits 0.101 *** 0.117 *** 8035

Socioeconomic factors
Percent of population > 25 without a high school education 0.381 *** 0.404 *** 7922

Percent of population living below two times the federal
poverty level 0.310 *** 0.334 *** 7933

Percent of population over the age of 16 that is unemployed 0.154 *** 0.184 *** 7854
Percent linguistically isolated households 0.347 *** 0.337 *** 7719

Racial composition
Percent Latina/o population 0.446 *** 0.465 *** 8024

Percent non-Latina/o black population 0.074 *** 0.058 ** 8024

** p < 0.01; *** p < 0.001 (two-tailed test).

Table 5 displays the bivariate correlations between all of the independent variables and percentiles
of adjusted cumulative pollution burden that are used in the spatial error regression analysis.
As expected, all of the independent variables are positively correlated with adjusted cumulative
pollution burden. These correlations are particularly noteworthy in relation to the four hypotheses
guiding this study. The percentages of Latina/o population and non-Latina/o black population
are both positively associated with adjusted cumulative pollution burden—indicating that the
nonwhite environmental inequality hypothesis (H1) may be supported in the subsequent multivariate
analysis. However, the magnitude of the association between these racial composition variables and
adjusted cumulative pollution burden suggests that the concentration of Latinas/os and cumulatively
disadvantaged Latina/o tracts—rather than comparable black census tracts—may be the stronger
predictor of concentrated environmental health hazard levels. Such patterns would not support the
black environmental inequality hypothesis (H2), but they would support the Latina/o environmental
inequality (H3) and Latina/o cumulative disadvantage (H4) hypotheses.

Table 5 further shows that only the population vulnerability variables share concerning levels of
intercorrelation. Specifically, economic disadvantage, percent linguistically isolated households, and
percent Latina/o population are all strongly correlated with each other. In addition, both Latina/o and
black cumulative disadvantage are strongly correlated with each other and the other population
vulnerability measures that comprise those cumulative disadvantage factor variables. Those
intercorrelations were considered in organizing the spatial error regression models presented below.

Table 5. Pearson correlation coefficients for variables used in the spatial error regression analyses (N =
7610 tracts).

1 2 3 4 5 6 7 8 9 10

1. Adjusted cumulative
pollution burden

percentile

2. Economic
disadvantage 0.36 ***

3. Percent linguistically
isolated households 0.34 *** 0.65 ***

4. Percent Latina/o
population 0.47 *** 0.78 *** 0.63 ***

5. Percent non-Latina/o
black population 0.06 *** 0.21 *** −0.00 0.04 ***
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Table 5. Cont.

1 2 3 4 5 6 7 8 9 10

6. Latina/o cumulative
disadvantage 0.41 *** 0.96 *** 0.75 *** 0.86 *** 0.24 ***

7. Black cumulative
disadvantage 0.31 *** 0.90 *** 0.51 *** 0.66 *** 0.53 *** 0.91 ***

8. Percent
industrial-zoned land 0.31 *** 0.19 *** 0.14 *** 0.22 *** 0.05 *** 0.21 *** 0.18 ***

9. Traffic density
(1000 s) 0.15 *** −0.01 0.10 *** 0.07 *** 0.06 *** 0.03 ** −0.00 0.11 ***

10. Percent tract in the
South Coast 0.54 *** 0.10 *** 0.24 *** 0.28 *** 0.08 *** 0.16 *** 0.07 *** 0.12 *** 0.17 ***

11. Percent tract in the
San Joaquin Valley 0.29 *** 0.23 *** 0.01 0.15 *** −0.05 *** 0.19 *** 0.20 *** 0.02 −0.15 *** −0.28 ***

** p < 0.01; *** p < 0.001 (two-tailed test).

3.2. Multivariate Analyses

All models shown in Tables 6 and 7 include the variables that operationalize emission sources
and the regional and local clustering of adjusted cumulative pollution burden. Spatial dependence is
not evident in those spatial error models as indicated by their highly significant spatial autoregressive
coefficient (Lamda; λ) and the insignificant Moran’s I statistics for the regression residuals.

Model 1 in Table 6 establishes the effects of socioeconomic factors from CalEnviroScreen 2.0
data on adjusted cumulative pollution burden, net of emission sources and spatial factors. Including
emission sources, spatial factors, and economic disadvantage in Model 1 erases the significant and
positive bivariate correlation between the percent of linguistically isolated households and adjusted
cumulative pollution burden witnessed in Table 5. Instead, economic disadvantage rises as the more
consistent population vulnerability predictor of adjusted cumulative pollution burden in Model 1.

