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Comparison of size modulation and 
conventional standard automated 
perimetry with the 24-2 test 
protocol in glaucoma patients
Kazunori Hirasawa1, Nobuyuki Shoji1, Masayuki Kasahara2, Kazuhiro Matsumura2 & 
Kimiya Shimizu2

This prospective randomized study compared test results of size modulation standard automated 
perimetry (SM-SAP) performed with the Octopus 600 and conventional SAP (C-SAP) performed with 
the Humphrey Field Analyzer (HFA) in glaucoma patients. Eighty-eight eyes of 88 glaucoma patients 
underwent SM-SAP and C-SAP tests with the Octopus 600 24-2 Dynamic and HFA 24-2 SITA-Standard, 
respectively. Fovea threshold, mean defect, and square loss variance of SM-SAP were significantly 
correlated with the corresponding C-SAP indices (P < 0.001). The false-positive rate was slightly lower, 
and false-negative rate slightly higher, with SM-SAP than C-SAP (P = 0.002). Point-wise threshold 
values obtained with SM-SAP were moderately to strongly correlated with those obtained with C-SAP 
(P < 0.001). The correlation coefficients of the central zone were significantly lower than those of the 
middle to peripheral zone (P = 0.031). The size and depth of the visual field (VF) defect were smaller 
(P = 0.039) and greater (P = 0.043), respectively, on SM-SAP than on C-SAP. Although small differences 
were observed in VF sensitivity in the central zone, the defect size and depth and the reliability indices 
between SM-SAP and C-SAP, global indices of the two testing modalities were well correlated.

Conventional standard automated perimetry (SAP) has a constant stimulus size during the entire testing session. 
The test is performed by presenting stimuli produced with the projection light source in a dome-shaped bowl. By 
changing the light source and stimulus presentation plane, it is possible to obtain a wide stimulus dynamic range 
for determining visual sensitivity. Although SAP can theoretically be performed with a liquid crystal display 
(LCD) monitor, this is not usually done in the clinical setting because it is difficult to maintain a wide stimulus 
dynamic range, which is limited by the maximum intensity of the LCD monitor. On the other hand, perimetry 
measurements with a particular stimulus (e.g., pulsar perimetry1–3, motion displacement test4,5, flicker-defined 
form perimetry6,7, frequency doubling technology8,9, and high-pass resolution perimetry10–12) must be performed 
with a computer display because it is difficult to produce particular stimuli and present them in the stimulus plane 
with a projection light source.

The Octopus 600 perimeter (Haag-Streit, Koeniz, Switzerland), which is based on a thin film transistor LCD, 
was recently designed to perform both pulsar perimetry1,2 and SAP13. Because the LCD monitor has a limited 
maximum intensity, it is difficult to obtain the traditional stimulus dynamic range of SAP using only Goldmann 
stimulus size III13. To address this limitation of SAP performed with an LCD monitor, the Octopus 600 utilizes 
the novel technique of stimulus size modulation. With this technique, the stimulus size of high-intensity stimuli 
more than 10 dB is increased to maintain a stimulus intensity of 10 dB, and the size of low-intensity stimuli less 
than 24 dB is decreased to maintain an intensity of 24 dB13,14. This allows the spatial summation of the total light 
for each stimulus to remain constant across all stimuli. This technique has been previously validated in the clinical 
setting13.

Many studies have examined the variability and detection of visual field defects measured with SAP using 
Goldmann stimulus sizes I to VI15–27. These studies have demonstrated improved test–retest variability and 
higher detection sensitivity, both of which are dependent upon stimulus size15–27. However, few investigations 
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have examined size modulation SAP (SM-SAP), in which stimulus size is varied during testing13. A previous 
study13 compared conventional SAP (C-SAP) performed with the Octopus 311 and SM-SAP performed with a 
prototype pulsar perimeter, both of which have the same maximum stimulus intensity and the same strategy of 
tendency-oriented perimetry.

