
RESEARCH ARTICLE

Recovery of dynamic stability during slips

unaffected by arm swing in people with

Parkinson’s Disease

Tarique Siragy, Allen HillID, Julie NantelID*

School of Human Kinetics, University of Ottawa, Ottawa, ON, Canada

* jnantel@uottawa.ca

Abstract

The arm elevation strategy assists in recovering stability during slips in healthy young and

elderly individuals. However, in people with Parkinson’s Disease, one of the main motor

symptoms affecting the upper limbs is reduced arm swing which intensifies throughout the

course of the disease before becoming absent. This holds direct implications for these indi-

viduals when encountering slips as the arm elevation strategy is an integral component in

the interlimb slip response to restore stability. Arm swing’s effect in recovering from slips in

people with Parkinson’s Disease though remains unexamined. Twenty people with Parkin-

son’s Disease (63.78 ± 8.97 years) walked with restricted and unrestricted arm swing condi-

tions on a dual-belt treadmill where slips were induced on the least and most affected sides.

Data were collected on the CAREN Extended System (Motek Medical, Amsterdam, NL).

The Margin of Stability, linear and angular trunk velocities, as well as step length, time, and

width were calculated. Data were examined during the slipped step and recovery step. The

restricted arm swing condition, compared to unrestricted, caused a faster step time during

the slipped step. Compared to the most affected leg, the least affected had a wider step

width during the slipped step. During the recovery step, the least affected leg had a larger

anteroposterior Margin of Stability and longer step time than the most affected. No differ-

ences between our arm swing conditions suggests that the normal arm swing in our partici-

pants was not more effective at restoring stability after an induced slip compared to when

their arm motion was restricted. This may be due to the arm elevation strategy being ineffec-

tive in counteracting the slip’s backward destabilization in these individuals. Differences

between the legs revealed that our participants were asymmetrically impaired in their slip

recovery response.

1 Introduction

One of the primary concerns for people with Parkinson’s Disease is the increased risk of falling

during walking [1–5]. Research from static postural perturbations demonstrate that people

with Parkinson’s Disease are particularly susceptible to backward stability loss, which may

increase their risk of falling when encountering slips [6]. This is concerning as slips are one of
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the primary contributors to falling in individuals over the age of 65 [7–9]. However, while gait

impairments that contribute to falls in people with Parkinson’s Disease are well documented

during unperturbed conditions, evidence during perturbed walking conditions is sparse [10–

15].

When first encountering an unexpected slip, healthy young and elderly adults rely on rapid

reactive recovery responses to mitigate the destabilizing effects of the perturbation [16–21].

For instance, when the perturbed leg contacts the slipping surface, the knee and ankle joints

flex to lower the Center of Mass (COM) to the ground [17, 18]. However, while this flexing

response is a strategy to increase stability, extension occurs in the ipsilateral hip due to the

hamstring contraction which flexes the knee [18]. This subsequently causes trunk extension

and causes the COM to further fall posteriorly (backward) [18]. Thus, to dissipate the COM’s

posterior motion, the arms flex forward and upward in an arm elevation strategy to move the

COM in the opposing anterior direction [16–18]. Meanwhile, in the unperturbed (recovery)

limb, the hip and knee extend to bring the leg that is entering the swing phase rapidly to the

ground to increase the base of support (BOS) [16]. After slip exposure, individuals walk with a

“cautious gait” strategy where step time and width are increased, and step length is reduced

[20, 22, 23]. This is accompanied by a shift in the dynamical state (position and velocity) of

their COM anteriorly and away from the mediolateral edges of their base of support at heel-

strike [10, 18, 20].

However, in people with Parkinson’s Disease, the multi-system neurodegeneration that

occurs, impedes the ability to execute appropriate responses to sudden environmental changes

[6]. For instance, evidence from static postural perturbations demonstrates that people with

Parkinson’s Disease execute responses that are slower, reduced in amplitude, and have an

incorrect directionality with respect to where the perturbation is acting [6]. Additionally, one

of the characteristic aspects of idiopathic Parkinson’s Disease is the asymmetric neurodegen-

eration that affects mobility in one limb (most affected) to a greater extent than the other (least

affected) [24, 25]. Evidence from steady-state walking proposed that the least affected leg is

more capable of adjusting foot placement at ground contact than the most affected [15]. Thus,

the ability to execute recovery responses to slips, may equally be asymmetrically impaired in

people with Parkinson’s Disease. The role of both of these limbs in response to slips in people

with Parkinson’s Disease, however, has not been determined.

