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The bacteriophage u29 generates large forces to compact its double-stranded DNA genome into a protein capsid by
means of a portal motor complex. Several mechanical models for the generation of these high forces by the motor
complex predict coupling of DNA translocation to rotation of the head-tail connector dodecamer. Putative connector
rotation is investigated here by combining the methods of single-molecule force spectroscopy with polarization-
sensitive single-molecule fluorescence. In our experiment, we observe motor function in several packaging complexes
in parallel using video microscopy of bead position in a magnetic trap. At the same time, we follow the orientation of
single fluorophores attached to the portal motor connector. From our data, we can exclude connector rotation with
greater than 99% probability and therefore answer a long-standing mechanistic question.
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Introduction

As part of its viral infection cycle, the Bacillus subtilis
bacteriophage u29 packages its double-stranded DNA ge-
nome into a preformed capsid shell, or prohead, by means of
a powerful molecular motor [1,2]. The DNA-packaging motor
is situated at a unique 5-fold vertex of the prohead and is a
complex assembly of multiple components. At the core of the
motor is the dodecameric head-tail connector, gene product
10 (gp10). Associated with the connector is a ring of RNA
molecules (prohead RNA or pRNA), which is required for
packaging. A ring of ATPases (gp16) interacts with the pRNA
to complete the packaging machinery. gp16 belongs to the
Her A, FtsK superfamily of ATPases [3]. Hydrolysis of ATP
powers the motor and drives viral DNA into the prohead.

While numerous biochemical, structural, biophysical, and
theoretical studies have elucidated many details of the
packaging process [1,2,4–15], a complete mechanistic under-
standing of how the components of the portal motor force
the DNA into the capsid has not been presented. In
particular, many theoretical models for the function of the
connector have been proposed [5,7,16–18]. Most of these
models include a rotation, either passive or active, of the
connector with respect to the prohead shell—an idea first
introduced by Hendrix in 1978 [16]. Recently, a study of DNA
packaging in T4, using cross-linking of bulky domains to the
connector that could interfere with connector rotation,
provided indirect evidence that the connector of T4 does
not rotate during packaging [19]. However, no direct
structural, biochemical, or biophysical experiments have
been published that address the rotation hypothesis. Here,
we directly test this hypothesis using single-molecule fluo-

rescence polarization (SMFP) spectroscopy in combination
with single-molecule force spectroscopy.
Single-molecule force spectroscopy has proven to be a

powerful method for studying the movement of motor
proteins. In recent years, a wealth of different systems has
been studied, such as actin- and microtubule-based molecular
motors [20,21]; motors that move along DNA, like DNA
polymerase [22], RNA polymerase [23–26], exonuclease
[27,28], and DNA pumps [2,29]; polymerization motors [30];
as well as motors that move pili [31] or whole bacteria [32].
Here, we use a magnetic tweezers set-up to observe the
packaging of many DNA-packaging complexes simultane-
ously.
Single-molecule fluorescence spectroscopy has been used

recently to study conformational changes of single-motor
complexes [33–39]. In particular, detection of changes in the
polarization of emission by a single-dye molecule is well
suited to investigate conformational changes involving
rotation events [33,34,37]. We utilize this method to inves-
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tigate the putative rotation of the connector protein with
respect to the prohead shell.

To test the hypothesis of connector rotation, we track
orthogonal polarization components of fluorescent light
emitted by single-dye molecules attached to the connector.
Several issues must be overcome to ensure experimental
fidelity: (i) DNA packaging by the labeled motor complex
must be observed simultaneously with the fluorescence
detection; (ii) dye labeling must be specific to the connector;
(iii) the dye molecule must stay at a fixed angle relative to the
connector; and (iv) the prohead itself must be immobilized
without possibility of rotation. In order to fulfill all these
requirements, we designed and implemented a combined
SMFP and magnetic tweezers packaging assay as described
below. The results of our experiment allow us to rule out
connector rotation during packaging with more than 99%
probability.

Results

Single-Molecule Packaging
Figure 1 shows a schematic of the experimental geometry.