Although the Octopus perimeter and the Humphrey Field Analyzer (HFA) have different maximum stimu-
lus intensities and different measurement algorithms, these perimeters have been commonly used in a clinical 
setting. Therefore, it would be useful to understand the differences and similarities between SM-SAP results and 
C-SAP results obtained with the HFA (Carl Zeiss Meditec, Dublin, CA). The current study evaluated the charac-
teristics of SM-SAP testing results obtained with the Octopus 600 and compared them with C-SAP testing results 
obtained with the HFA.

Results
After two eyes of two patients were excluded due to the high false-positive (FP) rate in SM-SAP, 88 eyes of 88 
glaucoma patients were analyzed in the study. Table 1 summarizes the subject demographic and ocular data.

The correlation between the SM-SAP and C-SAP global indices (Fig. 1A–C) revealed that the SM-SAP 
and C-SAP fovea threshold measurements were moderately but significantly correlated (r =  0.655, P <  0.001). 
However, the SM-SAP mean defect and the C-SAP mean deviation parameters (r =  0.969, P <  0.001) and the 
SM-SAP square loss variance (sLV) and the C-SAP pattern standard deviation (PSD) parameters (r =  0.881, 
P <  0.001) were strongly correlated. Figure 1D–F shows the Bland–Altman analysis between the SM-SAP and 
C-SAP global indices. The mean difference between the SM-SAP and C-SAP fovea threshold was − 7.2 dB (95% 
confidence interval [CI]: − 8.1 to − 6.3 dB, P <  0.001); the SM-SAP mean defect and C-SAP mean deviation was 
0.3 dB (95% CI: − 0.3 to 0.8 dB, P =  0.306), and the SM-SAP sLV and C-SAP PSD was − 1.5 dB (95% CI: − 2.0 to 
− 1.1 dB, P <  0.001). A fixed bias was demonstrated between all indices but not between the SM-SAP mean defect 
and the C-SAP mean deviation, and a proportional bias was demonstrated between all SM-SAP and C-SAP global 
indices (P <  0.001). The upper and lower limits of agreement (LoA), best-fit line equation of proportional bias, 
and P value are shown in Fig. 1D–F.

Correlation coefficients and differences in point-wise threshold values, calculated using the SM-SAP com-
parison values and the C-SAP total deviation (TD) values, are shown in Fig. 2. Figure 3A–J show the correlation 
and difference in the individual points from each zone as scatter plots and Bland–Altman plots, respectively. All 
test points were moderately to strongly correlated between testing modalities (all P <  0.001). Correlation coef-
ficients for the central 3°, 9°, 15°, 21°, and 27° zones were 0.772, 0.833, 0.867, 0.844, and 0.823, respectively (all 
P <  0.001). The correlation coefficient for the 3° zone was significantly lower than those of the 15° (χ 2 =  21.33, 
P <  0.001) and 21° (χ 2 =  8.69, P =  0.032) zones. The correlation coefficients for the 9° (χ 2 =  29.50, P <  0.001) and 
21° (χ 2 =  17.76, P <  0.001) zones were significantly lower than that of the 15° zone. These P values were corrected 
using the Bonferroni method. When differences in sensitivity were examined at each test point, sensitivities from 
the blind spot to the central region and to the superior and inferior nasal regions tended to be approximately 1 
to 3 dB higher on SM-SAP than on C-SAP. The sensitivity in other regions tended to be approximately 1 to 3 dB 
higher on C-SAP than on SM-SAP. Figure 3F–J shows the difference in the individual points from each zone 
between SM-SAP and C-SAP as Bland–Altman plots. The mean difference between the SM-SAP and C-SAP 
thresholds in the 3° zone was 0.9 dB (95% CI: 0.06 to 1.7 dB, P =  0.035); 9° zone, 0.2 dB (95% CI: − 0.2 to 0.9 dB, 
P =  0.388); 15° zone, 0.5 dB (95% CI: − 0.8 to − 0.1 dB, P <  0.001); 21° zone, − 0.2 dB (95% CI: − 0.5 to 0.2 dB, 
P =  0.340); and 27° zone, 2.1 dB (95% CI: 1.1 to 3.1 dB P <  0.001). A fixed bias was demonstrated in all zones 
except the 9° and 21° zones, and a proportional bias was demonstrated in all zones (all P <  0.001). The upper and 
lower LoA, best-fit line equation of the proportional bias, and P values are shown in Fig. 3F–J.