Additionally, the role of arm swing in response to slips in this demographic is currently

lacking. In people with Parkinson’s Disease, one of the main motor symptoms affecting the

upper limbs is reduced arm swing which intensifies throughout the course of the disease before

becoming completely and bilaterally absent [26, 27]. This holds direct implications for these

individuals when encountering slips as the arm elevation strategy is an integral component in

the interlimb slip response to restore stability [16–19]. However, previous research on

restricted arm swing on healthy adults suggests that when the arms are restricted, the upper

extremity’s mass is concentrated around the trunk [28]. This subsequently is suggested to

increase trunk inertia which in turn increases resistance to changes in COM motion induced

by a perturbation [28]. As such, it remains unclear how arm swing contributes to stability in

people with Parkinson’s Disease during slips.

Therefore, this study’s purpose examines differences between the least and most affected

legs to slips in people with Parkinson’s Disease with unrestricted and restricted arm swing con-

ditions. We hypothesize that the least affected leg, compared to the most affected, will display a

“cautious gait” strategy and increase the distance of the COM’s dynamical state to the edges of

the BOS in the mediolateral and anteroposterior directions. We further predict that trunk

angular velocities will be larger during the unrestricted arm swing condition (the regular arm

motion in people with Parkinson’s Disease) compared to the restricted condition. Finally, we
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hypothesize an interaction where the distance between the COM’s dynamical state to the BOS

will be larger in the least affected leg during the unrestricted arm swing condition compared to

the most affected leg when paired with restricted arm swing.

2 Methods

2.1 Participants

A convenience sample of twenty people with Parkinson’s Disease (13 males and 7 females),

ages 48–79 years (63.78 ± 8.97 years) were recruited from the Ottawa-Gatineau community.

Since two individuals had severe dyskinesia and one individual had missing data, only 17 par-

ticipants were included in the final analysis. Participants were assessed with the original Uni-

fied Parkinson’s Disease Rating Scale Motor Examination (11± 6) and were between I-III on

the Hoehn & Yahr scale [29]. Further, seven participants reported freezing of gait based on the

original Freezing of Gait Questionnaire. Participants were tested on their optimally medicated

state. Exclusion criteria included any physical discomfort using a virtual reality system, any

injuries and/or orthopedic surgeries that interfered with gait, walking only with a walking aid,

and additional illnesses other than Parkinson’s Disease. All participants provided written

informed consent and the study was approved by the Ottawa Health Science Network

Research Ethics Board and the University of Ottawa Research Ethics Board. The study was

conducted in accordance with the Tri-Council Policy statement; Ethical Conduct for Research

Involving Humans; The International Conference on Harmonization- Good Clinical practice:

Consolidated Guideline; and the provisions of the Personal Health Information Protection Act

2004.

2.2 Procedure

A familiarization period was provided for participants prior to data collection to determine

their preferred walking speed on the treadmill. Experimental setup is depicted in Fig 1. Partici-

pants walked at their preferred speed on a dual-belt treadmill with two arm swing conditions

(restricted and unrestricted). During the restricted arm swing trials, participants inserted their

arms inside the safety harness, which effectively prevented arm motion. The unrestricted arm

swing trials were participants’ normal arm swing movements. Arm swing conditions were

paired with a slip that was induced on either the least or the most affected side (one slip per

trial). This resulted in a total of four trials per participant with each trial lasting 2 minutes.

Slips were caused by accelerating the left/right treadmill belt at 1.7m/s2 for 0.75 seconds before

decelerating at the same rate for 0.75 seconds to return to the participants preferred walking

speeds [30]. Slips were automatically triggered, at heel-strike, after the participants’ heels

crossed each other during the swing phase in the anteroposterior direction [30]. Twenty-five

seconds were provided at the start of each trial for participants to reach steady-state walking

before data collection began. To minimize slip anticipation, trials were randomized using a

random number generator in Excel 2016 (Microsoft, Seattle, WA, USA) and slip onset within

each trial was manually determined in a pseudorandom manner by the CAREN system opera-

tor. To ensure safety, and prevent falls, participants wore a safety harness attached to an over-

head structure at all times. Participants were encouraged to rest whenever necessary to

minimize fatigue.

