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Mesenchymal stem cells (MSCs) are competent suitors of cellular therapy due to their
therapeutic impact on tissue degeneration and immune-based pathologies. Additionally,
their homing and immunomodulatory properties can be exploited in cancer malignancies
to transport pharmacological entities, produce anti-neoplastic agents, or induce anti-
tumor immunity. Herein, we create a portfolio for MSC properties, showcasing their
distinct multiple therapeutic utilities and successes/challenges thereof in both animal
studies and clinical trials. We further highlight the promising potential of MSCs
not only in cancer management but also in instigating tumor-specific immunity –
i.e., cancer vaccination. Finally, we reflect on the possible reasons impeding the
clinical advancement of MSC-based cancer vaccines to assist in contriving novel
methodologies from which a therapeutic milestone might emanate.
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INTRODUCTION

Broadly distributed among tissues, MSCs are first generation adult stem cells of mesodermal non-
hematopoietic origins. They were originally reported in bone marrow (BM) by Friedenstein et al.
(1968, 1970) and later identified in adipose tissue, peripheral blood, cruciate ligaments, dental pulp,
menses blood, amniotic fluid, fallopian tube, placenta, umbilical cord, and endometrial polyps
(Caplan, 1991; Bianco et al., 2008; Ding et al., 2011; Sheng, 2015; Ullah et al., 2015). According to the
International Society for Cellular Therapy (ISCT), MSCs are characterized by their (i) adherence
to plastic, (ii) cell surface expression of CD73, CD90, and CD105 but not CD45, CD34, CD14,
CD11b, CD79α, CD19, and HLA-DR (hematopoietic cell markers), and (iii) multipotency, the
ability to differentiate into various mesodermal cell lineages such as osteoblasts, chondroblasts,
and adipocytes (Dominici et al., 2006). However, the ISCT definition is no longer standardized

Abbreviations: ALS, amyotrophic lateral sclerosis; APC(s), antigen secreting cell(s); BM, bone marrow; CX3CL1, C-X3-C
motif chemokine ligand 1; CXCR4, C-X-C Motif Chemokine Receptor 4; DC(s), dendritic cell(s); GMP, good manufacturing
practice; GvHD, graft-versus-host disease; IDO, indoleamine 2,3-dioxygenase; IFN, interferon; IL, interleukin; ISCT,
International Society for Cellular Therapy; MAP, mitogen activated protein; MI, myocardial infarction; MIF, Migratory
Inhibitory Factor; miRNA, microRNA; MSC(s), mesenchymal stem cell(s); NK, natural killer; NO, nitric oxide; PD-L1,
programed death-ligand 1; SDF-1, stromal-derived factor-1; TLRs, toll-like receptors; TRAIL, tumor necrosis factor-related
apoptosis-inducing ligand; Treg , regulatory T cell; TSG6, tumor necrosis factor-inducible gene 6 protein.
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as MSC identification criteria continue to change. Exemplifying
this are the discovery that MSCs can also differentiate into
cells of ectodermal and endodermal parentage (Wei et al.,
2013) and the inclusion of novel surface markers to their
identity (CD165, CD276, and CD82) (Al-Nbaheen et al., 2013).
Several studies on MSC lineages have also identified distinctive
molecular (Al-Nbaheen et al., 2013; Ullah et al., 2015; Wu
et al., 2018), proliferation/differentiation (Kern et al., 2006), and
functional properties (Keyser et al., 2007), accrediting the fact
that their biology is still partially intelligible. The conventional
notion, however, is that MSCs are (i) genomically stable, (ii)
highly accessible, (iii) easy to isolate and expand, (iv) immune-
privileged (low expression of MHC I/II and co-stimulatory
molecules and – further explained in Section “Immunological
Properties: A Paradigm” – immunomodulation), and – unlike
other types of stem cells – (v) non-teratogenic and ethically
conforming (Wei et al., 2013). Additionally, a number of reports
showing that BM-MSCs from healthy donors perform better in
proliferation/differentiation and secretion criteria compared to
BM-MSCs from osteoarthritic (Murphy et al., 2002) and Gaucher
disease patients (Campeau et al., 2009) corroborate that MSCs
play a physiological role in homeostatic tissue maintenance,
whereas their disturbance may foster disease pathogenesis. In this
review article, we recapitulate a vast literature on MSC assets,
demonstrating from preclinical and clinical perspectives how
they render them fit candidates for cellular therapy. Finally, we
discuss the trend of MSC utility against tumors to bridge to the
highlight of this review – MSCs as cancer vaccines – pinpointing
the flaws halting their clinical effectiveness while offering novel
insight on how to overcome them.

MSC FITNESS FOR CELLULAR
THERAPY

Regenerative Properties
Numerous studies illustrate the regenerative potential of MSCs
based on their homing, engraftment, (trans)differentiation, and
ability to replace apoptotic/necrotic tissue or dissipate paracrine
signaling to boost injured tissue function (Prockop, 1997).
In vitro-cultured systemically-infused MSCs home via their
chemokine and toll-like receptors (TLRs) into several organs
including BM, heart, and liver in which they can persist
for prolonged periods of time (Devine et al., 2001; Allers
et al., 2004; Lüttichau et al., 2005; Tomchuck et al., 2008).
Factors in favor of homing are young recipient age, irradiation,
decreased cell passage number, cytokines/inflammation, as well
as increased chemokine receptor and TLR expression (Horwitz
et al., 2002; François et al., 2006; Shi et al., 2007; Kyriakou
et al., 2008; Tomchuck et al., 2008). Besides the former
receptors, MSCs express a variety of adhesion molecules,
endopeptidases, and growth factors in addition to their cognate
receptors, which facilitate MSC tethering, endothelial rolling,
and transmigration to tissues (De Becker and Van Riet, 2016).
MSCs might mobilize as well under several stimuli such as
growth factors (Asahara et al., 1999) and xenobiotics (Llevadot
et al., 2001) before engrafting into tissues where they either

(trans)differentiate to the constituent cells (Prockop et al., 2010)
or secrete various humoral factors in the extracellular space such
as cytokines, chemokines, and mRNA/microRNA (miRNA)-
containing microvesicles to modulate tissue function (Wei et al.,
2013). Factors influencing tissue engraftment efficiency are cell
death, immune rejection, and first-pass lung entrapment which
can be overcome by optimizing delivery methods, ameliorating
target tissue receptivity, and schooling MSCs to resist tissue
hostility (Kean et al., 2013; Ezquer et al., 2017).