Mean ± standard deviation Range

n (eyes) (right/left) 88 (44/44)

Gender (male/female) 41/47

Type of glaucoma (eyes)

  Primary open-angle glaucoma 3.9

  Normal-tension glaucoma 30

  Secondary glaucoma 12

  Pre-perimetric glaucoma 3

  Primary closed-angle glaucoma 4

  Age (years) 63.1 ±  13.0 21 to 85

  Visual acuity (logMAR) − 0.06 ±  0.11 − 0.30 to 0.30

Refraction (diopters)

  Spherical power − 2.20 ±  2.87 − 10.75 to 3.75

  Astigmatic power − 0.99 ±  0.80 − 3.00 to 0.00

  Spherical equivalent − 2.69 ±  2.89 − 11.13 to 2.75

  Intraocular pressure (mmHg) 14.8 ±  3.2 9 to 22

Table 1.   Subject demographic and ocular characteristics. log MAR, logarithm of the minimum angle of 
resolution.



www.nature.com/scientificreports/

3Scientific Reports | 6:25563 | DOI: 10.1038/srep25563

The visual field defect size and depth were examined in the 75 eyes of 75 subjects in which a pattern deviation 
value and its probability plot were calculated by C-SAP with the HFA. The visual field defect size was significantly 
3 points smaller on SM-SAP than on C-SAP (P =  0.039, paired t-test), and the visual field defect depth was signif-
icantly 2 dB greater on SM-SAP than on C-SAP (P =  0.043, paired t-test). The test duration was 18.0% shorter on 
SM-SAP than on C-SAP (P <  0.001, paired t-test).

The reliability of the two testing modalities was examined and compared. The false-negative (FN) rate was 
only examined in 84 eyes of 84 subjects in which the FN rate was calculated by C-SAP with the HFA. The FP rate 

Figure 1.  Correlations (A–C) and Bland–Altman analysis (D–F) between size modulation standard automated 
perimetry (SM-SAP) and conventional standard automated perimetry (C-SAP) global indices. Scatter plots 
show comparisons of the SM-SAP fovea threshold, mean defect, and square loss variance (sLV) and the C-SAP 
fovea threshold, mean deviation, and pattern standard deviation (PSD), respectively. The best-fit line equation, 
correlation coefficient (r), and P value are shown for each parameter comparison. The dashed line indicates the 
y =  x line. Bland–Altman plots (D–F) show the mean difference and limits of agreement (LoA) as black solid 
and dashed lines, respectively. Red solid and dashed lines show the best-fit line and its 95% confidence interval 
(CI) line of proportional bias, respectively. The sign of the SM-SAP mean defect was reversed to correspond to 
the sign of the C-SAP value.
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was slightly, but significantly, higher with C-SAP (median =  1.0%) than with SM-SAP (median =  0%, P =  0.002, 
Wilcoxon signed-rank test). However, the FN rate with SM-SAP (median =  7.1%) was significantly higher than 
with C-SAP (median =  1.5%, P <  0.001, Wilcoxon signed-rank test).

Comparisons of these parameters measured with SM-SAP and C-SAP are shown in Table 2. Representative 
test results of three glaucoma patients with early, moderate, and severe defects are shown in Fig. 4.

Discussion
We found a moderate, but significant, correlation between fovea threshold measurements made using SM-SAP 
and C-SAP. The C-SAP foveal and peripheral thresholds obtained with the HFA were measured in different 
testing sessions. In contrast, the SM-SAP foveal and peripheral thresholds obtained with the Octopus 600 were 
measured during a single testing session. Fujimoto et al.28–31 showed that the thresholds of central test points 
were significantly higher when a smaller measurement area and a smaller number of test points were used. This 
phenomenon was thought to be associated with subject attention for the area of the presented stimulus. The 
previous study reported that the variability increased as the stimulus size decreased17,22,25,26. The low-intensity 
stimuli (> 24 dB) were smaller in size on SM-SAP than on C-SAP. Therefore, smaller stimuli were presented 
during SM-SAP because nearly all subjects had a higher fovea threshold (Fig. 2). Even if the difference of 
approximately 4 dB due to the difference in maximum stimulus intensity between the HFA C-SAP and Octopus 
600 SM-SAP was considered, the SM-SAP fovea threshold was approximately 3 dB lower than that obtained 
using C-SAP.