Model 2 in Table 6 adds percent Latina/o and non-Latina/o black population to the variables
in Model 1 and tests the nonwhite (H1), black (H2), and Latina/o (H3) environmental inequality
hypotheses. The multicollinearity condition index (MCI) increases from Model 1 to Model 2 with the
inclusion of racial composition. This result is expected given the bivariate intercorrelation between
economic disadvantage, percent linguistically isolated households, and percent Latina/o population
shown in Table 5. However, the MCI in Models 1 and 2 are well below the suggested threshold of
30 [73] and thus demonstrate the lack of significant collinearity between the independent variables in
each of those models.

Table 6. Spatial error regression results for adjusted cumulative pollution burden percentile on
population vulnerability (socioeconomic factors and racial composition), emission sources, and air
basin regional controls (N = 7610 tracts).

Variables
Model 1 1 Model 2 2

b S.E. B b S.E. B

Population vulnerability
Economic disadvantage 1.096 *** 0.292 0.038 0.440 0.350 0.015

Percent linguistically isolated households −0.005 0.026 −0.002 −0.023 0.027 −0.009
Percent Latina/o population 0.056 *** 0.016 0.051

Percent non-Latina/o black population 0.024 0.033 0.008
Emission sources

Percent industrial-zoned land 0.283 *** 0.013 0.119 0.281 *** 0.013 0.118
Traffic density (1000 s) 1.451 *** 0.138 0.062 1.431 *** 0.138 0.061

Air basin regional controls
Percent tract in South Coast 0.148 *** 0.028 0.255 0.157 *** 0.028 0.270

Percent tract in San Joaquin Valley 0.215 *** 0.029 0.216 0.212 *** 0.029 0.213
Constant 13.644 *** 2.516 12.418 *** 2.503

Lambda (λ) 0.944 *** 0.006 0.941 *** 0.006
Multicollinearity condition index 4.979 8.773
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Table 6. Cont.

Variables
Model 1 1 Model 2 2

b S.E. B b S.E. B

Log likelihood −30,387.997 −30,381.966
Degrees of freedom 7603 7601

Akaike information criterion 60,790.000 60,781.900
Moran’s I of residuals 3 −0.006 −0.006

1 Model 1 operationalizes population vulnerability solely with CalEnviroScreen 2.0 socioeconomic variables. 2 Model
2 adds racial composition (i.e., the percent of Latinas/os and non-Latina/o black population in a tract) to Model
1 variables. 3 A second-order queens adjacency spatial weights matrix was used in the regression analyses and
Moran’s I analysis of regression residuals. Insignificance of Moran’s I results are based on 9999 permutations.
*** p < 0.001 (two-tailed test).

Table 7. Spatial error regression results for adjusted cumulative pollution burden percentile on
population vulnerability (Latina/o and black cumulative disadvantage), emission sources, and air
basin regional controls (N = 7610 tracts).

Variables b S.E. B

Population vulnerability
Latina/o cumulative disadvantage 1.303 * 0.626 0.045

Black cumulative disadvantage 0.102 0.638 0.004
Emission sources

Percent industrial-zoned land 0.282 *** 0.013 0.118
Traffic density (1000 s) 1.450 *** 0.138 0.061

Air basin regional controls
Percent tract in South Coast 0.153 *** 0.028 0.264

Percent tract in San Joaquin Valley 0.213 *** 0.029 0.214
Constant 14.056 *** 2.451

Lambda (λ) 0.942 *** 0.006
Multicollinearity condition index 5.664

Log likelihood −30,384.942
Degrees of freedom 7603

Akaike information criterion 60,783.900
Moran’s I of residuals 1 −0.006

1 A second-order queens adjacency spatial weights matrix was used in the regression analyses and Moran’s I
analysis of regression residuals. Insignificance of Moran’s I results are based on 9999 permutations. * p < 0.05;
*** p < 0.001 (two-tailed test).

Percent Latina/o population is the only population vulnerability indicator to have a significant
effect on adjusted cumulative pollution burden in Model 2 in Table 6. This finding is noteworthy, as
none of the CalEnviroScreen 2.0 socioeconomic factors in Model 2 are significantly associated with
percentiles of adjusted cumulative pollution burden. The unstandardized regression coefficient
(b) indicates that a one percentage-point increase in Latina/o composition is associated with a
0.06 percentile increase in adjusted cumulative pollution burden. This positive effect of a tract’s
Latina/o composition partially supports the nonwhite environmental inequality hypothesis (H1) but
fully supports the Latina/o environmental inequality hypothesis (H3). The effect of a tract’s black
composition on adjusted cumulative pollution burden is not significant in Model 2. This finding does
not support the nonwhite and black (H2) environmental inequality hypotheses.