Following adherence to plastic in vitro or tissue engraftment
in vivo, MSCs form colonies and (trans)differentiate into a
myriad of cell lineages (Kuznetsov et al., 1997; Li H. et al.,
2006; Wang et al., 2012; Vonk et al., 2018). For this to occur,
their microenvironment must contain multiple mitogenic or
stimulating factors (Tontonoz et al., 1994; Sekiya et al., 2002;
Lucarelli et al., 2003; Solchaga et al., 2005; Fontaine et al.,
2008; Inada et al., 2008; Pavlova et al., 2012); be subjected
to hypoxic conditions (Mohyeldin et al., 2010; Zhang et al.,
2019); or scaffolded to closely mimic organ architecture or
function (Ouyang et al., 2003; Ohgushi et al., 2005). However,
a newer understanding of the regenerative abilities of MSCs
in vivo later emerged, linking tissue regrowth not to MSC
(trans)differentiation exclusively but rather to autocrine and
paracrine signaling transduced through their communication
with local stimuli (Crisostomo et al., 2008), growth factors
(Hahn et al., 2008), and inflammatory mediators (Haynesworth
et al., 1996). This creates a rich nutritive milieu to which
cells in the vicinity also contribute (Caplan and Dennis,
2006). Within the trophic environment are factors dictating
angiogenesis (Min et al., 2002), hindrance of apoptosis (Xu et al.,
2007), inhibition of fibrosis, mitosis in local tissue (Takahashi
et al., 1999), and formation of a structural niche with other
resident stem cells (Méndez-Ferrer et al., 2010). In addition,
MSCs secrete microvesicles and exosomes which contain pro-
angiogenic growth factors and miRNA as a means to establish
cell-to-cell communication (Gong et al., 2017; Phinney and
Pittenger, 2017). On the other hand, multiple factors can still
hamper MSC regenerative functions such as temperature, media
type (Kubrova et al., 2019), interference of plastic adherence
with cellular function (Mabuchi et al., 2012), chromosomal
abnormalities, transformation, and tumor growth especially in
MSCs of murine sources. Having said that, isolation and culture
protocols recently developed for human MSCs derived from
healthy subjects appear as promising endeavors to overcome
those hurdles (Bernardo et al., 2007; Law and Chaudhuri,
2013; Conforti et al., 2016). For example, transformation and
persistence were addressed in a protocol that uses skin tissue of
patients undergoing any relevant medical intervention. To obtain
MSCs, the tissues are disinfected and enzymatically digested
in good manufacturing practice (GMP). Cell yields are then
sorted with antibody-coupled magnetic beads, and cultured
MSCs are validated according to ISCT criteria. Finally, several
tests are performed to assess in vivo toxicity, tumorigenicity, and
biodistribution/persistence (Tappenbeck et al., 2019). The data of
another clinical study, which warranted its authors an “orphan
designation” in Germany for graft-versus-host disease (GvHD)
treatment using MSCs, authenticate the effectiveness of such
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protocol. Indeed, generating the MSCs entailed the enrichment of
BM aspirates of several donors using an automated cell separation
unit and processing system followed by the expansion of MSCs
in culture over 14 days. From this bank, clinical-grade MSCs are
obtained and cultured in platelet lysate serum-free media whose
utility eliminates the risks associated with the use of fetal bovine
serum such as immunogenicity and pathogenicity (Kuçi et al.,
2016; Bader et al., 2018).

Immunological Properties: A Paradigm
In addition to its tissue repair characteristics, the secretome of
MSCs displays immunomodulatory properties. This is evident
in the ability of MSCs to interfere with the cell cycle (G0/G1
phase arrest), hinder the responses of naïve and memory T
cells, inhibit the activation and proliferation of effector T
cells, and induce regulatory T cell (Treg) function (Krampera
et al., 2003; Siegel et al., 2009; Duffy et al., 2011; Haddad
and Saldanha-Araujo, 2014). Such immunosuppressive activity
essentially ensues in response to inflammatory signals including
interferon-γ (IFN-γ), TNF-α, and interleukin-1 (IL-1). These
pro-inflammatory molecules prime MSCs, such that they induce
the secretion of multiple soluble immunosuppressive molecules
and the upregulation of inhibitory surface co-receptors including
programed death-ligand 1 (PD-L1) (Sheng et al., 2008). Those
mechanisms are protective against immune cells such as natural
killer (NK) cells which become cytolytic upon activation by
inflammatory signals, the same signals inducing the upregulation
of MHC class I/II on MSCs and subsequently their susceptibility
to NK cell cytotoxicity. Interestingly, NK cells/MSCs ratio is
the determinant of the inhibitory power balance. For example,
lower ratios tip the suppressive balance in favor of MSCs which
become capable of inducing phenotypic and secretory changes
in NK cells via physical and paracrine interactions, thereby
restricting their cytotoxicity and proliferation (Sotiropoulou
et al., 2006; Jewett et al., 2010; Spaggiari and Moretta, 2012). Pro-
inflammatory signals also support MSC differentiation through
multiple receptors like TLRs and signaling pathways like NF-
κB, p38 mitogen-activated protein (MAP) kinase, and β-catenin,
ultimately inducing the transcription of lineage-specific genes
(Cheng et al., 2008; Wei et al., 2013; Chen et al., 2016; Liu
et al., 2018). For instance, NF-κB and MAP kinase pathways are
activated by stromal cell-derived factor-1 (SDF-1), a pleotropic
chemokine secreted by several cells and organs, which acts
as a chemoattractant for MSCs in regenerative settings (Kucia
et al., 2004). Elsewhere, however, NF-κB upregulation by pro-
inflammatory cytokines was negatively correlated with MSC
differentiation, particularly osteogenesis (Ansari et al., 2017).
In contrast, the absence of strong inflammatory stimuli (e.g.,
low levels of inflammatory or anti-inflammatory cytokines) does
not trigger the production of immunosuppressive factors, thus
permitting a pro-inflammatory environment to takeover. This
is evident in a few studies showing that in vivo transplantation
of unchallenged allogeneic MSCs evokes cellular and humoral
immune responses (Eliopoulos and Galipeau, 2002; Poncelet
et al., 2007; Renner et al., 2009). Furthermore, inflammatory
signals allow MSCs to govern the activity of multiple innate
and adaptive immune cells including B cells, neutrophils,