Point-wise and zone threshold measurements made with SM-SAP were strongly correlated with those meas-
ured with C-SAP, except near the fixation point. Previous studies report that the test–retest variability in regions 
of decreased sensitivity was higher than in regions of normal sensitivity in glaucoma patients32–34. Considering 
the threshold variability in the current study, we would expect correlation coefficients at each test point and in 
each zone to generally be high. The Octopus 600 fixation target is a crosshair with a visual angle of 2.7°, but the 
HFA fixation target is a small circle with a visual angle of approximately 1.1°. Previous studies have reported that 
fixation disturbances during visual field testing increase with increasing target size35,36, in glaucoma patients37, 
and with increasing magnitude of the visual field defect38. It has also been reported that slight fixation distur-
bances of approximately 2.9° can occur during reliable visual field testing39 and that fixation disturbances of 
< 2.5° occur in up to 60% of reliable visual field tests40. Additionally, ganglion cells are most heavily concentrated 
in the macular area, and ganglion cell density decreases as eccentricity increases41. Therefore, cells in the macular 
area have more narrow cellular receptive fields and cells in the periphery have wider receptive fields. The weak 
correlation in the central region, compared with the moderate correlation in the middle to peripheral area, might 
have occurred because of fixation disturbances caused by size differences in the fixation target, ganglion cell dis-
tribution, and measured receptive field.

Regarding differences in threshold at each test point, thresholds from the blind spot to the central, superior 
nasal, and inferior nasal regions were approximately 1–3 dB higher when measured with SM-SAP than when 
measured with C-SAP. Thresholds in other regions were approximately 1–3 dB higher when measured with 
C-SAP than when measured with SM-SAP. A previous study reported that the threshold at each test point was 
approximately 1–3 dB higher with the Swedish interactive threshold algorithm (SITA)-Standard than with the 
Dynamic strategy in normal subjects42. Another study reported that local defects were deeper with the Dynamic 
strategy than with the SITA-Standard in the pre-perimetric and early stages of glaucoma, but that the reverse was 
true for patients in the moderate to severe disease stages43. The regions from the blind spot to the central, supe-
rior nasal, and inferior nasal regions are easily damaged in glaucoma patients. In the current study, these regions 
tended to have lower sensitivities on SM-SAP than on C-SAP (Fig. 2B).

The SM-SAP mean defect and sLV were strongly correlated with the corresponding C-SAP mean deviation 
and PSD, respectively. This is almost in agreement with a previous study13, but comparing our study results with 

Figure 2.  Comparison between size modulation standard automated perimetry (SM-SAP) and 
conventional standard automated perimetry (C-SAP) point-wise thresholds. Correlation coefficients (A) 
and differences between testing modalities in point-wise threshold values (B) are shown. The sign of SM-SAP 
comparison values was reversed to correspond to that of C-SAP values. The black area represents the blind spot. 
The grey area represents high SM-SAP thresholds compared with C-SAP thresholds.
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Figure 3.  Scatter plots (A–E) and Bland–Altman plots (F–J) between size modulation standard automated 
perimetry (SM-SAP) and conventional standard automated perimetry (C-SAP) threshold values in each 
measurement zone. Measurement zones were macula-centered circles with eccentricities of 3°, 9°, 15°, 21°, and 
27°, as labelled (see Fig. 5). The dashed line indicates the y =  x line. The correlation coefficient (r) and P value 
are shown for each parameter comparison. Bland–Altman plots (F to J) show the mean difference and limits of 
agreement (LoA) as black solid and dashed lines, respectively. Red solid and dashed lines show the best-fit line 
and its 95% confidence interval (CI) line of proportional bias, respectively. The sign of the SM-SAP comparison 
values was reversed to correspond to that of the C-SAP values.