Packaging is initiated in bulk as described previously [2], and
complexes stalled with non-hydrolyzable ATP analog (ATP-
cS) and enriched for active particles are bound to strepta-
vidin-coated superparamagnetic beads via a biotin modifica-
tion to the distal end of the DNA (see Materials and Methods
for details). Antibodies against the capsid protein gp8 are
used to anchor the stalled complexes via the prohead shell to
a quartz slide. The experiment is observed through a glass
cover slip, which together with the quartz slide forms a fluid
chamber, using a 1.2-numerical aperture (NA) water-immer-
sion objective. Magnets placed on either side of the objective
pull the beads away from the quartz surface, stretching the
unpackaged DNA under a force of about 0.1 pN. We monitor
the beads via video microscopy and can calculate the length
of the DNA tether through either Brownian motion [40] or
change of focus of the bead image [41]. Upon exchange of
buffers to remove ATP-cS and reintroduce ATP, the

complexes resume packaging as confirmed by gradual
reduction of tether length. The packaging is monotonic and
ATP-dependent. In a typical experiment, about 80% of
stalled, tethered complexes package to completion at rates
consistent with previous bulk and single-molecule measure-
ments [8].

Single-Molecule Labeling
Conformational changes that occur during the enzymatic

cycle of a motor can be efficiently probed by attaching dye
molecules as local reporters to specific proteins of a large
multi-subunit complex. Single-dye molecules are sufficiently
small so as not to interfere sterically with biological activity in
most cases. The simplest way to attach a dye molecule as a
reporter to a specific site of a protein is to make use of the
high specificity of a cysteine-maleimide reaction. To this end,
one needs to make point mutations in order to remove native
cysteines, which could be inadvertently labeled, and intro-
duce new cysteines (one at a time) to desired exposed
locations. A dye molecule with a reactive maleimide group
can then be covalently attached to that site.
For our experiments, we replaced the two native cysteines

of the connector with serines by site-directed mutagenesis
and introduced new cysteines at various positions at the
inside and outside of the connector. Figure 2 shows the X-ray
crystallographic structure of the connector highlighting the
position of the amino acids that were mutated to cysteines
(see Materials and Methods). Since current techniques are
unable to assemble the free connector protein gp10 into a
prohead in vitro, it was necessary to label the connector in
the presence of the complete capsid, including capsid (gp8),
head fiber (gp8.5), and scaffold proteins (gp7) (none of which
contain cysteines). Figure 3A shows, as an example, the
fluorescence image of a denaturing gel (SDS-PAGE) of the
proheads with a cysteine at amino acid 170 (170C) of the
connector, labeled with a Cy3-maleimide. About 80% of the
total fluorescence signal is in the single band of the
connector, while capsid protein (which makes up more than
95% of the total mass), head fibers, scaffolding protein, and
residual contaminants of the Escherichia coli particle expres-
sion system show only very weak Cy3 fluorescence. Further-
more, the labeled proheads package DNA in vitro with the
same efficiency as unlabeled particles, as can be seen by bulk
packaging experiments (see Figure 3B and Materials and
Methods).
Having established a specific labeling scheme in a complex

that is competent for in vitro packaging, we also need to
ensure that the dye molecule can act as a reporter for a
rotational movement of the connector. Several criteria must
be satisfied: the dye must be bright enough to allow
integration times less than one rotational period; the time
before photobleaching of the dye molecule must be long
enough to observe several rotations; the dye must be attached
at angles relative to the connector axis and relative to the
objective optical axis such that changes in the dye dipole
moment can be seen with our instrument; and the dye
molecule must be attached rigidly. To address the latter
concern, we measured the fluorescence anisotropy of an
ensemble of labeled proheads. The resulting anisotropies of
the labeled mutant particles were typically r ;0.3. The
common interpretation is that the dye can freely rotate
within a cone that is defined by steric limitations; in this case,

Author Summary

The life cycles of many viruses include a self-assembly stage in which
a powerful molecular motor packs the DNA genome into the virus’s
preformed shell (the capsid). Biochemical and biophysical studies
have identified essential components of the packaging machinery
and measured various characteristics of the packaging process,
while crystallography and electron microscopy have provided
snapshots of viral structure before and after packaging. In
bacteriophage u29 assembly, the DNA passes into the shell through
a channel formed by a structure called the connector. Structurally
motivated models over the past 30 years have coupled DNA
movement to rotation of the connector relative to the capsid. We
describe a direct test of the connector rotation hypothesis,
combining magnetic single-molecule manipulation techniques and
single-molecule fluorescence spectroscopy. In our experiments, we
use a single-dye molecule attached specifically to the connector as a
reporter for its orientation and simultaneously observe the trans-
location of a magnetic bead attached to the DNA that is being
packaged. From our data, we can exclude connector rotation with
greater than 99% probability and therefore answer a long-standing
mechanistic question.
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the measured anisotropy corresponds to a cone half-angle of
around 258. However, the bulk anisotropy measurements only
test the freedom of the dye molecules to reorient on the time
scale of the fluorescence lifetime (a few nanoseconds). In
order to measure the time evolution of the orientation of a
connector monomer (a few seconds) and to probe the time
before photobleaching of the dye, as well as its brightness and
orientation, we had to perform single-molecule fluorescence
experiments.