Data collection was completed using the CAREN-Extended System (Motek Medical,

Amsterdam NL) in a virtual park terrain environment. This system combines a six degrees of

freedom motion platform with embedded dual-belt instrumented treadmill, 12 camera Vicon

Motion Capture system, 180-degree projector screen, and a safety harness. A 57-marker set
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was used for tracking full body kinematics [15, 31, 32]. Kinematic data were collected at

100Hz.

2.3 Data analysis

Markers were synchronized and processed in Vicon Nexus (nexus 2.6, Oxford, UK), while 3D

kinematics were calculated in OpenSim with a full-body model [33]. A fourth-order, low-pass

Butterworth filter with a 12Hz cutoff frequency was used to filter marker data. Data were ana-

lyzed by custom Matlab scripts (MathWorks, Natick, MA) to calculate step time, length, and

width, as well as instantaneous linear and angular velocities at heel-strike for both feet. Linear

velocities were calculated as absolute values. Additionally, the Margin of Stability (MOS) was

calculated bilaterally as a measure of dynamic stability in the anteroposterior and mediolateral

directions [34–36]. In the anteroposterior direction, this was calculated as the distance of the

extrapolated COM to the right/left heel maker and in the mediolateral direction to the right/

left lateral heel marker at heel-strike [15, 31, 36]. Data were categorized by least and most

affected legs which were then divided into slipped and recovery limbs. The slipped limb was

defined as the leg which was perturbed upon heel-strike, while the recovery limb was defined

as the contralateral limb that performed the first heel-strike following the slip.

2.4 Statistical analysis

Data were analyzed using SPSS 23.0 (SPSS, IBM, Chicago IL), and p< 0.05 was considered sta-

tistically significant. An alpha = 0.05 was set a prioi for statistical significance. The normality

of variables was verified using Shapiro-Wilk’s test. A two-way repeated measures ANOVA for

arm (unrestricted and restricted) and leg (least and most affected leg) was performed to find

main effects and interactions for the slipped limb. Additionally, an identical but separate two-

way repeated measures ANOVA assessed main effects and interactions for the recovery limb.

If statistical significance was achieved, then pairwise comparisons with a Sidak-Bonferroni

adjustment for multiple comparisons were used for post-hoc analyses.

3 Results

Slipped limb data for the MOS and spatiotemporal variables are in Table 1 while linear and

angular velocities are in Table 2. Recovery limb data for the MOS and spatiotemporal data are

Fig 1. Experimental setup for the CAREN system virtual environment.

https://doi.org/10.1371/journal.pone.0249303.g001
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in Table 3 while velocity data are in Table 4. Arm range of motion for both arm swing condi-

tions are presented in Table 5. Average walking speeds for conditions are included in the S1

Material. No differences existed between the legs (p> 0.05) for walking speed. Thus, both

sides were averaged before assessing walking speeds between both arm swing conditions with

a paired t-test. Results from the t-test revealed no differences in walking speed between the

unrestricted and restricted arm swing conditions (p> 0.05).

3.1 Arm swing

As no statistical significance (p> 0.05) in range of motion (ROM) existed between the least

and most affected arms, the two arms were averaged for further analysis. The paired samples t-

test revealed that the restricted arm swing condition had a reduced arm ROM than the unre-

stricted arm swing condition (t(16) = -6.13, p< 0.001). The ANOVA revealed that participants

had a faster step time (F(1,16), p = 0.006, ηp
2 = 0.389) during the restricted arm swing condi-

tion compared to unrestricted arm swing during heel-strike of the slipped limb. No further

arm swing main effects or interactions were found.

Table 1. Slipped leg average step time, length and width with anteroposterior and mediolateral margin of stability during unrestricted (unrest.) and restricted

(rest.) arm swing and for the least and most affected legs.

P-value

Arm Least Affected Most Affected Leg Arm

AP Margin of Stability(cm) Unrest. -20.31±7.12 -20.23±4.66 .503 .336

Rest. -18.57±7.00 -20.26±7.06

ML Margin of Stability(cm) Unrest. 11.57±3.05 11.00±2.27 .252 .372

Rest. 11.73±1.69 11.54±2.39

Step Time(ms)� Unrest. 436±87 435±44 .691 .006

Rest. 412±66 426±51

Step Length(cm) Unrest. 50.51±11.24 50.58±8.34 .547 .755

Rest. 49.21±10.53 51.10±8.83

Step Width(cm)† Unrest. 26.79±4.73 25.75±5.04 .005 .391

Rest. 27.65±4.30 26.00±4.46

† Leg Main Effects at p<0.05.