and macrophages through secreted soluble factors such as
prostaglandins, chemokine ligands, interleukins (ILs), growth
factors, and nitric oxide (NO) (Singer and Caplan, 2011).
Those factors interfere with inflammatory signaling pathways
(e.g., STAT3), ultimately mitigating antigen presentation and
humoral immunity (Rafei et al., 2008; Loebinger and Janes,
2010). In addition to their secretome, MSCs can mitigate mixed
lymphocyte reactions by physically hindering the contact of
T cells with antigen presenting cells (APCs) (Krampera et al.,
2003); JAG1-NOTCH interaction is shown to partake in the
process (Liotta et al., 2008). Overall, immunosuppressive MSCs,
later designated as MSC2, contribute to tissue healing and
regeneration not only by impeding injury-driven autoimmune
responses but also by educating macrophages, via IL-6, toward
a proangiogenic M2 phenotype. M2 macrophages, therefore, tip
the balance of T-cell responses in favor of immune regulation
(anti-inflammatory Tregs) (Eggenhofer and Hoogduijn, 2012;
Bernardo and Fibbe, 2013; Chung and Son, 2014).

Paradoxically, few reports have challenged the sole
immunosuppressive dogma, offering a novel insight into
the polarization of MSCs toward another “pro-inflammatory”
type, in a similar fashion to “macrophage polarization”
(Krampera, 2011). Waterman et al. designated this pro-
inflammatory phenotype MSC1. Consequently, MSC2 identified
its immunosuppressive counterpart (Waterman et al., 2010). The
polarization into either phenotype is originally induced by TLRs
and is ligand-specific. For instance, TLR3 and TLR4 priming
by, respectively, poly(I:C) and lipopolysaccharide induce the
MSC1 phenotype. In the process, downstream TLR signaling
instigates pro-inflammatory secretome patterns (ILs, chemokine
ligands, growth factors, apoptosis-inducing ligands) and impairs
JAG1-NOTCH interaction between MSCs and T cells. This
prevents MSC-mediated immunosuppression (Liotta et al.,
2008; Romieu-Mourez et al., 2009) and permits IFN-γ-driven
MSC antigen presentation to CD4+ and CD8+ T cells, thereby
evoking immune activation (Chan et al., 2006; François et al.,
2009). Similar observations are evident in co-cultures of MSCs
and B cells, where the latter’s proliferation, cytokine expression,
and differentiation are improved (Rasmusson et al., 2007). On
the other hand, immunosuppressive secretome patterns (IDO,
prostaglandins) ensue downstream TLR signaling during MSC2
polarization (Waterman et al., 2010). Plus, MSC polarization is
TLR type-specific. For instance, TLR4-primed MSCs polarize
into MSC1, while TLR3 priming favors the immunosuppressive
MSC2 profile in certain studies (Waterman et al., 2010) and
MSC1 in others (Romieu-Mourez et al., 2009; Kota et al.,
2014). Besides differences in TLR-ligand interactions and TLR
type signaling, factors such as ligand concentrations (low
concentrations license MSC1 phenotype), priming duration,
microenvironment (cytokines, growth factors, stimulants),
infections/diseases, tissue lesions, and MSC-T cell engagement
timing are also at play in polarization licensing (Krampera, 2011;
Strioga et al., 2012).

Despite its controversy, MSC polarization is thought to be
part of tissue maintenance, where both distinct phenotypes
homogeneously act in injury settings. To this extent, MSC1
may be important early in the process to drive chemotaxis and

Frontiers in Cell and Developmental Biology | www.frontiersin.org 3 February 2020 | Volume 8 | Article 72

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-08-00072 February 17, 2020 Time: 14:32 # 4

Shammaa et al. Therapeutic Applications of MSCs

subsequent reparative processes, while MSC2 may act later to
resolve inflammatory tissue injury (Romieu-Mourez et al., 2009;
Waterman et al., 2010). Similarly, the process can be exploited not
only in regenerative medicine, which depends on inflammatory
signals but also in cancer management which, as later discussed,
depends on MSC inflammatory and migratory properties, both of
which are induced by TLR priming (Waterman et al., 2010).

MSCs IN THERAPY: ACHIEVEMENTS
AND PITFALLS

Regenerative Medicine
The regenerative and immunological assets of MSCs (see Sections
“Regenerative Properties” and “Immunological Properties: A
Paradigm”) are widely exploited in degenerative settings. In
animal models of myocardial infarction (MI), percutaneously
injected allogeneic MSCs ameliorated ventricular fibrosis
and scarring. Reduced infarct size, myocardial regeneration,
enhanced cardiac metabolism and hemodynamics were also
recorded (Amado et al., 2005; Cai et al., 2016). In E. coli
endotoxin-injured human lungs, administration of allogeneic
human MSCs reduced extravascular fluid and septal thickening,
enhanced alveolar fluid transport, and restored the fluid balance
of alveolar compartments (Lee et al., 2009). In rat models of
retinal degeneration, the injection of MSCs into the subretinal
space enhanced the viability of photoreceptor cells without
replacing them (Inoue et al., 2007). In various mouse models of
excisional wound healing, the application of MSC-conditioned
media enriched in chemokines and cytokines increased the
infiltration of macrophages and endothelial progenitor cells
into the wounded area (Wu et al., 2007; Chen L. et al., 2008;
Sasaki et al., 2008). Similar repair mechanisms induced by
MSCs were described in the context of corneal injury (Roddy
et al., 2011), colitis (Hayashi et al., 2008), neurodegenerative
disorders (Tsai et al., 2019), hepatic injury (Anger et al., 2019),
cardiac hypertrophy (Cai et al., 2015), and acute renal failure
(Tögel et al., 2005).