Single-Molecule Fluorescence
The long-term rotational rigidity of the dye, the rigidity of

immobilization of the packaging prohead complexes, and the
suitability of the dye orientation relative to the rotation axis
can all be studied in single-molecule experiments [42]. To this

end, we measured the polarization of the emitted fluores-
cence from proheads labeled with single-dye molecules. The
labeled, stalled prohead complexes are attached to the
surface of the micro-fluidic chamber (see Materials and
Methods) and illuminated in prism-type total internal
reflection geometry, with a green laser (k ¼ 532 nm). A
schematic of the experimental setup is shown in Figure 4 (see
also Materials and Methods). The fluorescence signal is
collected by the objective and spatially separated into two
perpendicular polarization components that are simultane-
ously imaged on a charge-coupled device camera. An overlay
of the two polarization images yields a time-dependent
fluorescence signal for each fluorophore in two orthogonal
polarizations, thus allowing us to track the changes in relative
orientation of a single dye in real time.

u29 packaging complexes stalled by incubation with ATP-
cS and therefore incapable of enzymatically driven rotation
were used to assess the dye suitability. Figure 5 shows the
fluorescence signal of a single fluorophore attached to a
stalled complex, with the excitation polarization being
rotated between the two orthogonal directions, henceforth
called horizontal and vertical, with a frequency of 0.7 Hz (see
Figure 5 for details). Fluorescence signals were integrated for
75 ms, and a typical time before photobleaching of the dye
molecule was 10 s. The measured intensities in the two
emission channels (perpendicular polarizations) are shown in
black and red. The change in excitation polarization can be
seen through an oscillation of the intensity in each channel.
We observed a correlated signal (which is a very clear
indication for a stable orientation of the dye) in more than
50% of the test experiments. Furthermore, it is important to
note that the average signal intensity in the two channels
remains almost constant over the lifetime of the dye, which
shows that the dye keeps a stable orientation on timescales
larger than the integration time. In contrast, a free diffusive
rotation of the dye on the timescale of the integration time
would lead to anti-correlation of the vertical and horizontal
fluorescence signals. Anti-correlation (and therefore free
rotation of the dye molecule) is likely caused by imperfections
in the surface attachment of the stalled complexes. Finally,
the fluorescence disappears in a single step at around time t¼
22 s, indicating the presence of a single dye that was
photobleached. These experiments (and an additional control
discussed in Text S1), demonstrate that the polarization of
the emitted fluorescence is an accurate reporter of the
position of the connector protein, and that our instrument is
indeed capable of detecting the changes in the fluorescence
polarization, and hence the connector orientation, due to
rotation on the single-fluorophore level. Constrained by the
properties of single dyes and the camera, we can measure
connector rotation rates from about 0.1–2.5 Hz, which
corresponds to actual signal frequencies of 0.2–5 Hz due to
the fact that the dipole emission has a 2-fold rotational
symmetry. Current models for rotation predict a frequency
within our detection bandwidth.
Simpson et al. [5] have proposed a model for connector

rotation based on the symmetry of the capsid and the
connector. The connector is a homododecamer that sits at
the 5-fold portal vertex of the icosahedral capsid. This 12/5
symmetry mismatch dictates that the relative alignment
between connector and capsid is recapitulated with every
128-rotation between the two structures. Furthermore, in

Figure 1. Schematic of the Experimental Geometry (Not to Scale)

Stalled-packaging complexes are attached to the surface of the flow-
chamber via biotinylated antibodies to the prohead major capsid
protein, gp8. The dye molecule, attached to the connector, is excited via
an evanescent wave using total internal reflection. The biotinylated free
end of the DNA is attached to streptavidin-coated superparamagnetic
beads that are pulled away from the fluorescence excitation by a
magnetic field gradient that is created by a pair of magnets next to the
objective. The magnetic beads are illuminated for video microscopy
using a red LED; both the signals for bright-field and fluorescence images
are collected by a high NA microscope objective.
doi:10.1371/journal.pbio.0050059.g001
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vitro packaging experiments have measured the DNA-pack-
aging rate at saturating ATP to be ;100 bp/s [2], and
biochemical studies have shown that the step-size of the
motor is 2 bp per ATP [8,43]. Given these figures, this rotation
hypothesis predicts a rotation frequency of 1.65 Hz. Such
rotation would result in a frequency of 3.3 Hz for the
measured fluorescence signal in our experiment. Alterna-
tively, if the connector were to track the helicity of the DNA
[16], the rotation would be 368 per basepair and the resulting
signal frequency would be ;20 Hz. In our experiments, the
packaging velocity was reduced 2- to 4-fold by simply
reducing the ATP concentration [8] in order to reach a
signal frequency below 5 Hz, which is within our exper-
imental time resolution.

