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Abstract 

Background: Older patients (≥ 60 years) with acute myeloid leukemia (AML) often have multiple, sequentially 
acquired, somatic mutations that drive leukemogenesis and are associated with poor outcome. Beat AML is a Leu‑
kemia and Lymphoma Society‑sponsored, multicenter umbrella study that algorithmically segregates AML patients 
based upon cytogenetic and dominant molecular abnormalities (variant allele frequencies (VAF) ≥ 0.2) into differ‑
ent cohorts to select for targeted therapies. During the conception of the Beat AML design, a historical dataset was 
needed to help in the design of the genomic algorithm for patient assignment and serve as the basis for the statistical 
design of individual genomic treatment substudies for the Beat AML study.

Methods: We classified 563 newly diagnosed older AML patients treated with standard intensive chemotherapy 
on trials conducted by Cancer and Leukemia Group B based on the same genomic algorithm and assessed clinical 
outcomes.

Results: Our classification identified core‑binding factor and NPM1‑mutated/FLT3‑ITD‑negative groups as having 
the best outcomes, with 30‑day early death (ED) rates of 0 and 20%, respectively, and median overall survival (OS) 
of > 1 year and 3‑year OS rates of ≥ 20%. All other genomic groups had ED rates of 17–42%, median OS ≤ 1 year and 
3‑year OS rates of ≤ 15%.

Conclusions: By classifying patients through this genomic algorithm, outcomes were poor and not unexpected from 
a non‑algorithmic, non‑dominant VAF approach. The exception is 30‑day ED rate typically is not available for intensive 
induction for individual genomic groups and therefore difficult to compare outcomes with targeted therapeutics. This 
Alliance data supported the use of this algorithm for patient assignment at the initiation of the Beat AML study. This 
outcome data was also used for statistical design for Beat AML substudies for individual genomic groups to determine 
goals for improvement from intensive induction and hopefully lead to more rapid approval of new therapies.
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Background
Acute myeloid leukemia (AML) is not a single entity but 
a multitude of diseases that  differ with regard to pre-
treatment genetic features including cytogenetics and 
gene mutations [1–3]. Despite this disease heterogene-
ity, initial AML treatment approaches have been essen-
tially the same for the past forty years, with patients 
either receiving intensive induction approaches (i.e., 
7 + 3) or palliative treatment including hypomethyl-
ating agents (HMA), subcutaneous cytarabine, sup-
portive care, or hospice care. Over the past few years, 
numerous new agents have been added to the treatment 
arsenal of AML, including venetoclax combined with 
HMA or subcutaneous cytarabine, IDH1, IDH2, and 
FLT3 inhibitors, liposomal daunorubicin/cytarabine, 
gemtuzumab ozogamicin, and glasdegib combined with 
subcutaneous cytarabine [4–13]. In the upfront setting, 
venetoclax, glasdegib, ivosidenib, and liposomal dauno-
rubicin/cytarabine are approved by the Food and Drug 
Administration for certain older patient populations 
or for patients with comorbidities that prevent them 
from tolerating intensive induction therapy. Although 
these treatments lead to improved outcomes, includ-
ing increased complete remission (CR) rates, disease-
free survival  (DFS), and overall survival (OS) for some 
AML patient populations, currently none of these ther-
apies  are  considered curative unless the patients  are 
able to undergo allogeneic stem cell transplantation in 
initial CR.

It is well known that older AML patients 
(aged ≥ 60  years) have worse outcomes than younger 
patients, but the reasons for this are not entirely clear. 
Some contributing factors include higher incidence of 
high-risk cytogenetic and molecular genetic features, 
secondary or therapy-related AML, and comorbidities 
that limit more intensive treatment approaches includ-
ing allogeneic stem cell transplantation [14]. However, 
even among patients with favorable-risk features such 
as core-binding factor (CBF) or NPM1 + /FLT3-ITD- 
mutated AML who are able to tolerate and undergo 
intensive chemotherapy, older patients have worse out-
comes compared with younger patients with these same 
genetic characteristics [15–17]. Vasu et al. showed that 
a 10-year DFS rate of older AML patients treated with 
intensive induction who were not able to receive alloge-
neic transplantation in first CR was 2.4% [18].

In the era of high throughput sequencing (HTS) and the 
availability of targeted therapies, the question remains 
whether an individualized treatment approach based 
on the results of genetic tests performed at the time of 
diagnosis could improve the currently poor outcomes of 
older AML patients. The Leukemia and Lymphoma Soci-
ety (LLS) has sought to answer this question through the 
Beat AML Master Study. Gene mutation analysis using 
HTS, cytogenetic analysis, and polymerase chain reac-
tion (PCR)-based analysis for internal tandem duplica-
tion of the FLT3 gene (FLT3-ITD) are performed at the 
time of diagnosis in older patients with AML in a com-
prehensive and timely manner. Patients are then assigned 
to more individualized therapy based on the presence of 
cytogenetic and/or mutational drivers detected in the 
patients’ leukemic clones by inferred variant allele fre-
quency (VAF)  [19]. However, to determine whether this 
approach constitutes improvement upon existing stand-
ard of care, it was necessary to have a historical perspec-
tive on particular genetic groups of older AML patients 
and their actual outcomes. This information allowed for 
study planning relative to a null hypothesis for outcome 
expectation in specific molecular/cytogenetic groups and 
provide a reference for regulatory agencies when evaluat-
ing new therapies relevant to these groups.