A more sophisticated approach in regenerative medicine is
MSC engineering on both genetic and architectural levels. In
the former, MSC gene expression is altered through viral vector-
or electroporation-mediated gene transfer; then their homing
capacity to injured/ischemic sites is utilized for local delivery
of overexpressed therapeutic genes. Examples on MSC-delivered
genes are SDF-1 to ameliorate MI and ischemic brain injury
(Penn and Khalil, 2008), glucagon-like peptide-1 to reduce
amyloid deposition in Alzheimer’s brains (Klinge et al., 2011),
and IL-10 to restrain collagen-induced arthritis (Choi et al.,
2008). Architectural MSC engineering involves cell culturing to
obtain cellular sheets which can be further maintained in organ-
specific stimulating media or assembled onto organ scaffolds
to restore injured or defective tissue [e.g., bone regeneration
(Yorukoglu et al., 2017) and spinal cord injury (Zeng et al.,
2011) applications].

This preclinical success permitted the transit to human
studies, with no records of toxicity or tumorigenicity with the
use of GMP-compliant human MSCs suitable for clinical trial

use (Tappenbeck et al., 2019). Up to this date, 921 clinical
studies employing MSCs as the primary intervention have been
registered, 704 of which date between 2011 and 2019 (U. S.
National Library of Medicine, 2019). This booming, particularly
in the last decade of the current century, is indicative of
MSC potential to ameliorate a plethora of degenerative diseases
(further elaborated in Table 1) (Wei et al., 2013), bearing
simultaneously their major implication in physiological tissue
maintenance (Murphy et al., 2002; Campeau et al., 2009).

Nevertheless, the clinical utility of MSCs faces various
limitations including cell source availability (De Bari et al., 2001;
Fitzsimmons et al., 2018) and specificity (De Ugarte et al., 2003;
Sudres et al., 2006), clinical-grade production compliance with
GMP (Sensebé, 2008), scalability (Fitzsimmons et al., 2018),
administration timing (Tisato et al., 2007; Polchert et al., 2008;
Le Blanc et al., 2008) and technique (Singh et al., 2016),
engraftment rate (Fouillard et al., 2003; Le Blanc et al., 2008),
polarization control (Polchert et al., 2008; Waterman et al., 2010),
localization post-transplant (Law and Chaudhuri, 2013), and
tissue persistence (Togel et al., 2005). This is explanatory of the
limited number of MSC-based final stage trials and approved
biopharmaceutical products. Until 2019, 50 studies have hit
Phase III, with only 14 completed (NIH, 2019). Therefrom,
11 MSC-based therapies emanated (BioInformant, 2019) for
the treatment of 7 degenerative and immune-based conditions
including knee cartilage defects, hip joint avascular necrosis,
and coronary angioplasty-reperfused acute MI (PHARMICELL,
2011; ANTEROGEN, 2012; Corestem, 2015; European Medicines
Agency, 2017; MilliporeSigma, 2017; Orthocell, 2017; European
Medicines Agency, 2018a; Regrow Biosciences R©, 2019). However,
none of these therapies are approved so far by the FDA (FDA,
2019a) which demands compelling clinical evidence from reliable
well-controlled trials, stronger policy compliance, and extensive
premarket reviews (Marks et al., 2017; FDA, 2019b).

Immune-Based Disorders
As discussed earlier (see section “Immunological Properties:
A Paradigm”), MSCs possess immunomodulatory functions
exhibited by their direct (cytokine-mediated) or indirect (Tregs
modulation-mediated) inhibition of immune cells (Singer and
Caplan, 2011; Haddad and Saldanha-Araujo, 2014). Those
features are advantageous in treating immune-based disorders
(Fitzsimmons et al., 2018). As such, therapies in this context
exploit the immunomodulatory nature of MSC secretome which
comprises NO, transforming growth factor-β, indoleamine 2,3-
dioxygenase (IDO), prostaglandin E2, tumor necrosis factor-
inducible gene 6 protein (TSG6), CCL-2, and PD-L1 among
others. This immunomodulatory pool induces other immune
cells to either modify/reprogram their response type (e.g.,
Th2 humoral-to-Th1 cellular immune response; dendritic cells
(DCs) types 1 and 2 cytokine profile changes; and Th17-to-
Treg cell reprograming) (Aggarwal and Pittenger, 2005; Figueroa
et al., 2012; Le Blanc and Mougiakakos, 2012) or generate
immunosuppressive factors (Aggarwal and Pittenger, 2005; Han
et al., 2012; Wei et al., 2013). As a result, MSCs are able to
ameliorate pronounced immunity which is manifested in animal
models of sepsis (Németh et al., 2009), autoimmune diseases
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TABLE 1 | Clinical outcomes of MSC utility in regenerative therapy.

Clinical condition Regenerative outcomes References/NCT

Osteogenesis imperfecta - Improvement of bone growth
- Alleviation of fracture

Horwitz et al., 1999

Crohn’s disease Coverage of fistula NCT01157650 (García-Olmo et al., 2005)

Deep thermal skin burns - Restoration of wounds
- Trigger of neoangiogenesis

Rasulov et al., 2005

Periodontal defects - Reduction of pocket depth
- Suppression of bleeding
- Amelioration of teeth mobility

Yamada et al., 2006

Drug-resistant pulmonary tuberculosis - Halting bacterial discharge
- Resolution of tissular cavity

Erokhin et al., 2008

Liver cirrhosis Amelioration of liver injury NCT00420134 (Kharaziha et al., 2009)
NCT00956891 (Peng et al., 2011)

Diabetic foot Enhancement of perfusion Lu et al., 2011

Chondral defects - Pain alleviation
- Increased activity scores
- Improved histological façades

Kyriakidis et al., 2019

Maxillofacial bone defects Increased bone cyst density NCT01389661 (Redondo et al., 2018)

(Constantin et al., 2009; Rafei et al., 2009), neurodegenerative
disorders (Ma et al., 2013), and GvHD (Polchert et al., 2008).
In particular, the earliest advancement in MSC immune-
based clinical applications was recorded in GvHD, a serious
complication arising from MHC-mismatched allografts affecting
20–70% of transplant recipients (Lee et al., 2003; Socié and Ritz,
2014). MSC administration in this setting drew the attention of
the scientific community in 2004 after the remarkable response
against resistant grade IV acute GvHD of the gut and liver
in a 9-year-old boy who received the first transplantation of
haploidentical MSCs (Le Blanc et al., 2004). Other phase II/III
clinical trials followed, reporting variable levels of effectiveness
(Introna et al., 2014; Van Der Wagen et al., 2014). In 2009,
an industry-led large-scale phase III study evaluated the use
of allogeneic BM-derived MSCs for treating steroid-refractory
GvHD (NCT00366145) which occurs after failure of first-line
corticosteroid treatment and affects 30–80% of graft recipients
giving patients a 10–30% chance for long time survival (Luft
et al., 2011). Despite the lack of a significant difference in clinical
outcomes between placebo and treatment groups, a sub-group
analysis led to the conditional approval of ProchymalTM for
the treatment of pediatric steroid-refractory GvHD (Kurtzberg
et al., 2010; Martin et al., 2010) in Canada, New Zealand (2012)
(Chisholm et al., 2019), and Japan (2015) (Sipp, 2015). Although
the pass of ProchymalTM was considered a breakthrough
for MSC-based therapies, it remained largely unattainable in
Canada and New Zealand due to strict prescription regulations
and high manufacturing cost (USD 200,000) (Bersenev, 2016;
Chisholm et al., 2019).