SM-SAP C-SAP P value

Global indices

  Fovea threshold (dB) 27.6 ±  5.6 34.8 ±  3.1 < 0.001*

  Mean defect and deviation (dB) − 10.2 ±  6.7 − 10.4 ±  8.4 0.306*

  sLV and PSD (dB) 7.3 ±  2.4 8.9 ±  4.1 < 0.001*

  Test duration (seconds) 316.2 ±  51.7 373.0 ±  63.1 < 0.001*

  Pupil diameter (mm) 4.4 ±  1.2 4.0 ±  1.2 0.030*

Reliability indices

  Fixation loss rate (%) NA 0 (0–6.8) NA

  False-positive rate (%) 0 (0–0) 1.0 (0–3.0) 0.002†

  False-negative rate (%) 7.1 (0–17.9) 1.5 (0–6.0) < 0.001†

Visual field defect size and depth

  Defect size (points) 18.5 ±  9.4 21.8 ±  10.1 0.039*

  Defect depth (dB) − 16.4 ±  5.4 − 14.3 ±  7.2 0.043*

Table 2.   Comparison of each parameter measured with size moderation standard automated perimetry 
(SM-SAP) and conventional SAP (C-SAP). Data are expressed as mean ±  standard deviation or median (inter 
quantile range). * and † were analyzed using the paired t-test and Wilcoxon signed-rank test, respectively.  
sLV, square loss variance; PSD, pattern standard deviation; NA, not available.
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the previous study’s results is difficult because of the use of different measurement conditions. Another previous 
study also reported that the Dynamic strategy gave lower estimates of localized loss than did the SITA strat-
egy43, and we found similar results. These global indices were calculated using the deviation from age-corrected 

Figure 4.  Representative size modulation standard automated perimetry (SM-SAP) and conventional standard 
automated perimetry (C-SAP) test results of three glaucoma patients with early (A), moderate (B), and severe 
(C) visual field defects. The SM-SAP and C-SAP test results are shown in the superior and inferior hemifields, 
respectively.
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normal threshold data even though calculation details were slightly different between the HFA and Octopus 600 
perimeters. Therefore, global indices of similar values would translate into a decreased SITA standard sensitivity. 
However, regions of 0 to 4 dB on C-SAP with the HFA were measured as 0 dB on SM-SAP with the Octopus 600 
because of the difference in the maximum stimulus range. Therefore, there was a slight difference between PSD 
and sLV values in the current study.

Visual field defects were smaller and deeper on SM-SAP than on C-SAP. The normal limits of each test point 
with the SITA-Standard can be restricted to 9% to 29% at all probability levels, particularly in the middle to 
peripheral areas44. Previous studies reported that visual field defect size and depth on SITA testing were greater 
and smaller, respectively, than those detected with the conventional full threshold strategy45,46. It is possible that 
visual field defect size was affected by age-corrected normative data limit differences between the SAP devices. 
Although the C-SAP SITA-Standard strategy presents stimuli in intervals of 4–2 dB in both abnormal and normal 
regions47, the SM-SAP Dynamic strategy used in our study presents stimuli in intervals of 2 dB at high sensitivity 
and 10 dB at low sensitivity48. Therefore, the sensitivity in abnormal regions on SM-SAP tended to decrease more 
than on HFA C-SAP.

The test duration was approximately 18% shorter with SM-SAP than with C-SAP in the current study. A 
previous study reported that the C-SAP test duration with the SITA-Standard and the Dynamic strategies in nor-
mal and early glaucoma patients was the same, but that testing with the Dynamic strategy in moderate to severe 
glaucoma patients was approximately 6% to 17% shorter than with the SITA-Standard strategy43. The Dynamic 
and SITA-Standard strategies are typically time-saving strategies for presenting stimuli that account for the 
frequency-of-seeing curve49,50. The Dynamic strategy reduces the number of stimulus presentations by expanding 
the interval for depressed retinal sensitivity points with a more shallow slope of the frequency-of-seeing curve51. 
On the other hand, the SITA-Standard strategy presents stimuli in intervals of 4–2 dB for both abnormal and 
normal regions47. Differences in test duration for the SM-SAP Dynamic strategy and the C-SAP SITA-Standard 
strategy in the current study would be associated with differences in stimulus intensity interval.