We analyzed data from 563 older newly diagnosed de 
novo AML patients treated on the Cancer and Leukemia 
Group B (CALGB, now part of the Alliance for Clinical 
Trials in Oncology) trials and retrospectively assigned 
them to several genetic groups based on an algorithm 
that incorporates targetable cytogenetic abnormali-
ties and mutational drivers with high VAF. We aimed to 
determine 1) whether this algorithmic approach would 
lead to a genetic group assignment in the majority of 
patients and 2) the outcomes of patients assigned to each 
of the genetic groups to serve as a benchmark and allow 
comparisons with the results of treatment with new ther-
apeutic agents.

Methods
Patients, treatment, and cytogenetic studies
We analyzed 563 adults ≥ 60  years of age with newly 
diagnosed de novo AML (excluding acute promyelo-
cytic leukemia) whose pretreatment bone marrow (BM) 
or blood samples underwent HTS analysis [20]. Patients 
who underwent allogeneic transplantation in first 

Trial registration ClinicalTrials.gov Identifiers: NCT00048958 (CALGB 8461), NCT00900224 (CALGB 20202), NCT00003190 
(CALGB 9720), NCT00085124 (CALGB 10201), NCT00742625 (CALGB 10502), NCT01420926 (CALGB 11002), 
NCT00039377 (CALGB 10801), and NCT01253070 (CALGB 11001).
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complete remission (CR) were excluded as per required 
for the eligibility of the CALGB/Alliance protocols. HTS 
analysis was not performed in all patients with CBF AML 
because this subtype of AML represents an already rec-
ognized, curable entity and is at the top of the LLS pri-
oritization schema. The patients were treated on CALGB 
trials which included a range of time from 1984 to 2013 
with all receiving standard intensive treatment (Table  1 
and further details in the Additional file  1) [21–30]. As 
patients on the RATIFY study (CALBG 10603) were eli-
gible only from ages 18 to 59, there are not any patients 
included in our analysis who received midostaurin as 
part of their chemotherapy regimen. All patients were 
considered for outcome analyses including those who 
suffered early death (ED), defined as death within 30 days 
after starting therapy irrespective of cause. Cytogenetic 
analyses of pretreatment BM and/or blood samples were 
performed by institutional CALGB/Alliance-approved 
laboratories. The results were confirmed by central kar-
yotype review [31]. Patients provided written informed 
consent to participate in companion protocols CALGB 
8461 (cytogenetic studies), CALGB 9665 (leukemia tis-
sue bank), and CALGB 20,202 (molecular studies), which 
involved collection of pretreatment BM and blood sam-
ples. Treatment protocols were in accordance with the 
Declaration of Helsinki and approved by the institutional 
review boards at each center, and all patients provided 
written informed consent.

Molecular analyses
Mononuclear cells were enriched through Ficoll-
Hypaque gradient centrifugation and cryopreserved until 
use. Genomic DNA was extracted using the DNeasy 
Blood and Tissue Kit (QIAGEN, Hilden, Germany).  The 
mutational status of 81 protein-coding genes was deter-
mined centrally at The Ohio State University by targeted 
amplicon sequencing using two different gene panels on 
the MiSeq platform (Illumina, San Diego, CA; see Addi-
tional file  1 for details).  MuCor was used for integra-
tive data analysis [32]. Details about the variant calling 
are outlined in the Additional file  1. In addition to the 
81 genes assessed by HTS, testing for CEBPA mutations 
was performed as previously described, thus resulting in 
mutational status of 82 genes being assessed in our study 
[33]. Only patients with biallelic CEBPA mutations were 
considered as mutated [2]. The presence or absence of 
FLT3-ITD, as well as quantification of the FLT3-ITD to 
FLT3 wild-type allelic ratio, was determined as previously 
described [34].

Genetic algorithm/assignment
This precision medicine-based stratification of AML 
patients was initially designed in 2015 and took into 