Moreover, an official approval for Darvadstrocel (Alofisel), an
adipose human MSC injection, was granted by the European
commission for the management of complex perianal fistulas
in adult patients with mildly or non-active luminal Crohn’s
disease (European Medicines Agency, 2018b; Panés et al., 2018).
The approval emanated from a Phase III trial reporting that

Darvadstrocel led to 50% combined remission, which was
maintained after 1 year of treatment, in comparison with 34%
in the control arm (Panés et al., 2016, 2018; Panes et al.,
2017). Interestingly, several “orphan designation” approvals were
granted by the European commission according to certain
guidelines for the use of human MSCs in the treatment of
GvHD, thromboangiitis obliterans (Buerger disease), and ALS
(Yu et al., 2018; European Medicines Agency, 2019). Bader
et al. (2018) the holders of one of the “orphan designations”
in Germany (PEI.A.11748.01.1) for the treatment of steroid-
resistant or treatment-refractory acute GvHD with their MSC
preparation [MSC-Frankfurt am Main (MSC-FFM)], reported
superior treatment outcomes in both adults and children as
opposed to the limited efficacy of ProchymalTM in children.
According to their study, the effectiveness of MSC-FFM is
due to donor selection in addition to strict collection and
preparation processes (Bader et al., 2018), which yield adequate
doses of MSCs with high batch-to-batch consistency (Elgaz et al.,
2019). The distinguished data on MSC-FFM clearly elucidate the
reasons behind the discrepancies (different survival rates and
response levels to allogeneic MSC) and failures of other phase III
clinical trials (Galipeau, 2013; Galipeau and Sensébé, 2018). In
addition to the variation related to patient selection criteria (age,
type, and disease clinical-grade), qualitative variabilities between
MSC preparations play an important role. Lack of standardized
manufacturing procedures such as donor heterogeneity, tissue
origin variability (BM or adipose tissue), cell cryopreservation,
culture expansion, administered dose and timing, heterogeneity
of host inflammatory biomarkers, and immunogenicity are also
among the variables (Galipeau, 2013; Squillaro et al., 2016;
Galipeau and Sensébé, 2018). This also accords the fact that
currently available MSC-based therapies for treating immune
disorders – Remestemcel-L (Prochymal R©) and TEMCELL R© for
GvHD (JCR Pharmaceuticals Co, 2015; Locatelli et al., 2017),
NeuroNata-R R© for ALS (Corestem, 2015), and Alofisel and
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Cupistem R© for Crohn’s anal fistula (ANTEROGEN, 2012;
MilliporeSigma, 2017; European Medicines Agency, 2018a) –
are still not FDA-approved despite their worldwide regulatory
approval (Bernardo and Fibbe, 2013). Henceforth, further
standardization of clinical-grade MSCs will better serve future
clinical trials and facilitate international clinical approval. Equally
important is expanding the knowledge of MSC polarization
mechanisms and fates post-delivery (Duijvestein et al., 2010;
Lechanteur et al., 2016; Russell et al., 2018; Grégoire et al., 2019).

MSCs AND CANCER

Cancer Support or Suppression?
Cancer management using MSCs stems from the ability of
these cells to home to tumors. Indeed, tumor tropism is
a complex process involving multiple receptors and soluble
factors. For example, SDF-1/C-X-C Motif Chemokine Receptor
4 (CXCR4), a chemokine/chemokine receptor axis involved
in stem cell trafficking and cancer metastasis, plays a major
role in MSC tumor infiltration (Phillips et al., 2003; Kucia
et al., 2004). Tumor secretome induces MSC secretion of SDF-
1, which activates in an autocrine fashion migratory signaling
pathways (STAT3 and MAP kinase) and regulates cytoskeleton
reorganization. According to certain studies, SDF-1 may also
be part of tumor secretome (Gao et al., 2009; Lourenco et al.,
2015). Overexpression of CXCR4 can, therefore, be considered
therapeutically relevant due to its ability to augment MSC
homing efficiency (Cheng et al., 2008). Macrophage Migration
Inhibitory Factor (MIF), a pleotropic cytokine involved in
multiple biological processes including tumor metastasis, is also
implicated in MSC homing to tumors (Han et al., 2018). Like
SDF-1, tumor-secreted MIF binds, among other receptors, to
CXCR4 (Gi-protein coupled receptor) and activates MAP kinase
signaling pathway, eventually inducing MSC migration through
upregulating cell motility genes. Other cytokines/chemokine
ligands secreted by tumors also act as MSC attractants and may
even trigger MSC expression of CXCR4 (Lourenco et al., 2015).
In a similar fashion to CXCR4 overexpression, tumor homing can
be amplified by engineering MSCs to overexpress specific tumor-
binding receptors (Komarova et al., 2010). The homing process
can be tracked with various in vivo optical- and fluorescent-based
imaging techniques (Reagan and Kaplan, 2011). It is important to
note that a recent clinical study showed that BM-derived MSCs
failed to home to prostate cancer sites, an observation linked to
the absence of inflammatory signals, which usually dictate MSC
migration (Schweizer et al., 2019). These data might also question
the innateness of unmodified allogeneic MSCs to home to tumors
without reprograming (Serakinci and Cagsin, 2019). Therefore,
additional clinical studies are necessary for validating the facts.