For actual packaging experiments, we illuminated the dye
with homogeneously polarized light by time-sharing two

different excitation polarizations. The emitted fluorescence
was then detected in two orthogonal detection channels (see
Materials and Methods for details). If the dye were to rotate in
the plane parallel to the chamber surface around the DNA
being packaged, the intensity of horizontally polarized light
would oscillate according to a sine-squared function, while
the vertically polarized intensity would oscillate in the same
manner with a phase shift of 908. The two channels, therefore,
would show an anti-correlated modulation of the fluores-
cence intensity. (If the rotation axis is not perpendicular to
the chamber surface, other phase shifts might be observed.
We performed extensive simulations that suggested various
limitations to our detection ability, and these are discussed
below.)
Figure 6 shows typical examples of the single-molecule

fluorescence signal during DNA packaging by the u29 motor
complex. Simultaneously, packaging activity is observed using
a magnetic bead attached to the free end of the viral DNA.
The red and black time traces show the fluorescence intensity
detected in the two perpendicular polarization directions—
horizontal and vertical, respectively. Figure 6A shows the
signal for the mutant 170C. At t ¼ 0.5 s, the signal of two
single fluorophores can be seen. The first fluorophore
bleaches after about 4 s, the second after about 19 s. This
multi-step bleaching demonstrates our ability to quantify the
number of dyes observed, and in rotation experiments only
single-fluorophore traces were analyzed. The ratio of the
intensities in the black (vertical) and red (horizontal) channel
indicates that the first fluorophore is aligned almost
horizontally, while the second fluorophore is at an angle of
about 458 in between the two polarization directions. After
about 100 s, scattered light from the magnetic bead, which is
attached to the free end of the DNA, becomes visible in the
trace. As the prohead continues packaging the DNA, the bead
is pulled further into the evanescent field of the excitation by
the green laser until it touches the surface at about t¼ 165 s.
The packaging, assuming an approximately 10-kb tether, was
therefore about 60 bp/s, consistent with bulk and optical
tweezers measurements at this ATP concentration. It should
be noted that we did not observe beads that were slowly
pulled toward the packaging complexes in control experi-
ments without ATP. Therefore, this behavior can be, without
doubt, identified with the ATP-dependent DNA packaging of
the motor complex. The center of the bead and the center of
the initial single-dye fluorescence signal are within one pixel
from each other, demonstrating the colocalization between
the fluorophore and the packaging complex. By considering
the density of fluorescent spots on the surface when using
highly overlabeled proheads, we estimate that over 98% of
such colocalized events are due to a tethered bead and dye
molecule attached to the same packaging prohead (see Text
S1 for details). We have recorded more than 50 of these single
dye/bead colocalized traces from six different mutants (see
Text S1 for a complete list).
The data were analyzed in various ways. Details are given in

Text S1; in short: First we used a normalized sliding
correlation function that measures the correlation of the
two perpendicular signals over a window of variable size. If
the motor rotated during packaging, our simulations (includ-
ing noise) suggest that one out of four traces should give an
average correlation coefficient less than �0.3 for many
seconds, assuming a random dye orientation. We never

Figure 2. Connector Structure with Position of Dye Labels

A schematic of the structure of the connector, based on the crystal
structure by Simpson et al. [5] is shown. The positions of the residues
that were mutated to cysteines and investigated with single-molecule
fluorescence are indicated.
doi:10.1371/journal.pbio.0050059.g002
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observed such correlation coefficients for an extended period
of time (several seconds) in any of the data collected (Text
S1). Second, we checked for periodicities in the channels by
looking at Fourier transforms and cross-correlations. Our
simulations predict that motor rotation generates a perio-
dicity in more than 90% of the traces in the accessible
frequency range, assuming random orientation of the dye
molecule relative to the axis of rotation and random
orientation of this rotation axis with respect to the optical
axis. We did not observe this periodicity in a single trace.