consideration “assignment to curative therapy with 7 
and 3” for known responsive groups [i.e., CBF AML and 
NPM1-mutated/FLT3-ITD-negative (NPM1m/FLT3-
ITD‒) patients] followed by genetic groups where high 
rationale therapeutic options were or soon would be 
available (KMT2A-rearranged, IDH2m, IDH1m). These 
groups were first followed by high-risk genetic/cytoge-
netic groups which could confound prognostic impact 
of other gene mutations and typically lack other com-
mon co-mutations (TP53m and complex karyotype with 
wild-type TP53), next followed by FLT3-mutated [includ-
ing both FLT3-ITD and mutations in the tyrosine kinase 
domain of the FLT3 gene (FLT3-TKD)], then followed by 
the hypermethylation group [encompassing patients with 
TET2m [35, 36] or WT1m [37]], and then the marker-
negative group. The following priority schema (in order 
from highest to lowest) was used for the treatment 
assignment algorithm: CBF AML (CBF); NPM1m/FLT3-
ITD‒; 11q23/KMT2A-rearranged (KMT2A); IDH2 
mutated (IDH2m); IDH1 mutated (IDH1m); TP53 
mutated (TP53m); complex karyotype/TP53 wild-type 
(complex karyotype/TP53wt); FLT3-ITD (both high 
and low allelic ratios included) or FLT3-TKD (FLT3m); 
WT1 mutated or TET2 mutated (WT1m or TET2m); 
and marker-negative group (i.e., all other karyotypes and 
mutations that did not occur as co-mutations and were 
not included in the aforementioned grouping) (Fig.  1). 
The presence of a clonal cytogenetic aberration, FLT3-
ITD allelic ratio of ≥ 0.05 and VAF ≥ 0.3 was assessed 
initially for treatment assignment. Patients were assigned 
in dominant clone fashion if clones harboring mutations 
with VAF ≥ 0.3 determined by HTS, FLT3-ITD allelic 
ratio of ≥ 0.05 or particular cytogenetic abnormalities 
were identified. For patients not assigned to any genetic 
group during the initial stratification, a second run-
through of the algorithm was performed searching for 
a clone with mutations with VAF ≥ 0.2 excluding FLT3-
ITD. As this algorithm is designed to assign therapy and 
assess outcome on an intent-to-treat basis, patients who 
suffered ED were included.

Statistical analyses
We made comparisons among groups regarding base-
line characteristics, co-occurring mutations, and out-
comes using Fisher’s exact test for categorical variables, 
the Kruskal–Wallis test for continuous variables, and the 
Kaplan–Meier method and log rank test for survival end-
points [38]. Data collection and statistical analyses were 
performed by the Alliance Statistics and Data Center 
using SAS 9.4 and TIBCO Spotfire S + 8.2 with a dataset 
locked on September 12, 2019, and median follow-up of 
8.6 years. Clinical endpoints are defined in the Additional 
file 1.
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Table 1 CALGB Protocol Chemotherapy Regimens

Protocol Induction Maintenance

8321
(n = 3)

Randomized to:
*DNR Days 1–3 (45 mg/m2/day < 60 years or 

30 mg/m2/day ≥ 60 years)
Ara‑C Days 1–7 (100 mg/m2/day)
VERSUS
*DNR Days 1–3 (45 mg/m2/day < 60 years or 

30 mg/m2/day ≥ 60 years)
Ara‑C Days 1–7 (200 mg/m2/day CIV)

6‑TG Days 1–10 (100 mg/m2 PO q12 
hour × 10 doses)

DNR Day 57 (45 mg/m2/day < 60 years or 
30 mg/m2/day ≥ 60 years)

Ara‑C Days 1–10, 29–38, 57–66, 84–92 (per 
Induction assignment BID q12 hours × 10 
doses)

VCR Days 29 and 84 (2 mg/m2 (max 2 mg))
Prednisone Days 29–33, 84–88 (40 mg/m2/

day × 5 days)

n/a

8525
(n = 41)

*DNR Days 1–3 (45 mg/m2/day < 60 years or 
30 mg/m2/day ≥ 60 years)

Ara‑C Days 1–7 (200 mg/m2/day CIV)

Randomized to 4 Cycles:
Ara‑C Days 1–5 (100 mg/m2/day CIV)
VERSUS
Days 1–5 (400 mg/m2/day CIV)
VERSUS
Days 1,3,5 (3gm/m2 every 12 h for 6 total 

doses)

4 Cycles:
DNR Day 1 (45 mg/m2/day)
Ara‑C Days 1–5 (100 mg/m2 q12 hours SQ)

8721
(n = 1)

Ara‑C Days 1,2,8,9 (3gm/m2 every 12 h – 8 
doses total)

L‑asparaginase Days 2, 9 (6000 IU/m2)
Allowed to repeat on Days 15,16 for both 

agents if no response

2 Cycles:
Ara‑C Days 1,2,8,9 (3gm/m2 every 12 h – 8 

doses total)
L‑asparaginase Days 2, 9 (6000 IU/m2)

n/a

8821
(n = 1)

*DNR Days 1–3 (45 mg/m2/day)
Ara‑C Days 1–7 (200 mg/m2/day CIV)

Randomized to Course 1 followed by 
Course 2 VERSUS Course 2 followed by 
Course 1:

Course 1: (1 cycle)
Mitoxantrone Days 1–3 (12 mg/m2/day)
Diaziquone Days 1–5 (28 mg/m2/day CIV)
Course 2: (1 cycle)
Etoposide Day 1 (2400 mg/m2 CIV)
Cytoxan Days 3–6 (50 mg/kg/day)

n/a

8923
(n = 38)