What’s more, current literature presents with data
discrepancies as to whether unmodified MSCs support or
suppress cancer growth. The first school reports that bearing
the significant resemblance between mesenchymal tumor
cells and MSCs in terms of proliferation/differentiation and
pro-angiogenesis (Galiè et al., 2008), local mesenchymal
progenitors or administered unmodified MSCs enhance cancer

growth and metastasis, thus creating an “immunological
sanctuary” in which tumor cells avoid immune surveillance
(Hanahan and Weinberg, 2000; Krampera, 2011). These MSC
properties of cancer support are originally licensed by tumor-
infiltrating macrophages which establish a pro-inflammatory
chemotactants-studded milieu (Coffelt et al., 2009; Rigo et al.,
2010). This milieu evokes MSCs to (i) differentiate into highly
proliferative myofibroblasts (Von Ahrens et al., 2017) and
vascular cells (Peters et al., 2005), (ii) produce tumor-nurturing
pro-angiogenic cytokines, miRNA, and exosomes (Roccaro
et al., 2013; Zhang et al., 2013; Dong et al., 2018), (iii) secrete
extracellular matrix-forming lysosomal oxidase (El-Haibi et al.,
2012), (iv) provide a niche for malignant cells to thrive (Lin et al.,
2019), and (v) adopt the immunomodulatory MSC2 phenotype
(see section “Immunological Properties: A Paradigm”) (Patel
et al., 2010). As previously mentioned, MSC2 further polarizes
macrophages into the M2 phenotype which is pro-tumorigenic
(Rivera-Cruz et al., 2017).

Contrastingly, the other school reports that MSCs are anti-
tumorigenic. This observation is upheld by studies on various
tumor types which demonstrate size/metastasis reduction or
inhibition of proliferation upon MSC injection (Klopp et al.,
2011). In this course, MSCs home to tumor sites and reinforce
their anti-neoplastic effects by interacting with cancer cells
via cell-cell adhesive proteins (e.g., E-cadherin, Khakoo et al.,
2006) or releasing soluble factors (Maestroni et al., 1999) [e.g.,
dickkopf-1, a Wnt signaling inhibitor (Qiao et al., 2008; Zhu
et al., 2009)] and anti-proliferative miRNA-containing vesicles
(Reza et al., 2016). Molecularly, the effects are sustained by (i)
interference with pro-survival/proliferation signaling pathways
[e.g., protein kinase Akt (Khakoo et al., 2006; Dasari et al., 2010a)
and Wnt/β-catenin (Secchiero et al., 2010)], (ii) activation of
apoptotic pathways (e.g., Smac/DIABLO) (Dasari et al., 2010b;
Reza et al., 2016), and (iii) cell cycle arrest in G0/G1 phase (Lu
et al., 2008; Cousin et al., 2009). The net signaling transduced
favors an upregulation of cell cycle modulators (e.g., p21) and
pro-apoptotic proteins (e.g., caspase 3, caspase 9, BAX) (Lu et al.,
2008; Reza et al., 2016), opposed by a downregulation of anti-
apoptotic mediators (e.g., XIAP, BCL2) (Dasari et al., 2010a,b;
Reza et al., 2016). Besides, MSCs can inhibit neo-angiogenesis by
forming gap junctions with endothelial cells and supplying them
with reactive oxygen species, which induce their apoptosis (Otsu
et al., 2009; Secchiero et al., 2010).

The inconsistencies between both schools are attributed
to multiple factors including MSC source/preparation,
administration timing/dose, polarization, and tumor variability
(Klopp et al., 2011).

Therapeutic Management
Mesenchymal stem cell properties of tumor tropism and
non-immunogenicity were used in antitumor research. The
methodology involved transforming MSCs into a therapeutic
platform able to inherently engraft in tumor architecture and
genetically produce recombinant antitumor or antitumor
immunity-driving molecules. Examples include tumor
necrosis factor-related apoptosis-inducing ligand (TRAIL)
(Loebinger et al., 2009), C-X3-C motif chemokine ligand 1
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(CX3CL1) (Xin et al., 2009), IFN-β (Studeny et al., 2002; Ren
et al., 2008b), IFN-α (Ren et al., 2008a), IFN-γ (Li X. et al.,
2006), IL-2 (Nakamura et al., 2004), and (modified) IL-12
(Chen X. et al., 2008; Seo et al., 2011). For example, a study
by Li X. et al. (2006) showed that autologous MSCs derived
from a leukemic patient then engineered to generate IFN-γ
significantly inhibit the proliferation of leukemia cell lines
and induce their apoptosis. In the same context, other genetic
engineering-based methods include MSCs which express (i)
replicative adenoviruses that infect cancer cells and induce
oncolysis (e.g., ICOVIR5, Ad5-DNX-2401), (i) therapeutic
gene-incorporating retroviral vectors, and (iii) suicidal gene-
incorporating vectors. However, these efficient interventions
confer toxicity and require simultaneous anti-retroviral drugs
administration (Uchibori et al., 2009; Loebinger and Janes, 2010).
Researchers also fostered MSC-based vehicles independent of
genetic engineering. Those exploit the innateness of MSCs to
uptake drugs in vitro allegedly through Golgi-derived vesicles
(drug uptake mechanisms are insufficiently characterized and
are not confined to MSCs, Girdlestone, 2016). Although their
drug sensitivity varies according to cell source, MSCs rapidly
internalize sufficient drug molecules, such that following MSC
administration to animal models, captured drugs are slowly and
sufficiently released in their original form (active or prodrug)
into tumor vicinity (Pessina et al., 2011; Bonomi et al., 2013;
Coccè et al., 2017). Likewise, MSCs can be loaded with prodrugs
to effectively inhibit cancer growth (Levy et al., 2016). These
observations led to few human cancer management studies,
which are still taking their baby steps toward clinical efficacy. For
example, in a phase I/II study (TREAT-ME1), autologous MSCs
were isolated from patients according to GMP standards and
transfected with replication-incompetent retroviral vectors to
generate MSC_apceth_101, an investigational medicinal product
containing a therapeutic promoter-gene construct aimed to treat
advanced gastrointestinal tumors. The trial, however, did not
advance to therapeutic confirmatory phase III due to adverse
events and lack of disease amelioration (EudraCT Number 2012-
003741-15) (Niess et al., 2015). Other challenges in MSC-based
anticancer treatment are, paradoxically, cancer enhancement
(Karnoub et al., 2007) even with induced anti-tumor immunity
(vaccination) (Krampera et al., 2007) as well as insufficient cell
homing to tumors to guarantee efficient delivery of therapeutic
agents (Schweizer et al., 2019).