� Arm Main Effects at p<0.05.

https://doi.org/10.1371/journal.pone.0249303.t001

Table 2. Slipped Leg trunk instantaneous linear and angular velocities in all 3 axes for arm (unrestricted and restricted) and leg (least affected and most affected).

Unrestricted Arm Restricted Arm

Least Affected Most Affected Least Affected Most Affected P-Value

Linear Velocity (cm/s) (x10-2) AP 16±6 16±6 18±5 16±6 .15

ML 4±4 4±3 6±5 4±4 .13

Vert 18±7 16±4 15±7 16±5 .59

Angular Velocity (˚/s) (x10-2) AP -11±10 -9±8 -17±21 -12±9 .30

ML -1±17 -1±10 -1±14 -1±11 .84

Vert 3±19 -1±10 3±18 0±19 .61

† Leg Main Effects at p<0.05.

� Arm Main Effects at p<0.05.

Values were rounded to the nearest whole number. P-values from the two-way repeated measures ANOVA are reported for leg main effects.

https://doi.org/10.1371/journal.pone.0249303.t002
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3.2 Least and most affected legs

Our results demonstrated that when the least affected leg was the slipped limb, it had a wider

step than the most affected (F(1,16) = 10.788, p = 0.005, ηp
2 = 0.403). Further, when the least

affected leg was the recovery limb, it had a larger anteroposterior MOS (F(1,16) = 9.654,

p = 0.007, ηp
2 = 0.376), a longer step time (F(1,16) = 6.825, p = 0.019, ηp

2 = 0.299), and had a

trend for a longer step length (F(1,16) = 3.955, p = 0.064, ηp
2 = 0.198) than the most affected.

No additional main effects or interactions were found.

4. Discussion

This study examined the effect of unrestricted and restricted arm swing conditions during

treadmill slips on the least and most affected legs in people with Parkinson’s Disease. Our

results did not support our hypothesis that the unrestricted arm swing condition would

improve dynamic stability compared to the restricted arm swing condition. Rather, no differ-

ences existed between our arm swing conditions for the MOS nor for velocities. This suggests

that, even when available, participants did not effectively engage an arm elevation strategy to

Table 3. Recovery leg average step time, length and width with anteroposterior and mediolateral margin of stability during unrestricted (unrest.) and restricted

(rest.) arm swing and for the least and most affected legs.

P-value

Arm Least Affected Most Affected Leg Arm

AP Margin of Stability(cm)† Unrest. -12.82±0.71 -10.46±0.92 .007 .272

Rest. -14.15±0.75 -11.36±0.75

ML Margin of Stability(cm) Unrest. 10.46±2.61 10.58±3.08 .416 .063

Rest. 11.18±2.31 11.80±3.16

Step Time(ms)† Unrest. 425±111 399±109 .019 .492

Rest. 437±115 372±97

Step Length(cm) Unrest. 56.43±8.90 50.94±11.39 .064 .898

Rest. 55.56±11.29 52.22±9.98

Step Width(cm) Unrest. 22.93±3.84 23.81±5.45 .266 .190

Rest. 23.92±3.51 24.91±5.49

† Leg Main Effects at p<0.05.

� Arm Main Effects at p<0.05.

https://doi.org/10.1371/journal.pone.0249303.t003

Table 4. Recovery Leg trunk instantaneous linear and angular velocities in all 3 axes for arm (restricted and unrestricted) and leg (least affected and most affected).

Unrestricted Arm Restricted Arm

Least Affected Most Affected Least Affected Most Affected P-Value

Linear Velocity (cm/s) (x10-2) AP 16±7 17±9 16±6 17±4 .55

ML 12±8 8±7 9±7 10±8 .29

Vert 29±10 26±15 26±12 24±19 .52

Angular Velocity (˚/s) (x10-2) AP -30±24 -25±26 -30±25 -29±23 .30

ML -12±23 -6±22 -1±28 -3±28 .84

Vert -11±50 4±60 -1±50 -2±61 .61

† Leg Main Effects at p<0.05.

� Arm Main Effects at p<0.05.