Randomized to:
*DNR Days 1–3 (45 mg/m2/day)
Ara‑C Days 1–7
(200 mg/m2/day CIV)
G‑CSF Starting Day 8
VERSUS
*DNR Days 1–3 (45 mg/m2/day)
Ara‑C Days 1–7 (200 mg/m2/day CIV)
Placebo Starting Day 8

Course 1: (up to 4 cycles)
Ara‑C Days 1–5 (100 mg/m2 CIV)
Course 2: (up to 2 cycles)
Ara‑C Days 1–3 (500 mg/m2 q 12 h × 6 

doses)
Mitoxantrone Days 1–3 (5 mg/m2 × 6 doses)

n/a

9420
(n = 18)

Randomized to:
*DNR Days 1–3 (dose‑escalated to MTD 

40 mg/m2/day)
Etoposide Days 1–3
(dose‑escalated to MTD 60 mg/m2/day)
Ara‑C Days 1–7 (100 mg/m2/day CIV)
PSC‑833 1.5gm/kg IV Days 1–3 for 2 h, fol‑

lowed by 10 mg/kg/day CIV for 72 h
VERSUS
*DNR Days 1–3 (dose‑escalated to MTD 

40 mg/m2/day)
Etoposide Days 1–3
(dose‑escalated to MTD 60 mg/m2/day)
Ara‑C Days 1–7 (100 mg/m2/day CIV)
No PSC‑833

Randomized to 1 Cycle:
DNR Days 1–2 (30 mg/m2/day)
Etoposide Days 1–2 (60 mg/m2/day)
Ara‑C Days 1–5 (100 mg/m2/day CIV)
PSC‑833 1.5gm/kg IV Days 1–3 for 2 h, fol‑

lowed by 10 mg/kg/day CIV for 72 h
VERSUS
DNR Days 1–2 (30 mg/m2/day)
Etoposide Days 1–2 (60 mg/m2/day)
Ara‑C Days 1–5 (100 mg/m2/day CIV)
No PSC‑833 (based on initial induction 

assignment)

Randomized to:
R‑IL2 (0.9 ×  106 SQ Days 1–14, 19–28, 33–42, 

47–56, 61–70, 75–90 and 12 ×  106 Day 
15–17,29–31, 43–45, 57–59, 71–73)

VERSUS
No maintenance
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Results
Patient genetic group assignment
We sought to establish the outcomes of patients treated 
on CALGB trials who were retrospectively assigned to 
specific genetic groups to serve as a historical control 
for comparison with future results of the Beat AML 
trial. Using the algorithm, 498 (88%) patients were 
assigned to a genetic group based upon cytogenetic 
findings or the presence of a dominant mutational 
clone with VAF ≥ 0.3. This number increased to 508 
(90%) when an additional 10 (2%) patients were reas-
signed following detection of a clone with a mutation 
with VAF ≥ 0.2. There were 75 (13%) patients assigned 
to the CBF group, 107 (19%) to the NPM1m/FLT3-
ITD‒ group, 13 (2%) to the KMT2A group, 59 (10%) 
to the IDH2m group, 35 (6%) to the IDH1m group, 
50 (9%) to the TP53m group, 28 (5%) to the complex 
karyotype/TP53wt group, 99 (18%) to the FLT3m 
group, and 42 (7%) to the TET2m or WT1m group. 
The remaining 56 (10%) patients were assigned to the 
marker-negative group (Table 2).

Clinical, cytogenetic and molecular genetic characteristics 
of patients classified into genetic groups
Baseline clinical characteristics among groups were 
similar with the following exceptions: (1) CBF and 
NPM1m/FLT3-ITD—patients had almost an equal male-
to-female ratios whereas other groups had predominance 
of male patients; (2) platelet counts were highest in the 
IDH1m group; (3) the white blood cell counts were high-
est in the FLT3m, KMT2A and NPM1m/FLT3-ITD—
groups; and (4) percentage of BM blasts were highest in 
the KMT2A, IDH1m, and the FLT3m groups (Table 3).

We next analyzed occurrence of mutations belong-
ing to the previously reported functional groups [39] 
within each of the genetic groups identified in the cur-
rent study (Additional file  1: Table  S1). We found that 
NPM1m/FLT3-ITD-patients had most often gene muta-
tions in the methylation-related (87%), RAS pathway 
(47%), and spliceosome (28%) functional groups. In 
the KMT2A group, gene mutations were infrequent 
as previously reported [40] and the mutations occur-
ring most frequently were those in genes belonging to 

Ara-C, cytarabine; BID, twice daily; CIV, continuous intravenous infusion; DNR, daunorubicin; gm, gram; h, hour; IU, international units; kg, kilogram; m, meter; mg, 
milligram; MTD, maximum tolerated dose; n, number; n/a, not applicable; PO, orally; q12, every 12; SQ, subcutaneous; VCR, vincristine; 6-TG, 6-Thioguanine
* Reinduction therapy allowed

Table 1 (continued)

Protocol Induction Maintenance

9720
(n = 233)