The model summarized in Table 7 tests the Latina/o cumulative disadvantage hypothesis (H4).
The model is structured to avoid multicollinearity issues that would arise by including all other
population vulnerability variables shown in Table 6 in the same model with the two cumulative
disadvantage variables in Table 7. Despite the high correlation between Latina/o and black cumulative
disadvantage, the MCI for the cumulative disadvantage model is low at 5.664. This model supports
the Latina/o cumulative disadvantage hypothesis (H4). A one-point increase in Latina/o cumulative
disadvantage is significantly associated with a 1.3 percentile increase in adjusted cumulative pollution
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burden, net of other factors included in the model. The coefficient for black cumulative disadvantage is
signed as expected but not significant. Thus, the significant and positive bivariate association between
black cumulative disadvantage and adjusted cumulative pollution burden is washed away by the
multivariate results presented in Table 7.

The consistent effects of the emission source and regional control variables on adjusted cumulative
pollution burden across the regression models in Tables 6 and 7 are as expected. Traffic density and the
extent of industrial-zoned land as of 2004 have highly significant and positive effects on subsequent
levels of cumulative pollution burden in a tract. All of the models indicate that a one thousand-point
increase in traffic density and a one percentage-point increase in industrial-zoned land are associated,
respectively, with a 1.43–1.45 percentile and a 0.28 percentile increase in adjusted cumulative pollution
burden. The air basin regional control variables similarly have highly significant and positive effects in
the models and thus adequately capture the spatial clustering of adjusted cumulative pollution burden
in the South Coast and SJV air basins.

The relative strength of the independent variables in each model can be assessed with unit-less
standardized regression coefficients (B). The higher the standardized coefficient, the stronger the effect
of an independent variable on adjusted cumulative pollution burden percentiles. The standardized
coefficients across the models show that the strongest determinants of adjusted cumulative pollution
burden rankings among all variables considered in this analysis are tract containment in the South
Coast and SJV air basins, followed by the extent of industrial-zoned land and traffic density in a tract.

The pseudo R2 is constant across the models in Tables 6 and 7 at 0.811, which suggests the models
account for about 81 percent of the variance explained in the percentile rankings of adjusted cumulative
pollution burdens in California census tracts. While informative, the Akaike information criterion
(AIC) and the log likelihood statistics have more efficacy in informing comparisons of model fit to
the data. In addition, the AIC and log likelihood statistics aid in assessing the relative strengths of
the models in their ability to capture how racial composition combines with other factors to explain
variation in cumulative pollution burden outcomes. The smaller AIC values and larger log likelihood
values shown for Model 2 in Table 6 suggest it best fits the data [71,73]. These findings indicate that the
effect of racial segregation on cumulative pollution burden is perhaps best captured when using the
percent Latina/o population in a census tract alongside the other indicators of population vulnerability,
emission sources, and spatial dynamics included in Model 2. The standardized coefficients in Model 2
suggest that—on average—tract-level variation in percentile ranking of adjusted cumulative pollution
burden in California from 2005 to 2013 was most consistently associated with tract containment in
South Coast and SJV air basins, the extent of industrial-zoned land and traffic density in a tract in 2004,
and the percent of Latina/o population in a tract in 2010.

4. Discussion

The U.S. EJ movement emerged in the 1980s over race and class inequities in the distribution
of environmental health hazards, environmental enforcement, and exclusionary environmental
movements, science, and policy-making. Struggles to address these environmental inequalities
continue to this day alongside important opportunities to advance the movement for environmental
health equity. This especially true in California, where prominent EJ activism, precedent-setting EJ
policies, and innovative EJ researchers have made the state a home for the development of cumulative
impact mapping techniques that advance our understanding of the relationship between population
vulnerability and the spatial concentration of multiple environmental health hazards [23,28,35].