Discussion

We have studied a possible rotation of the bacteriophage
u29 portal motor protein with respect to the capsid on the
single-molecule level during DNA packaging. With six differ-
ent connector mutants, we did not observe a single trace
resembling a signal expected for connector rotation. These
results permit us to rule out with very high probability (see
below) the compressive-ratchet model for connector rotation
proposed by Simpson et al. [5] that involves a rotation by 68

per basepair. At the experimental ATP concentration of 25–
50 lM, this rotation would lead to a rotation frequency in the
fluorescence signal of about 1–2 Hz, which is easily detectable
with our instrument. Similarly, a rotation model in which the
DNA is wrapped around the external surface of the
connector, with rotation providing an indirect translocating
force [1,44], would generate a rotation rate of 38 per basepair,
also within the detection range of this experiment. A rotation
rate below our detection limit is very unlikely, as a frequency
of 0.1 Hz (our lower detection limit) would already
correspond to as few as 0.68 per basepair—which would not
fit any current model for rotation. On the other hand, we
would be capable of observing a rotation of the connector if
it were to follow the DNA double helix pitch in a nut and bolt
fashion (10.5 bp per 3608), which would yield a rotation
frequency in the fluorescence signal of 5 Hz at 25 lM ATP.
While we can rule out complete rotation of the connector
relative to the shell, we cannot rule out partial rotation over a
small angle followed by return to the original position. In
order to detect such transient rotation that would be
consistent with models of connector flexure, polarization
sensitive fluorescence correlation spectroscopy experiments
would have to be performed.
There remains a small uncertainty about packaging motor

rotation due to the unknown orientation of the dye molecule
with respect to the putative rotation axis of the connector
and due to the lack of absolute labeling specificity.
Simulations of dye emission (unpublished data) show that
there are orientations of the dye where neither a correlated
nor an anti-correlated signal can be observed, even if the
connector is rotating. Given the random orientation of the
rotation axis with respect to the substrate and of the dye axis
with respect to the rotation axis, this situation should happen
in about one out of ten traces for the signal levels shown.
Here, we reduced the likelihood of an unfavorable orienta-
tion of the dye molecule with respect to the putative rotation
axis by investigating six different mutants. We cannot rule
out that all mutants result in unfavorable dye molecule
orientations, although we consider this possibility highly
unlikely.
Considering the labeling specificity, there is currently no

Figure 3. Dye Labeling and DNA Packaging of u29 Proheads

(A) SDS-PAGE of 170C-connector-mutant proheads. Protein stain of
proheads shows the structural components gp8 (capsid), gp8.5 (fiber),
gp10 (connector), and gp7 (scaffold) in lane (a). Fluorescence scan of the
gel showing labeled proheads with various amounts of dye per gp10
monomer used in labeling reaction: 1 dye per gp10, lane (b); 0.5 dyes per
gp10, lane (c); 0.25 dyes per gp10, lane (d); 0.125 dyes per gp10, lane (e);
0.0625 dyes per gp10, lane (f); and no dye, lane (g). The bands in the
fluorescence scan with no match in the protein stain originate from
highly reactive but quantitatively minor E. coli proteins.
(B) DNA packaging tested by nuclease (EcoRI) protection assay using the
labeled proheads from (A). Lane (a) shows input DNA-gp3; lane (b) shows
a negative (no ATP) control. Packaged DNA is protected from nuclease
digestion. Packaging activity is unaffected by dye labeling when
compared to a 193C packaging control, lane (c). (B) Shows labeled
proheads from (A), ranging from 1 dye per gp10, lane (d); 0.5 dyes per
gp10, lane (e); through to no dye, lane (i).
doi:10.1371/journal.pbio.0050059.g003
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method to separate the connector protein (gp10) from the
capsid protein (gp8) and re-assemble them again. Therefore,
we have to label the connector in intact prohead particles,
which might allow some dyes to attach to the nonrotating
capsid. However, the fact that the capsid does not contain
cysteines allowed us to achieve a specificity of more than 80%
of dye on the connector of the 170C as observed on
denaturing (SDS-PAGE) gels (Figure 3). We can also rule out
that our selection of actively packaging complexes leads to a
selection of nonlabeled complexes, since we have shown that
labeling does not affect packaging efficiency or speed (Figure
3B and unpublished data). As a result, about four out of five
of the observed dyes can be expected to be attached to the
connector.