Randomized to:
*DNR Days 1–3 (40 mg/m2/day)
Etoposide Days 1–3 (60 mg/m2/day)
Ara‑C Days 1–7
(100 mg/m2/day CIV)
PSC‑833 1.5gm/kg IV Days 1–3 for 2 h, fol‑

lowed by 10 mg/kg/day CIV for 72 h
VERSUS
*DNR Days 1–3 (40 mg/m2/day)
Etoposide Days 1–3 (60 mg/m2/day)
Ara‑C Days 1–7 (100 mg/m2/day CIV)
No PSC‑833

Randomized to 1 Cycle:
DNR Days 1–2 (30 mg/m2/day)
Etoposide Days 1–2 (60 mg/m2/day)
Ara‑C Days 1–5 (100 mg/m2/day CIV)
PSC‑833 Days 1–3 (1.5gm/kg IV for 2 h, fol‑

lowed by 10 mg/kg/day CIV for 72 h)
VERSUS
DNR Days 1–2 (30 mg/m2/day)
Etoposide Days 1–2 (60 mg/m2/day)
Ara‑C Days 1–5 (100 mg/m2/day CIV)
No PSC‑833 (based on initial induction 

assignment)

Randomized to:
R‑IL2 (0.9 ×  106 SQ Days 1–14, 19–28, 33–42, 

47–56, 61–70, 75–90 and 12 ×  106 Day 
15–17,29–31, 43–45, 57–59, 71–73)

VERSUS
No maintenance

10201 (n = 168) Randomized to:
*DNR Days 4–6 (60 mg/m2/day)
Ara‑C Days 4–10 (100 mg/m2/day CIV)
Oblimersen Days 1–10 (7 mg/kg/day CIV) 

VERSUS
*DNR Days 4–6 (60 mg/m2/day)
Ara‑C Days 4–10 (100 mg/m2/day CIV)
No Oblimersen

Randomized to 2 Cycles:
Ara‑C Days 4–8 (2000 mg/m2/daily)
Oblimersen Days 1–8 (7 mg/kg/day CIV)
VERSUS
Ara‑C Days 4–8 (2000 mg/m2/daily)
No Oblimersen

n/a

10502
(n = 35)

*DNR Days 1–3 (60 mg/m2/day)
Ara‑C Days 1–7 (100 mg/m2/day CIV)
Bortezomib 1.3 mg/m2 Days 1,4,8,11

2 Cycles:
Ara‑C Days 1–5 (2gm/m2/day)
Bortezomib per dose escalation Days 1,4,8,11

n/a

10801
(n = 13)

*DNR Days 1–3 (60 mg/m2/day)
Ara‑C Days 1–7 (200 mg/m2/day CIV)
Dasatinib Days 8–21 (100 mg PO Daily)

4 cycles:
Ara‑C Days 1,3,5 (3 gm/m2 q12 

hours < 60 years and 1gm/m2 q12 
hours ≥ 60 years)

Dasatinib Days 1–26 (100 mg PO daily)

Dasatinib 100 mg PO daily up to 12 months

11001
(n = 11)

*DNR Days 1–3 (60 mg/m2/day)
Ara‑C Days 1–7 (100 mg/m2/day CIV)
Sorafenib Days 1–7 (400 mg daily)

2 Cycles:
Ara‑C Days 1–5 (2 gm/m2/day)
Sorafenib Days 1–28 (400 mg PO BID)

Sorafenib 400 mg PO BID Days 1–28 up to 12 
cycles
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Fig. 1 Genetic group assignment algorithm. Patients were assigned 
to a genetic group with initial run‑through of the algorithm based on 
cytogenetic features or molecular mutational clones with VAF ≥ 0.3. 
For patients not assigned to any genetic group during the initial 
stratification, a second run‑through of the algorithm was performed 
with assignment after assessing for a mutational clone with VAF ≥ 0.2. 
CBF, Core‑Binding Factor; Complex, Complex karyotype

▸

the methylation-related (23%) functional group. Both 
IDH2m and IDH1m frequently had mutations in genes 
from spliceosome (57 and 34%, respectively), chroma-
tin remodeling (29 and 31%), kinases (25 and 46%), and 
transcription factors (29 and 21%) functional groups. The 
most common co-mutations in TP53m patients were in 
genes from the methylation-related functional group 
(24%). In the complex karyotype/TP53wt genetic group, 
most often mutated were genes from spliceosome (36%) 
and methylation-related (32%) functional groups. The 
FLT3m genetic group had high frequency of methylation-
related (59%), NPM1 (55%), transcription factors (29%) 
and spliceosome (26%) mutations. Patients in the TET2m 
or WT1m and the marker-negative groups had high fre-
quency of mutations in genes belonging to spliceosome 
(61 and 45%), transcription factors (36 and 64%), chro-
matin remodeling (50 and 46%), and RAS pathway (24 
and 36%) functional groups (Additional file 1: Table S1).