CalEnviroScreen emerged from this context as a novel cumulative impact mapping tool with
broad implications for environmental and public health research and policy. However, it excludes
racial status as an indicator of population vulnerability of exposure to multiple environmental health
hazards in an effort to make it more widely applicable throughout California state government [49].
As such, it departs from its historical foundations and comparable cumulative impact mapping
tools in California [25,26,35–40], as well as from a broad cross-section of scholarly literature that
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emphases the salience of racial factors, particularly racial segregation, in concentrating socioeconomic,
health, and environmental disadvantages in the United States and California [1–6,9–16]. In addition,
CalEnviroScreen is limited in that its cumulative pollution burden indicator precludes researchers
and policy makers from assessing the extent to which traffic patterns and/or industrial zoning—well
documented pollution sources [5,16,60,61,66]—contribute to the spatial concentration of multiple
environmental health hazards in California.

These limitations are manifest in the only other multivariate analysis of CalEnviroScreen to date
by Greenfield, Rajan and McKone [45]. That study analyzed zip code-level associations between the
CalEnviroScreen 3.0 cumulative impact score and its component environmental and socioeconomic
variables. PCA was used in that analysis to uncover multivariate relationships in CalEnviroScreen
while reducing the environmental and socioeconomic variables into composite factors and facilitating
a spatial regression analysis of their effects on zip code-level disease burden (i.e., the hospitalization
rate for at least one of 14 diagnostic categories that have potential environmental etiology). Similar to
the present study, that analysis of CalEnviroScreen 3.0 found that industrial activity and air pollution
contribute significantly to cumulative impacts in California, and that the SJV and the South Coast
region were hot spots for cumulative impacts in the state. It also found that the socioeconomic
factor produced from PCA of the CalEnviroScreen 3.0 data explained more of the variance in disease
burden than the environmental factor variables. While insightful, such line of inquiry is dependent
primarily on CalEnviroScreen data and the course spatial resolution of zip codes. It is further limited
by not assessing the effect of racial segregation on cumulative pollution burdens in California, net of
non-racial population vulnerability factors, industrial zoning, traffic density, and the spatial clustering
of cumulative pollution burden in the state.

The present study “retools” CalEnviroScreen and begins to address these important limitations
by incorporating conceptual frameworks and analytical techniques from the environmental health
and inequality literature. Such scholarship illuminates the effect of race-based environmental health
vulnerabilities on cumulative pollution burden, net of other factors accounted for—and unaccounted
for—in CalEnviroScreen.

The resulting analytical framework advanced in this article is analogous to previous sociological
efforts to reformulate cross-national analyses of environmental impacts using the “IPAT” model. The
IPAT accounting equation specified environmental impacts (“I”) as the product of population (“P”),
affluence (“A,” measured as per capita consumption or production levels), and technological factors
(“T”). An alternative stochastic approach used in the “STIRPAT” model [75,76] reformulated IPAT and
facilitated multivariate regression analyses, which test sociological theories specifying how population,
affluence, and technology contribute to environment impacts. Impacts analyzed in that line of inquiry
include, for example, national emissions of CO2 [77] and ecological footprints (i.e., the amount of
biologically productive land needed to sustainably support each individual in a nation) [78].

Similarly, this study retooled CalEnviroScreen by moving away from the multiplicative framework
wherein cumulative impacts are the product of cumulative pollution burden (environmental
exposures and effects) and population vulnerability (sensitive populations and socioeconomic factors)
(see Figure 1). As shown in Figure 3, the present study modeled the adjusted cumulative pollution
burden percentile rankings (that excludes traffic density) as a multivariate function of racial and
non-racial population vulnerability factors, traffic density and industrial zoning, and local and regional
spatial dynamics. Bivariate correlations between CalEnviroScreen’s and this study’s cumulative
pollution burden measures, and the individual pollution burden variables that comprise them, show
both cumulative pollution burden indicators are substantively similar and heavily influenced by
ambient air pollution levels. The primary difference between the cumulative pollution burden
indicators results from excluding traffic density in the adjusted measure: traffic density has a moderate
correlation with the CalEnviroScreen 2.0 cumulative pollution burden and a lower correlation with
adjusted cumulative pollution burden.
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This study demonstrates how CalEnviroScreen can be effectively reformulated to address
long-lasting EJ concerns [5] and related scholarship on environmental inequality, environmental
health disparities, and cumulative impacts regarding the effects of race-based vulnerabilities on the
unequal distribution of environmental health hazards [10,11,25,26,36,37,39,40,42,52,54]. As found
in previous cumulative impact mapping studies of California’s SJV [40], the extrinsic vulnerability
measures of socioeconomic status in CalEnviroScreen and the additional racial composition measures
incorporated in this study were more strongly correlated with both cumulative pollution burden
indicators than the intrinsic vulnerability measures of health status and susceptible populations.
In addition, the percent of non-Latina/o black and Latina/o population in a tract were positively
correlated with both cumulative pollution burden indicators. The extent of Latina/o presence in a
tract, however, had the strongest bivariate correlation with cumulative pollution burden indicators.
These patterns provided initial evidence of the continuing significance of race-based vulnerabilities in
effecting cumulative pollution burden in California—regardless of whether traffic density is included
in the cumulative pollution burden indicator.