Although the FP rate was higher with C-SAP than with SM-SAP, we found that the FN rate was higher with 
SM-SAP than with C-SAP. In traditional threshold perimetry, the FP and FN rates were estimated by adding extra 
stimulus presentations, called catch trials52. However, the SITA strategy uses a different method for estimating 
FP and is based on the reaction time to a 180- to 200-msec stimulus presented after the main testing stimuli47. 
The FP rate during C-SAP with the SITA-Standard strategy is calculated for all stimuli presented during the test. 
In contrast, the FP rate during SM-SAP testing with the Dynamic strategy is only based on the extra stimuli of 
catch trials. Therefore, it is thought that the FP rate of C-SAP is generally higher than that of SM-SAP. Although 
the SITA and Dynamic strategies both use only traditional catch trials to measure the FN rate, different stimulus 
presentation methods are used for each testing modality. The FN rate is measured with the SITA strategy using 
stimulus intensities that are 20 dB greater than the previously determined threshold at predetermined point loca-
tions with normal or almost normal sensitivity53. The FN rate of the Octopus 600 Dynamic algorithm used in the 
current study was measured using a maximum intensity stimulus (0 dB) at predetermined point locations with 
both normal and abnormal sensitivity. It is known that abnormal locations in glaucoma patients have a higher 
stimulus variability32–34,54. Specifically, the higher FN rate on SM-SAP was influenced by stimulus response vari-
ability in regions with abnormal sensitivity.

Octopus 600 SM-SAP presented some limitations for our study. First, there is considerable variability in the k 
value from one individual to another. Secondly, the spatial summation function is linear for some regions (Ricco’s 
Law), but the slope changes for larger targets (Piper’s Law)55. Third, the relationship between the size and lumi-
nance of the target is quite complex and varies as a function of stimulus intensity, background adaptation level, 
target size, and other parameters56. Finally, the relationship between size and intensity is not always linear57. These 
limitations should be considered in future studies.

In conclusion, SM-SAP performed with the LCD-based Octopus 600 perimeter had characteristic test results. 
The correlations between foveal measures made with C-SAP on the HFA and SM-SAP on the Octopus 600 were 
particularly weak. These parameters included fovea threshold, visual field defect characteristics (size and depth), 
and reliability indices. These characteristics of SM-SAP should be considered when evaluating SM-SAP results 
and comparing them with C-SAP results. However, these specific differences in the characteristic testing results 
likely reflect differences in device modalities rather than the effect of size moderation. Although further inves-
tigation is likely needed for threshold correlation of central areas, global indices with SM-SAP and C-SAP were 
generally highly consistent between the two perimetry methods.

Methods
This prospective randomized study was reviewed and approved by the Kitasato University Hospital Ethics 
Committee (no. B14-129). All study conduct adhered to the tenets of the Declaration of Helsinki, and all study 
subjects provided written informed consent. This study was registered in the UMIN Clinical Trials Registry 
(http://www.umin.ac.jp/) under the unique trial number UMIN000016055 (date of registration: 12/25/2014).

Study subjects.  Glaucoma patients who visited the Kitasato University Hospital Glaucoma Service between 
January and May 2015 were recruited for enrollment if they had good central fixation and reliable HFA visual 
field measurements with the SITA standard 24-2 testing protocol. The HFA visual field testing results were con-
sidered reliable if the fixation loss was < 20% and the FP rate was < 15%. The FN rate was not considered when 
determining the HFA testing reliability, as previously established54. Patients were excluded from the study if they 
had ocular disease other than glaucoma. When both eyes met all eligibility criteria, the study eye was chosen at 
random. Enrollment was set at 90 eyes from 90 subjects on the basis of the power calculations described below.