Values were rounded to the nearest whole number. P-values from the two-way repeated measures ANOVA are reported for leg main effects.

https://doi.org/10.1371/journal.pone.0249303.t004
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recover dynamic stability after the slip. However, our participants had a faster step time on the

leg undergoing the slip during the restricted arm swing condition. Aligned with our hypothe-

sis, foot placement and slip recovery responses were asymmetric in our participants. Indeed,

our participants had a larger step width on their least affected leg compared to their most

affected for the slipped limb. Further, during the recovery step, our participants reduced the

risk of backward stability loss on their least affected leg by increasing this leg’s anteroposterior

MOS and step time.

4.1 Arm swing

Contrary to our hypothesis, there were no differences between the unrestricted and restricted

arm swing conditions neither for the MOS nor linear and angular velocities. This occurred

despite differences in arm ROM between our arm swing conditions. These findings were unex-

pected due to the functional role arm swing has in the recovery strategy to slips [16–18]. Mari-

gold et al. [16, 17] demonstrated that in response to a slip, healthy individuals execute a rapid

arm elevation response where the arms are flexed forward and upward. The authors discussed

that the arms flex specifically in these directions to move the COM further anteriorly and in

the opposite direction of the trunk’s initial backward displacement caused by the slip [16]. An

anterior shift in the COM’s position would theoretically be reflected as an increase in the ante-

roposterior MOS as it measures the distance of the COM’s dynamical state to the BOS [10, 36].

This in turn would reflect that the arm elevation strategy is effective in reducing dynamic sta-

bility loss in the backward direction [16–18]. However, when our MOS results are examined

alongside our linear and angular velocities, the lack of findings indicate that our participants’

arm movements did not influence their trunk kinematics. One potential explanation for this is

that our participants may have been ineffective in executing a targeted arm elevation response

to the slip. Carpenter et al. [6] demonstrated that the arm responses in people with Parkinson’s

Disease during platform perturbations were more variable in their trajectory and had a shorter

response time compared to controls. Further, the arms returned to a position near their trunk

relatively quickly in people with Parkinson’s Disease [6]. The authors further found that the

recovery arm responses in people with Parkinson’s Disease were particularly ineffective and

abnormal when perturbations were induced in the backward direction (the same destabilizing

direction for slips) [6]. This could explain the lack of findings in our study between our arm

swing conditions for the slipped and recovery limb analyses. However, further research is

needed to discriminate the impact of age and Parkinson’s disease on arm strategies in response

to slips. Carpenter et al. [6] found that the arm response to perturbations was ineffective

despite the deltoid muscles activating earlier in people with Parkinson’s Disease than controls.

Therefore, future research should examine the EMG profile of the deltoid muscles between

these two groups.

Interestingly, the leg undergoing the slip had a faster step during the restricted arm swing

condition compared to the unrestricted. This response could reflect destabilization from the

restricted arm swing condition in our participants as it may have impeded their movement

timing [15]. Indeed, a faster step reduces the amount of time the contralateral leg (recovery

Table 5. Average range of motion (degrees) for unrestricted and restricted arm swing conditions for shoulder

joint angle in the sagittal plane.

Unrestricted Restricted P-Value

Range of Motion˚� 22.63±11.78 4.99±2.26 < .001

� Arm Main Effects at p<0.05.

https://doi.org/10.1371/journal.pone.0249303.t005
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limb) has to determine appropriate foot placement. Previous research suggests that walking

with restricted arm swing disrupts the rhythmic temporal sequence of foot placement in this

demographic [15]. One of the primary symptoms of Parkinson’s Disease is impaired internal

movement timing [37]. Therefore, our finding supports the notion that when arm swing

becomes completely absent (due to the disease), foot placement timing is further disrupted

[15]. As such, disruption to temporal foot placement arises both mechanically from the absent

arm swing and neurologically from the Basal Ganglia’s neurodegeneration [15].

4.2 Least and most affected leg

As hypothesized, our analysis revealed differences between the least and most affected leg. This

potentially reflects the asymmetric neurodegeneration in people with Parkinson’s Disease.