Cancer Vaccination
Vaccination is a robust, safe, and cost-effective preventative
or therapeutic method against pathogenic diseases (Tomchuck
et al., 2012). While therapeutic vaccines induce cell-mediated
immunity and are used to eliminate existing pathogens/lesions
or prevent their progression, preventative vaccines trigger
humoral immunity (serum antibody generation) for prophylaxis
of futuristic pathogens/lesions (Nayereh and Khadem, 2012).

Traditionally, vaccine development employs the attenuation
or inactivation of a pathogen to create long-term immune
memory and/or mount a durable immune response against intact
pathogens. Although efficient against several mortal diseases
(smallpox, diphtheria, polio, measles), vaccines still lack in

offering protection against their ilk (HIV, malaria, common
cold, tuberculosis) due to robust microbial antigen shifting or
difficult intracellular pathogen accessibility which complicates
the selection of target antigens. In addition to intact antigenic
peptides, alternative vaccines exist, such as in situ antigen
production or presentation using plasmid vectors (DNA) and
antigen-pulsed host cells (APCs, MSCs). However, they have
not yet achieved any clinical benefits, mainly due to their low
immunogenicity (MacGregor et al., 1998; Tomchuck et al., 2012;
Hobernik and Bros, 2018).

The notion of cancer vaccination, an increasingly active
research topic, stems from the inherent role of the immune
system to eliminate cancer cells and the possibility thereof to
develop immune enhancing therapies to adequately eradicate
tumors (Butterfield, 2015). For this purpose, synthetic neo-
antigens (Ott et al., 2017) as well as DNA- and cellular-based
platforms exercising foreign antigen/cytokine production or
expression have been used to devise tumor epitope-specific
vaccines or instigate anti-tumor T-cell reactivity in vitro. This
strategy was efficient as an in vivo cancer immunotherapy,
especially if the regimen involves immune-checkpoint blocking
antibodies to enhance effector T cells function by blocking
their inhibitory receptors (PD-1 and CTLA-4) (Schumacher and
Schreiber, 2015; Wraith, 2017).

Among the best candidates for cellular-based vaccine
platforms, DCs are especially efficient APCs and primers of
immune responses (Guéry and Adorini, 1995; Janikashvili et al.,
2010; Le et al., 2010; Palucka and Banchereau, 2013). Plus,
DCs are considered natural adjuvants as they can modulate and
interconnect innate adaptive immune responses through their
surface molecules and secretome (Mellman and Steinman, 2001;
Steinman, 2001). In clinic, Sipuleucel-T, branded as Provenge, is
the first and only FDA-approved DC vaccine for the treatment
of asymptomatic or minimally symptomatic metastatic and
castration-resistant prostate cancer (Small et al., 2006; Higano
et al., 2010; Anassi and Ndefo, 2011; Cheever and Higano,
2011). However, other attempts at DC vaccine introduction
in animal and clinical studies faced more complications
than anticipated, demonstrating immense variation in reported
outcomes (Le et al., 2010; Robson et al., 2010; Mantia-Smaldone
and Chu, 2013). Reasons for such clinical discrepancies can
be attributed to DC non-standardized ex vivo preparation and
administration protocols which entail multiple variabilities at
the level of (i) DCs source/phenotype, (ii) DCs maturation
stimulus used, (iii) nature/procedure for antigen loading, (iv)
route of administration, and (v) dose (Nicolette et al., 2007).
Besides, their high production cost, low production grade,
limited effectiveness, and immunogenicity hamper their clinical
acceptance and advancement (Chambers and Neumann, 2011;
Bhargava et al., 2012; Datta et al., 2014; Jarosławski and Toumi,
2015; Wei et al., 2015). Therefore, the search for other cellular-
based vaccines with potentially better performance in these
criteria was necessary, and so MSCs came forth as a fit vaccine
platform in this regard.

MSCs can elicit general and/or antigen-specific immunity,
without being immunogenic themselves, depending on
three assets (Figure 1). First, MSCs are context-specific
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pro-inflammatory (see Section “Immunological Properties: A
Paradigm”), a property which ultimately renders them enhancers
of humoral and cellular immunity. Second, MSCs are genetically
modifiable, thereby representing suitable vehicles for producing
and secreting cytokines or soluble antigens which evoke robust

immune responses. A report by Wei et al. (2011) follows this
scenario albeit to a certain extent. In the details, the group
devised a combined vaccine consisting of a fusion protein
vaccine which targets E7 tumor antigen and immortalized
human MSCs designed to express E7 antigens. Compared to