http://www.umin.ac.jp/
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Size modulation standard automated perimetry.  The Octopus 600 perimeter consists of a thin film 
transistor LCD monitor. Although conventional Octopus SAP can present stimuli to a maximum stimulus inten-
sity level of 4,000 apostilb, the Octopus 600 cannot present stimuli with intensity levels from approximately 
400 (10 dB) to 15 (24 dB) apostilb because of limitations of the LCD monitor. Therefore, the stimulus size of 
high-intensity stimuli more than 10 dB is increased to maintain a stimulus intensity of 10 dB, and the size of 
low-intensity stimuli less than 24 dB is decreased to maintain an intensity of 24 dB13,14, according to the following 
equation:

× =L A constant (1)k

where L is the stimulus luminance, A is the stimulus area, and k is the constant which defines spatial summation. 
For example, considering the maximum stimulus intensity corresponding to 0 dB with conventional Octopus SAP 
is 4,000 apostilb,

× = ×. .4000 4mm 400 A (2)2 0 83 0 83

and A is calculated as approximately 64.1 mm2. Although the k value used in Goldmann kinetic perimetry is a 
constant of 0.83, the k value in Octopus 600 SM-SAP is different for each test point. The k values for each test 
point varied from approximately 0.5 to 1.1 in a previous study for normal and glaucoma patients13. Then, a stim-
ulus size of 0 dB with a k value of 0.7 and 1.1 is calculated as approximately 138.1 mm2 (between Goldmann size 
V and VI) and 23.1 mm2 (between Golgmann size IV and V), respectively, and that of 35 dB with a k value of 0.5 
and 0.8 is calculated as approximately 0.06 mm2 (close to Goldmann size 0) and 0.18 mm2 (close to Goldmann 
size II), respectively. In addition, stimulus sizes with SM-SAP of 1 to 9 dB and 25 to 34 dB were calculated using 
equation (1) and the k value for each test point13. The background luminance, stimulus presentation time, testing 
algorithm, and test point patterns used with the Octopus 600 corresponded to those used with the Octopus 311 
and Octopus 900 perimeters. However, the Octopus 600 examination conditions differ from those of C-SAP 
performed with the HFA. The testing conditions of the Octopus 600 and HFA used in the current study are sum-
marized in Table 3. The perimeter utilizes the novel ‘size modulation’ technique for SAP, which maintains the 
spatial summation of the stimulus within a dynamic range of 0–35 dB14. Inside the Octopus 600 perimeter, the 
thin film transistor LCD monitor is placed at a distance of 30 cm from the instrument’s eyepiece. All SM-SAP 24-2 
Dynamic testing was performed on the study eye in a dark room. Before testing, the participants were required 
to have their distance refractive error corrected. This was achieved using the built-in 3.25 diopter corrective lens 
for far distance in the instrument’s eyepiece. The refractive error of subjects with a spherical error between + 4.00 
and − 8.00 diopters and a cylindrical error less than − 2.00 diopters was corrected by inserting trial lenses with 
the spherical equivalent correction into the eye piece. However, subjects with more severe spherical (higher than 
+ 4.00 and − 8.00 diopters) and cylindrical (higher than − 2.00 diopter) errors were corrected with trial frames. 
The Octopus 600 automatically monitors subject fixation with pupil tracking, but this could not be performed 
when trial frames were worn by the subject. In these cases, the examiner manually monitored subject fixation on 
the display monitor throughout the testing. The presentation ratios of FP and FN responses were configured to 
10% of the total number of stimuli presented for Octopus 600 testing reliability, which correspond with those of 
HFA C-SAP performed with the SITA-Standard protocol.

Visual field testing modality comparisons.  Main outcome measures of the current study were how 
well each global index parameter of SM-SAP and C-SAP correlated. The fovea threshold, mean deviation, and 
PSD obtained with C-SAP corresponded to fovea threshold, mean defect, and sLV obtained with SM-SAP, 
respectively53.