Frequencies of individual gene mutations in patients 
assigned to the genetic groups are provided in Additional 
file 1: Table S2. For better visualization of the mutational 
spectrum of each of the genetic patient groups, we cre-
ated an oncoprint depicting gene mutations found in 
each genetic group (Fig. 2). Of note, the NPM1m/FLT3-
ITD‒ genetic group had concurrently occurring muta-
tions in the TET2 (33%), IDH2 (21%), and IDH1 (21%), 
TP53 (1%) genes, and FLT3-TKD (13%). Patients in the 
IDH2m group did not harbor a concurrent IDH1 muta-
tion nor did patients in the IDH1m group harbor simul-
taneously an IDH2 mutation. The complex karyotype/
TP53wt genetic group did include a low frequency of 
TP53 mutations (n = 2), and in both patients the VAF 
of these mutations was < 0.2. The FLT3m genetic group 
had high frequency of NPM1 (55%), DNMT3A (40%) 
and TET2 (25%) mutations. The marker-negative genetic 
group included a relatively high frequency of RUNX1 
(43%), ASXL1 (25%), NRAS (21%), and U2AF1 (20%) 
mutations.

Treatment outcome based on patient genetic groups
ED occurred in 20% of all patients, most commonly in the 
TP53m (42%), KMT2A (23%), IDH1m (23%), and FLT3m 
(23%) groups. All other groups had ED rates between 17 
and 20%, except for the CBF group, which had no ED 
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(Table 4). The CR rates were above 50% in the two favora-
ble risk groups: CBF (73%), and NPM1m/FLT3-ITD‒ 
(68%) and 62% in the intermediate risk group KMT2A. 
However, in the other groups the CR rates ranged 
between 32 and 47%, except for TP53m group, in which 
CR rate was much lower at 16%. These CR rates were 
not affected by selection bias for patients surviving early 
AML treatment complications or progression and thus 
provide a historical control for new therapies in specific 
molecular/cytogenetic groups defined herein.

Concerning long-term outcomes, the median DFS was 
less than a year for all patients except for those in the 
NPM1m/FLT3-ITD‒ group, for whom median DFS was 
exactly 1 year. The 3-year DFS rates were less than 15% 
for all genetic groups but the two favorable groups of 
CBF (30%) and NPM1m/FLT3-ITD‒ (27%) that included 
some patients with long-term benefit from standard 
treatment (Table 4 and Fig. 3). Median OS was less than 
1 year in all groups other than the two favorable risk ones: 
CBF with median OS of 1.5  years and NPM1m/FLT3-
ITD‒ with median OS of 1.3 years. The 3-year OS rates 
were less than 10% in all groups except for CBF (33%), 
NPM1m/FLT3-ITD‒ (27%), and IDH2m (15%).

Discussion
Our analysis demonstrates the outcomes of classifying 
older AML patients based on a precision-based medi-
cine assignment of the LLS Beat AML Master Study 
using both targetable cytogenetic abnormalities and gene 

mutations found in dominant mutational clones, defined 
as those having VAF ≥ 0.3, or VAF ≥ 0.2 (in cases with 
no selected mutations with VAF ≥ 0.3), or FLT3-ITD 
allelic ratio of ≥ 0.05. The majority of patients (90%) were 
assigned to a genetic group as a result of the run-through 
of the algorithm based initially on either cytogenetic 
findings, FLT3-ITD allelic ratio of ≥ 0.05 or detection of 
gene mutations with a VAF ≥ 0.3, followed by a second 
run-through of VAF ≥ 0.2. Only 10% of patients were 
assigned to the marker-negative group that included 
patients with mutations in the spliceosome (mostly 
SRSF2 and U2AF1), RUNX1, ASXL1, and NRAS genes 
(though the other treatment assignment genomic groups 
could include these mutations as well). These mutations 
are currently not targetable with any available therapeu-
tic. However, as we have gained more knowledge since 
the original design of this algorithm, including poten-
tial mutations that lead to resistance in certain targeted 
therapeutics and new available therapeutics as aforemen-
tioned, other mutational genomic subgroups such as RAS 
mutated patients are being added to the algorithm and 
the reordering of the algorithm genomic subgroups (such 
as FLT3 mutations being higher up in the stratification) 
are occurring. Despite this, application of this dataset did 
not reveal any concerns in regard to our algorithm with 
inappropriate genetic assignments that would preclude 
patients from receiving curative therapy. The outcomes 
of this approach prompted inclusion of this assignment 

Table 2 Retrospective assignment of 589 patients receiving standard therapy on CALGB/Alliance trials to Beat AML genetic treatment 
groups

m, mutated; n, number; VAF, variant allele frequency; wt, wild-type

Assignment Performed concurrently Final assignment

Step 1 Step 2 Step 3

Initial assignment Initial assignment Reassignment

Cytogenetics VAF ≥ 0.3 VAF ≥ 0.2 Total number of 
patients
n (%)

Core‑binding factor 74 – – 74 (13)

NPM1m/FLT3-ITD‒ – 106 1 107 (19)

KMT2A 13 – – 13 (2)

IDH2m – 56 3 59 (10)

IDH1m – 33 2 35 (6)

TP53m – 50 – 50 (9)

Complex karyotype/TP53wt 28 – – 28 (5)

FLT3m – 96 3 99 (18)

TET2m or WT1m – 41 1 42 (7)

Marker‑negative – 66 − 10 56 (10)

Total number of assigned patients 
per column

115 448 10 563
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algorithm in the Beat AML trial (https:// www. lls. org/ 
beat- aml).