Indeed, our participants demonstrated asymmetric impairment to mediolateral foot placement

as they had a wider step on their least affected leg, compared to the most affected, when the

least affected leg was undergoing the slip. When stability is threatened, both healthy individu-

als and people with Parkinson’s Disease widen their steps to maintain the COM within the lat-

eral boundaries of the base of support [15, 38]. However, during walking, the neuromuscular

system determines foot placement by predicting the COM’s future position at the upcoming

heel-strike [39–41]. In our study, slip occurrence was randomized between the legs and slip

onset within each trial, was established in a pseudorandom manner. This minimized the possi-

bility for our participants to predict the timing and laterality of the perturbation. Thus, the

least affected leg’s larger step width (at slip onset) reflects an already existing step asymmetry

prior to the perturbation. Since our study did not examine differences between the first and

subsequent slips, step width differences potentially arose as participants attempted to widen

their BOS after initial slip exposure. However, the results indicate that our participants were

more effective in adjusting the BOS mediolaterally with their least affected leg.

In addition, asymmetric neurodegeneration would account for the differences between the

legs in attenuating backward stability loss. Indeed, the longer step time and larger anteropos-

terior MOS when the least affected leg was the recovery limb would reflect appropriate and

asymmetric slip responses. A longer step time provides more time for stable foot placement of

the contralateral leg before the COM is transferred between limbs. Additionally, the larger

anteroposterior MOS reduces the risk of backward stability loss by moving the COM’s dynam-

ical state further anteriorly and in the opposite direction to the slip [10, 20, 21]. As step time

and anteroposterior COM movement are regulated passively by subcortical structures, the dif-

ferences between the legs may reflect the asymmetric neurodegeneration of dopamine within

the Basal Ganglia [10, 24, 25]. These interlimb differences hold important implications for cli-

nicians. Specifically, clinicians should consider the efficacy of targeting the least affected leg to

promote gait adaptation and stability in slip recovery responses. This would be in line with ini-

tial evidence from Ricciardi et al. [42], who demonstrated in a pilot study that physical therapy

targeting the least affected side improved more in the UPDRS-III and Tinetti scale subscores

than standard therapies targeting both legs.

4.3 Limitations

Several limitations should be considered in the context of our study. For instance, participants

were tested on their optimally medicated state which affects foot placement [37]. Additionally,

differences between freezers and non-freezers were not examined. As freezers demonstrate

greater postural instability than non-freezers, restricted arm swing may have a distinct effect

on their dynamic stability [43, 44]. Future research should also consider examining differences

between people with Parkinson’s Disease and healthy aged-matched controls to parse out
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differences due to age and those that arise due to Parkinson’s Disease. In addition, it has been

shown that after perturbation exposure, healthy adults adopt a more cautious gait i.e. with

shorter, wider, and slower steps as a means to enhance their dynamic stability to prevent

potential future perturbations [10, 22]. It is possible that our participants used a similar strat-

egy when walking after initial slip exposure. Therefore, this should be taken into account when

interpreting the findings of this article. Similarly, individuals with a higher Hoehn & Yahr

score may respond differently to slips than those with a lower score as these individuals have

further reductions in their postural control. Research on perturbation recovery responses in

people with Parkinson’s Disease would also benefit from an examination of the harness load

data, an aspect unexamined in our study, to assess balance loss versus recovery. Further, future

studies should examine differences in the recovery response between the first slip and follow-

ing slips since differences may occur in the proactive and reactive recovery responses in restor-

ing dynamic stability. Finally, this study did not examine differences between the dominant

and non-dominant leg which may elicit further differences in response to slip recovery.

5. Conclusion

No differences between our arm swing conditions suggests that the normal arm swing in our

participants was not more effective at restoring stability after an induced slip compared to

when their arm motion was restricted. Lack of differences plausibly arose from our partici-

pants ineffectively implementing the arm elevation strategy to move their COM in the opposite

direction from the slip’s backward displacement despite differences in arm ROM between the

two arm swing conditions. To determine if the arms follow an uncoordinated trajectory to

counteract slip destabilization in people with Parkinson’s Disease, future research should com-

pare differences between these individuals and healthy elderly adults. Contrastingly, to our

arm swing results, the increased anteroposterior MOS, increased step time and width in the

least affected leg, compared to the most, suggest that our participants were asymmetrically

impaired in executing their slip recovery responses. Differences between the legs may reflect

the asymmetric neurodegeneration that occurs in this demographic. Since mobility is more

intact in the least affected leg, our participants adjusted foot placement of this limb to mitigate

the destabilizing effects of the slip to recover stability. As such, clinicians should consider ther-

apies that facilitate adaptive responses in the least affected leg as mobility may be too impaired

in the most affected leg for effective perturbation recovery.
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