The point-wise threshold values, visual field defect size and depth, test duration, and reliability indices (includ-
ing FP and FN rates) of the two testing modalities were also compared. As in previous studies44,58, the point-wise 
threshold values were examined within the central 3°, 9°, 15°, 21°, and 27° zones (Fig. 5). The comparison val-
ues obtained with SM-SAP and the TD value obtained with C-SAP were used to compare point-wise and zone 
threshold values. The Octopus 600 perimeter report displays a ‘+ ’ when the threshold for that point is within 

SM-SAP
Octopus 600

C-SAP
HFA

Background luminance 31.4 apostilb 31.4 apostilb

Maximum stimulus intensity 417 apostilb 10,000 apostilb

Stimulus presentation time 0.1 seconds 0.2 seconds

Stimulus size (visual angle)
Goldmann I 

to VI Goldmann III

(0.11° to 3.44°) (0.43°)

Test point pattern 24-2 (6° interval) 24-2 (6° interval)

Algorithm Dynamic SITA-Standard

Fovea threshold On On

Table 3.   Examination conditions of size modulation standard automated perimetry (SM-SAP) with the 
Octopus 600 and conventional standard automated perimetry (C-SAP) with the Humphrey field analyzer 
(HFA). SITA, Swedish interactive threshold algorithm.
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age-corrected normal limits. Comparison values were then calculated using raw data exported by data manage-
ment software (EyeSuite; Haag-Streit, Koeniz, Switzerland). Defect sizes were compared using the total number 
of abnormal points, with an abnormality defined as a P value of < 5% on the corrected probability plots obtained 
with SM-SAP and pattern deviation probability plots obtained with C-SAP. Defect depths were compared using 
the average of the SM-SAP comparison value and the C-SAP TD value for abnormal points identified in corrected 
probability plots and pattern deviation plots, as was done previously45,46. For the point-wise threshold value, each 
test point obtained from the left eye was evaluated as a mirror image so that data from both the left and right 
eyes could be used together in the analyses. The two test points near the Mariotte blind spot (X, Y =  − 15°, 3° and 
− 15°, − 3°) were excluded from the analyses.

To match HFA reliability criteria, Octopus 600 SM-SAP data were excluded from the analyses if the examiner 
detected fixation loss on the display or if the FP rate was >15%. The FN rate was not considered in determin-
ing SM-SAP testing reliability because the HFA does not calculate FN or pattern deviation for subjects with 
advanced-stage glaucoma54. Therefore, the FN rate, defect size, and defect depth could only be analyzed in sub-
jects for which the HFA calculated these parameters. Decreased sensitivity from age-corrected normative values 
on SM-SAP performed with the Octopus 600 is represented as a positive value on the report. Therefore, the sign 
of the SM-SAP sensitivity values was reversed so that the data could be compared to the TD and mean deviation 
obtained with HFA C-SAP.

Statistical analyses.  Octopus SM-SAP data and HFA C-SAP data were exported as ‘.csv’ files using EyeSuite 
(Haag-Streit, Koeniz, Switzerland) and HfaFiles (Beeline, Tokyo, Japan) data management software, respectively. 
All data were analyzed using R statistical software59 and G*Power3 (version 3.1.7, Franz Faul, Universität Kiel, 
Germany). Data normality was evaluated using the Shapiro–Wilk test. Pearson product–moment correlation 
coefficients (r) and Bland–Altman analysis were used to compare SM-SAP parameters with the corresponding 
C-SAP parameters. Additionally, the equivalence of a correlation coefficient was analyzed using a χ 2 test by 
transforming the correlation coefficients into z-values. Paired t-tests or Wilcoxon signed-rank tests were used to 
compare differences between two dependent means. Statistical significance was defined as P <  0.05.

Using the point biserial model correlation, the effect size, α  error, and power (1-β  error) were determined 
to be 0.30, 0.05, and 0.80, respectively, using a two-tailed test. The required sample size was determined to be 82 
eyes. Using the difference of two dependent means (matched pairs), the effect size, α  error, and power (1-β  error) 
were determined to be 0.50, 0.05, and 0.80, respectively, using a two-tailed test. The required sample size was 
determined to be 34 eyes.
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