As found in previous related research [45,52,53], principal component analyses helped to
reduce highly correlated variables into three dimensions of population vulnerability that were
incorporated into the spatial error regression analyses of adjusted cumulative pollution burden. These
principal component factors were economic disadvantage and separate cumulative disadvantage
factors for black and Latina/o neighborhoods. Black cumulative disadvantage represented the
extent of health vulnerability, economic disadvantage, and black populations in a tract. Latina/o
cumulative disadvantage represented the extent of health vulnerability, economic disadvantage,
limited English-speaking ability, and Latina/o populations in a tract.

The findings from the spatial error regression analyses have important scholarly and practical
implications. First, economic disadvantage was the primary population vulnerability determinant of
adjusted cumulative pollution burden rankings in California when racial factors were not considered
in the regression analysis. However, when a tract’s black and Latina/o composition were considered
alongside CalEnviroScreen 2.0 socioeconomic factors of economic disadvantage and linguistic isolation
in the regression analysis, the percent of Latina/o population in a tract was the only population
vulnerability indicator to have a significant effect on adjusted cumulative pollution burden. In addition,
black and Latina/o cumulative disadvantage both had significant positive bivariate correlations with
adjusted cumulative pollution burden. However, Latina/o cumulative disadvantage was the only
cumulative disadvantage factor to maintain a statistically significant and positive effect on adjusted
cumulative pollution burden percentile ranking in the spatial error regression analysis.

These racial patterns compare and contrast with previous cumulative impact mapping studies
using CalEnviroScreen. In particular, zip code-level research on CalEnviroScreen 1.1 found that
Latinas/os, followed by blacks, were significantly more likely than whites to live in areas with
higher cumulative pollution burden, more susceptible populations, and lower socioeconomic
status, net of population density and different cumulative impact scoring procedures [42]. Similar
race-based environmental health disparities for Latinas/os and blacks were found in bivariate analyses
of CalEnviroScreen 2.0 [50]. Racial factors were not considered in the multivariate analysis of
CalEnviroScreen 3.0 by Greenfield, Rajan, and McKone [45]. Thus, the present study offers a novel
multivariate framework for integrating and analyzing CalEnviroScreen data and data external to the
screening tool to advance scholarly and policy-relevant environmental and public health research on
race-based environmental health vulnerabilities and cumulative pollution burden in California.

This article illustrates that Latinas/os in California are, on average, more likely to be exposed
to social, health, and environmental burdens than other racial groups. This pattern was found
even when controlling for a broader set of factors that generally contribute to environmental health
disparities in California and throughout the United States [11,52,67], but have yet to be accounted for in
previous cumulative impact mapping studies using CalEnviroScreen. In particular, tract containment
in the South Coast and SJV air basins, followed by the extent of industrial-zoned land and traffic
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density in a tract, were the strongest determinants of adjusted cumulative pollution burden rankings
among all variables considered in this analysis. These findings support previous regional cumulative
impact mapping studies that suggest living in the South Coast and SJV air basins is a significant and
independent place-based vulnerability of exposure to cumulative pollution burdens [25,26,35–40,42].

However, previous research merely focused on the vulnerability of nonwhite populations in
the South Coast and SJV. This study builds environmental inequality research that is attentive to
the distinct vulnerabilities of different racial groups [52,79]. Specifically, it demonstrates the need to
differentiate relative cumulative pollution burdens across nonwhite residential settlements to more
fully assess the nature and extent of race-based environmental health vulnerabilities in California and
its South Coast and SJV regions.

Despite the contributions of this study, future research should address its important limitations.
First, data in CalEnviroScreen 2.0 and the additional sources used in this study inform our
understanding of racial disparities in cumulative pollution burden in California between 2004 and
2013. Environmental health researchers have begun to analyze more recent CalEnviroScreen 3.0 data,
and they claim similar associations evident between CalEnviroScreen 2.0 component indicators are
found in CalEnviroScreen 3.0 [45]. Future research should examine the extent to which the conceptual
framework and findings from this study apply to CalEnviroScreen 3.0 data and more recent land use
and racial composition data.