FIGURE 1 | MSCs as anti-cancer vaccines. MSCs can be genetically modified to overexpress cytokines to instigate innate and adaptive immunity, as a means to
protect against neoplasms. Genetic modification can be also used to overexpress tumor antigens and instill anti-tumor humoral and cellular immunity. Likewise,
dose- and time-dependent exposure to IFN-γ transforms MSCs, albeit transiently, into APCs capable of providing antigen-specific immune protection. This occurs
through induction of MHC class I and II expression, followed by tumor antigen processing and MHC-mediated presentation to T-cells. Despite IFN-γ-induced antigen
presentation, other observations report that MSCs simultaneously up-regulate PD-L1 and secrete IDO, both of which inhibit T-cells. Henceforth, overcoming the
transient and temporary antigen presenting properties of IFN-γ-exposed MSCs is necessary to achieve vigorous stability and abundance of presented neoantigens,
thus helping to create a clinically efficient anti-cancer vaccine.
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the fusion protein vaccine alone, the combined vaccine elicited
significantly stronger tumoricidal immunological reactions
when administered to subcutaneous and lung metastasis mice
models. The authors propose that those effects ensue after the
tagging of tumor cells with E7 antigens released by infiltrating
MSCs along with the instigation of humoral immunity by the
fusion protein vaccine. The generated anti-E7 antibodies were,
therefore, able to recognize tumors and eventually suppress
their growth (Wei et al., 2011). Third and most importantly,
MSCs can act as APCs capable of processing and presenting
exogenous antigens to activate immune cells; this asset surfaces
in response to IFN-γ treatment which induces MSC expression
of MHCI/II molecules (Majumdar et al., 2003; Stagg et al.,
2006; François et al., 2009; Tomchuck et al., 2012; van Megen
et al., 2019). This property was exploited in cancer vaccination
studies, which are hitherto limited. For instance, mice vaccinated
with IFN-γ-licensed MSCs pulsed with ovalbumin antigen
are completely protected when challenged with ovalbumin-
expressing E.G7 lymphatic tumors (Stagg et al., 2006; François
et al., 2009; Stagg and Galipeau, 2013). Protection against
tumors using IFN-γ-treated MSCs is conferred through MHC
I upregulation, MHC II induction, and, in part, through the
upregulation of the antigen processing machinery responsible
for translocation of processed antigens into the ER before
trafficking toward the plasma membrane. Overall, this enhances
antigen presentation to CD4+ T-cells (MHC II-restricted) and
cross-presentation to CD8+ T-cells (MHC I-restricted), both
of which respond by increased activation and proliferation
(François et al., 2009). Another study further shows that the
strong anti-tumorigenic immune responses evoked by IFN-
γ-treated MSCs involve CD80 (co-stimulatory molecule) and
MHC class II- but not class I-mediated antigen presentation,
albeit the induction of strong CD8+ T-cell responses in vivo.
The authors argue that antigen cross-presentation which
is not observed in vitro can develop in vivo not in MSCs
themselves but in other host APCs which can acquire their
antigens from MSCs in a process termed cross-priming (Stagg
et al., 2006). Paralleling, a recent study reports that although
IFN-γ-licensed human MSCs uptake and process antigens and
upregulate MHC class II but not CD80, their pro-inflammatory
secretome remains intact. Importantly, the study also shows
that despite their IFN-γ-induced antigen presentation, MSCs
inhibit autoreactive T-cells, an observation associated with
PD-L1 upregulation and IDO secretion (Figure 1). The
inhibitory effect even lasted beyond the removal of MSCs and
the introduction of activation signals (antigen-pulsed DCs)
(van Megen et al., 2019). However, in another report, IFN-
γ-induced upregulation of PD-L1 on antigen-presenting MSCs
is believed to be tied to T-cell induction rather than inhibition

(Stagg et al., 2006). This discrepancy adds to the many layers
of MSC character.

A side note, more prevalent is the therapeutic induction
of general rather than antigen-specific anti-tumor immunity
(Wei et al., 2011). This is evident in the variety of researched
MSC vaccines which, as mentioned in Section “Cancer
Support or Suppression?”, genetically express recombinant
immunostimulatory molecules (Studeny et al., 2002; Nakamura
et al., 2004; Li X. et al., 2006; Chen X. et al., 2008; Ren
et al., 2008a,b; Xin et al., 2009; Seo et al., 2011). Furthermore,
while prophylactic MSC-based anti-cancer vaccines are more
strenuous to devise compared to their therapeutic counterparts
(tumor antigens have unique expression patterns), prophylactic
MSC-based anti-microbial vaccines attain their purpose of
triggering antigen-specific humoral and adaptive immunity
against, respectively, HIV and tetanus (Tomchuck et al., 2012).
In sharp contrast, the clinical knowledge available thus far
on MSCs as cancer vaccines is, unfortunately, insufficient to
advance further their proof of concept. Table 2 demonstrates the
only registered human studies utilizing MSC-based anti-cancer
therapeutic vaccines.

CONCLUSION AND FUTURE
RECOMMENDATIONS

In summary, due to their regenerative abilities,
immunomodulation, tumor homing, and multiple other
advantages, MSCs have demonstrated unprecedented potential
in cellular therapy in vivo, specifically against immunological,
degenerative, and cancer pathologies. Therefrom, their
international clinical approval is a matter of time. Likewise, the
growing notion of MSC vaccination has demonstrated promising
potential for cancer prophylaxis or therapy, despite the scarcity
of relevant clinical data. Reflecting on the reasons behind
this, it is legit to say that MSC vaccine-based cancer research
requires further understanding not only of the intervention
itself but also of the multiple intricacies characterizing the
interplay between MSCs and both tumors and immune cells.
More specifically, an efficient MSC-based anti-cancer vaccine
first needs to overcome the transient and temporary antigen
presenting properties observed after IFN-γ exposure. As
mentioned earlier, our current understanding of MSCs as APCs
is indispensable of the dose-dependent temporary exposure to
IFN-γ alongside the phenotypic responses arising therefrom
(Figure 1) (Chan et al., 2006).

Other immunomodulatory observations upon IFN-γ
licensing of antigen-pulsed MSCs are also recorded (van
Megen et al., 2019). For example, IFN-γ treatment is associated

TABLE 2 | The clinical trials assessing MSC-based vaccines for cancer treatment.

NCT Study phase Start date Vaccine properties Cancer type Results/Status

02079324 1 2014 aka GX-051, IL-12-expressing, induces IFN-γ
production and subsequently cellular immunity

Head and neck Unknown

02530047 1 2016 IFN-β-expressing, immunostimulatory Ovarian Completed, no disclosed results
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with the upregulation of B7-H1 (PD-L1) (Krampera et al.,
2006). These intricacies show that we need to understand
the antigen presenting properties of MSCs beyond IFN-γ.
Bypassing this conditional APC state thus warrants vigorous
stability and abundance of MHCI/II-presented neo-antigens.
Also, sufficient molecular knowledge of protein translation,
proteasome degradation of proteins, endoplasmic reticulum
transport, and affinity for MHC molecules – all in direct link to
antigen presentation – is necessary (Schumacher and Schreiber,
2015). Equally important is realizing cancer complexity and the
burden of tumor stromal cells in oncological settings (Brahmer
et al., 2012; Joyce and Fearon, 2015). Since tumor stromal cells
induce massive alterations in local metabolome and secretome
profiles and are thought to ensnare CD8+ T cells and other APCs
(Joyce and Fearon, 2015; Hammerich et al., 2019) in the tumor
microenvironment, their contribution to immune suppression,
evasion, and unresponsiveness to immune-checkpoint blockers
(Brahmer et al., 2012) should be investigated more in depth.
Consequently, surpassing these obstacles, perhaps by instilling
potent and stable antigen cross-presentation properties in
properly treated MSCs, as well as ensuring that adaptive
immunity is actively triggered and always one step ahead of

tumor intelligence, will allow us to harness the full capacity of
MSCs as robust APCs.
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