With regard to outcomes of our patients treated with 
standard therapies who were assigned to genetic groups, 
the findings were similar to what has been reported 
in older AML patients. Patients in the more favorable 
genetic groups of CBF and NPM1m/FLT3-ITD‒ fared 
best, but overall the patients had poor long-term out-
comes with standard treatment approaches [41, 42]. 
Although we are making progress with the addition of 
such agents as midostaurin [9], venetoclax [4], glasdegib 
[13, 43], and other newly approved targeted therapies to 
achieve short-term goals of improved CR rates, DFS and 
OS, these therapies remain non-curative and need to be 
built and improved upon further.

It is also of importance, with new treatment approaches 
becoming available, to understand how best to decide 
among multiple potential therapeutic options, both 
from a clinician and patient perspective. Data presented 
herein have served as the historical control for individual 
Beat AML genomic substudies statistical design at the 
initiation of this study and have served as benchmarks 
for clinical outcome improvement for particular AML 
genomic patient groups. This has allowed determination 
of clinical progress made in older AML patients and in 
specific genetic groups to advance novel therapies and 

aid in better selection of treatment. The inclusion of ED 
patients, who have typically been excluded from other 
prognostic studies, is important because this helps in 
assessing true outcomes of patients assigned to spe-
cific genetic groups. This information is also of value in 
determining if newer therapeutic options are superior to 
standard treatment and associated toxicities. Rates of ED 
observed in specific genetic groups could aid in making 
treatment decisions for patients that potentially influ-
ence quality of life, especially when deciding between 
therapies with non-curative intent. In this regard, it is 
notable that a very high-risk TP53m group had a 30-day 
ED rate of 41% that corresponds to the low induction 
success rate of 17%. These data clearly identify a distinct 
genetic group for which standard of care induction with 
7 + 3 chemotherapy lacks therapeutic benefit. Notably, 
all other groups outside of CBF AML had an ED rate of 
17% or more indicating that in the historical setting, 7 + 3 
chemotherapy treatment and potential increased risk of 
infections and other complications arising from other 
comorbid illnesses brings early risk to elderly patients. 
Adaptation of functional assessment models [44, 45] or 
other pretreatment models [46, 47] to identify patients 
at risk for ED in choosing chemotherapy approaches is 
needed. Clinical trials in elderly AML have focused pre-
dominantly on OS as the primary endpoint for analysis, 

Fig. 2 Oncoprint of co‑occurring mutations found in older acute myeloid leukemia patients assigned to genetic groups. The top row colors depict 
each genetic group as outlined in the figure. Each column represents an individual patient and each row under the top row represents a single 
gene mutation. For the single gene mutation rows, the red color indicates that a gene was found to be mutated in the patient, gray indicates 
wild‑type status of the gene, and white indicates unavailable gene mutation status. DM, double mutated

https://www.lls.org/beat-aml
https://www.lls.org/beat-aml
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particularly when considering regulatory actions [11, 
48]. Although this endpoint is of utmost importance, the 
potential impact of ED on the patient’s family well-being 
may serve to justify ED rate as another surrogate out-
come for new therapies with less morbidity than chemo-
therapy in this disease. Examination of all aspects of ED 
is a major focus of the precision medicine LLS Beat AML 
Master Study.

The oncoprint depiction of the genetic groups defined 
in our prioritization is based on observations made by 
others [3, 49, 50]. Specifically, the KMT2A and TP53m 
genetic groups have very little overlap with other com-
mon AML mutations as reported by others, suggesting 
that both 11q23/KMT2A rearrangements [40] and TP53 
mutations [3] are strong drivers of the disease. Notably, 

no (KMT2A) or little (TP53m) overlap occurred with 
prognostically favorable mutations such as NPM1 muta-
tions or with mutations in the IDH2 and IDH1 genes, for 
which there are definitive targeted therapies with proven 
benefit [6–8]. As more directed FLT3 inhibitors are now 
available, the FLT3m group is moving higher up in the 
treatment algorithm. Also discerned from this onco-
print, one can observe that NRAS, KRAS and/or PTPN11 
mutations overlap with the IDH1m, IDH2m, and FLT3m 
groups but are relatively infrequent. As targeted therapies 
directed at IDH2, IDH1, and FLT3 are available, it is nota-
ble that NRAS or PTPN11 mutations can represent pre-
treatment or acquired alterations that lead to primary or 
secondary resistance [51, 52]. As more data comes forth 
from studies with targeted therapy, it has been necessary 

Fig. 3 Kaplan–Meier curves depicting the a disease‑free survival and b overall survival of older patients with acute myeloid leukemia classified into 
genetic groups. Each genetic group is identified by color as outlined in the figure
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to re-examine prioritization of patients with NRAS and 
PTPN11 mutations and potentially those with other 
mutations, such as CBL or NF1, which activate RAS/
MAPK signaling, to include these patients as a separate 
genomic subgroup. Finally, examination of the marker-
negative group demonstrates enrichment of patients with 
RUNX1, ASXL1, and spliceosome mutations that might 
be amendable to specific targeted therapies in the future. 
Future decisions to change the algorithm for the Beat 
AML study will also be based upon the ability to identify 
relevant and best directed therapeutic options.