Second, future research with CalEnviroScreen should follow the lead of studies of environmental
health vulnerabilities in Texas [80] and Florida [81], which demonstrate the need for environmental
health and inequality researchers to untangle the broad “Latina/o” category. Doing so enables one
to more fully understand how Latina/o environmental health vulnerabilities are affected by, for
example, country of origin, English-speaking ability, income, and education. Data limitations of
American Community Survey, such as the limited reliability of some of the average estimates [43],
will preclude researchers from fully pursuing such lines of inquiry in the future. However, there are
opportunities available to reliably examine differential and spatialized race-based environmental health
vulnerabilities if CalEnviroScreen data were merged with U.S. Decennial Census data on, for example,
family structure, home ownership, and specific origin for Latinas/os (and other racial groups).

Third, this cross-sectional study did not attend to the important historical processes and events
that concentrate cumulative pollution burdens in California neighborhoods. Future research could
use urban sociological and environmental inequality literature as a guide [15,16,82–84] and examine
how segregationist ideologies, state policies, real estate industry actions, and various dynamics of
neighborhood change spatially concentrated industrial land uses, major transportation corridors,
cumulative pollution burdens, and vulnerable populations in California.

Fourth, this study did not attend to the fine-grained spatial scales, such as individual-level
residential mobility patterns throughout a diverse set of spatial contexts overtime [78,85], which may
contribute to the environmental health disparities uncovered in the present study. What are the diverse
pathways by which individuals are exposed to multiple environmental health hazards over space and
time in California?

Lastly, this study may have limited generalizability to other contexts outside of California.
Specifically, traffic density may be an important proxy for near-road air pollution in areas outside
of California with less densely developed air monitoring networks. In those contexts, cumulative
pollution burden may need to incorporate traffic density as a proxy environmental pollution indicator.
In addition, this study emphasized the significance of racial segregation, especially of Latinas/os, as a
determinant of concentrated cumulative pollution burden, net of other factors. Latina/o cumulative
environmental health disparities evident in California are salient, on average, throughout the United
States [52]. However, the extent to which the residential segregation of Latinas/os, or blacks
or other racial minorities for that matter, best represents population vulnerability and the social
determinants of cumulative pollution burden may vary by region throughout the United States and
likely throughout various international contexts. A key insight from this study and other cumulative
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impact mapping studies of California [25,26,35–40], however, is that cumulative pollution burdens
tend to be concentrated amongst the most vulnerable and segregated populations in a given locality.
Researchers and policy-makers must recognize that tendency and direct their research and policy
accordingly or they will miss the key social determinants of cumulative pollution burden in their
respective area of study and regulatory authority.

5. Conclusions

In sum, this study demonstrated how cumulative impact mapping tools, such as CalEnviroScreen,
can be merged with additional data to illuminate the enduring significant effect that race-based
vulnerabilities have on the distribution of cumulative environmental health hazards. The findings
from this study suggest that racial segregation, in general, and the spatial concentration of Latinas/os,
in particular, is significantly associated with the cumulative disadvantages of social, health, and
environmental burdens in California. These findings support the Latina/o environmental inequality
and Latina/o cumulative disadvantage hypotheses regarding the disproportionately high cumulative
pollution burdens that Latina/o tracts—including those with multiple forms of socioeconomic
disadvantage and health vulnerability—experience above all other racial groups in California.
Furthermore, this study found that the extent of Latinas/os in a tract—rather than any of the population
vulnerability indicators in CalEnviroScreen—was the strongest population vulnerability determinant
of cumulative pollution burdens in California. Researchers and policy makers are not privy to such
insights when they produce and disseminate color-blind cumulative impact screening tools, such as
CalEnviroScreen, even if the intent is to make those tools more applicable throughout a diverse set
of decision-making contexts. In addition, this study demonstrates the importance of measuring the
effects that different pollution sources and spatial dynamics have on the distribution of cumulative
pollution burden in California, as those factors were the strongest overall determinants of cumulative
pollution burden in the analysis. Failure to account for those effects may misdirect efforts to promote
environmental health equity away from the hot spots of environmental health vulnerability that
are most in need of direct regulatory and investment interventions, such as those available through
California’s Greenhouse Gas Reduction Fund. The findings from this study suggest that such hot spots
are overrepresented in the South Coast and SJV air basins, as well as in neighborhoods throughout
the state most consistently comprised of elevated levels of industrial-zoned lands, traffic volume, and
segregated and cumulatively-disadvantaged Latina/o populations.
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