Limitations of this study include its retrospective 
nature, changes in practice patterns for AML therapy 
over time, and lack of measurable residual disease data 
(MRD) to correlate with outcomes. However, despite 
being treated on different Alliance protocols, outcomes 
in regard to CR, DFS, and OS are similar between 
all treatment arms of the various protocols (Fig.  4). 
Patients received intensive regimens with different 
doses of anthracycline for induction and varied consoli-
dation therapies. There was also inclusions of patients 
on CALGB 9720 and 9420 which were closed early due 
to early mortality on the investigational arms but only 
32 patients in our analysis were included in treatment 
arms with PSC-833 with 11 of these patients being 
included for early death. Another major limitation is 
the broad range of time for the study enrollment for 
patients analyzed in this dataset. Supportive care for 
AML has improved over time with inclusion of better 
anti-emetics, proton pump inhibitor drugs, antifungal 
prophylaxis, and treatment of infectious complications 
and other complications, which has led to improvement 
in outcomes for patients and may have improvement on 
ED rates than what is included in our dataset. However, 
data from the Swedish AML Registry which began col-
lecting patient in 2005 included newly diagnosed AML 
patient 60–74 with AML with NPM1m/FLT3ITD- 
treated with intensive chemotherapy had only slightly 
improved survival data compared to our findings. These 
patients had a median OS of 1.49 years compared to our 
findings of 1.33 years and 3 year OS of 35.5% in com-
parison to our finding of 27% [53]. Patients included 
in this analysis were also enrolled onto clinical trials at 
multiple centers, which may not be reflective of treat-
ment given outside of clinical trials. Also our patients 
were not transplanted in first CR, which likely con-
tributes to poor long-term outcomes; however, this is 
likely more akin to real-world data as the majority of 
older AML patients are, unfortunately, still not being 
considered for transplantation and many still remain 
untreated [54–56]. Albeit, this may hopefully improve 
with additional new less intensive treatment options 
that be more feasible to give in the community setting. 

Also, our analysis included only patients whose AML 
had both cytogenetic and mutational studies performed 
from diagnostic samples, a potential selection bias. 
Finally, our analysis lacks any MRD assessments and 
correlation to patient clinical outcomes although efforts 
to add this to Alliance/CALGB patient dataset analy-
ses are currently underway. The use of MRD assess-
ments in AML is evolving in regard to methodology 
and standardization, as well as timing and threshold of 
meaningful MRD positivity [57]. Although assessment 
of AML MRD remains complicated, current efforts are 
underway to implement multimodality MRD testing in 
clinical trials including the Beat AML study. It is hope-
ful that MRD testing can become standardized and a 
routine part of AML patient clinical care in order to 
continue to improve treatment outcomes. Despite these 
limitations to our dataset, our study represents one of 
the largest series of older AML patients with inclusion 
of all newly diagnosed patients regardless of early death 
in order to most accurately define outcomes of specific 
genetic groups relevant to the ongoing Beat AML study.

Conclusions
As more treatments in AML are explored in the upfront 
setting, this historical outcome data from patients treated 
with standard treatment on CALGB/Alliance protocols 
can aid in determining appropriate milestone achieve-
ments for potential trial design. This dataset has been 
used for Beat AML genomic Phase  1/2 substudy statisti-
cal designs to determine primary endpoints. If dramatic 
improvements with new therapeutics are seen from these 
baseline expectations, the goal is to lead to rapid drug 
approval in this older AML population. However, as out-
come data matures for newer approved treatment modal-
ities in older AML patients, new benchmarks will be set 
for therapeutic clinical trials to further improve upon the 

Fig. 4 Kaplan–Meier curves depicting the overall survival of older 
patients with acute myeloid leukemia as treated per individual CALGB 
regimen. Each study is identified by color as outlined in the figure
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recent progress that has been made in this patient popula-
tion. This is particularly relevant for small genetic groups 
where randomized trials may not be possible. To extend 
the results reported herein, we will be validating our find-
ings through analysis of a multi-institutional cohort and, 
ideally, in a series that includes other standards of care 
for elderly AML currently used in practice such as HMA 
[58] or venetoclax combined with HMA [4]. We also plan 
to assess the potential impact of co-mutations on treat-
ment outcomes and compare data from our retrospective 
patient cohort in the prospective Beat AML patient data. 
Our hope is that genetics-based approaches will result in 
continued improved outcomes in both older and younger 
AML patient populations and lead to curative therapies, 
not just short-term improvements.
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