While no rotation of the connector was observed exper-
imentally, does that mean that the connector does not rotate?
In order to answer this question, we have performed a
mathematical analysis of the remaining uncertainties. This
analysis is described in great detail in Text S1. In brief, if one
includes the uncertainty of unfavorable orientation, colocal-
ization, labeling specificity, and rigidity of attachment, one
can rule out connector rotation with more than 99%
probability.

In our experimental design, we were able to eliminate
several limitations of previous efforts to combine single-
molecule fluorescence and magnetic tweezers [45]. Magnetic
beads scatter a great deal of light and are therefore not
compatible with most single-molecule fluorescence experi-
ments. However, as demonstrated by our results, if one uses
highly localized excitation fields, like an exponentially
decaying fluorescence excitation used here, they can be
combined with single-molecule fluorescence. For a processive
motor like the bacteriophage u29 packaging complex, the
disadvantage of using spatially separated trapping and
fluorescence detection can be overcome by the colocalization
of single-molecule fluorescence and bead fluorescence after
the bead has been pulled close to the surface. Our experi-
ments have shown that beads kept at a distance of larger than
;1 lm do not introduce a significant scattered signal at the
Cy3 fluorescence wavelength. They do block part of the
emitted fluorescence light, but for tethers longer than 1 lm

and bead sizes of 1 lm, the detected dye fluorescence is
calculated to decrease by less than 10%. Another advantage
of this setup is the possibility of parallel observation. In some
preparations, we could observe the packaging of more than
five complexes simultaneously.
In previous single-molecule fluorescence studies on bio-

logical systems, the fluorescence signal itself was the only
evidence of biologically relevant activity. Therefore, there
had to be a characteristic and expected feature in the single-
molecule fluorescence signal and sufficient statistics to
confirm that the biological system is the cause for the
observed signal. Obtaining these statistics can necessitate the
observation of tens of thousands of fluorophores [33]. Here,
we have presented a method that overcomes this problem. We
can select for fluorophores that are attached to independ-
ently monitored active biological systems and observe their
single-molecule fluorescence. In the present application, we
can colocalize a fluorophore with a translocated bead. This
leads to a 98% confidence that the observed fluorescence
signal originates from a packaging prohead. The setup,
therefore, opens exciting opportunities for the study of a
number of different systems, such as RNA polymerase
transcription initiation or elongation complexes, ribosomes,
spliceosomes, or as shown here, nucleic acid translocation or
packaging complexes in real time and with high resolution.
In conclusion, we were able to test the connector rotation

hypothesis, a long-standing prediction of several DNA pack-
aging models. Our single-molecule experiments exclude with
very high probability (more than 99%) the predominant
model that the connector rotates with respect to the capsid.
Having established that the connector does not rotate during
packaging, it is important to ask how DNA is driven into the
capsid. A model consistent with all experimental data was

Figure 5. Fluorescence Polarization Studies of Dye-Labeled, Stalled-

Packaging Complexes

Dye-labeled, stalled-packaging complexes were attached to the surface
of a flow chamber and excited using the total internal reflection
microscope. The excitation polarization was rotated between s- and p-
polarization with a frequency of 0.7 Hz. The emitted fluorescence was
separated into s- and p-polarization, respectively, and simultaneously
detected (black and red). The dye bleached after 22 s. The integration
time per data point was 75 ms. a.u., arbitrary units.
doi:10.1371/journal.pbio.0050059.g005

Figure 4. Schematic of the Experimental Setup

Combined SMFP and magnetic tweezers setup. M, mirror; P, pinhole; k/2,
k/2 plate; PBS, polarizing beam splitter; EOM, electro optical modulator;
S, shutter; F, filter; Pol, polarizer; DC, dichroic mirror. Dashed components
can be removed and are solely used for alignment purpose.
doi:10.1371/journal.pbio.0050059.g004
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Figure 6. Fluorescence Signal from Packaging Complexes

The graphs show the fluorescence intensity of vertical (black) and horizontal (red) polarization detected simultaneously. One example for each of the six
investigated mutants is shown. The data were recorded with an integration time of 75 ms and three-points smoothing was applied. The camera
background (closed shutter) was subtracted. The signal was normalized using the fluorescence intensity of the bead after packaging was completed.
The traces are vertically shifted for clarity. The inset shows a zoom of the data. Here, the unfiltered data is displayed (scatter) together with the three-
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proposed recently by Chemla et al. [8]. In this model, ATP
binding, hydrolysis, and release of products induce conforma-
tional changes in the ATPases that are directly involved in the
translocation of the DNA [8]. Specifically, the translocation
step of the DNA is triggered by, or performed by, the ring of
ATPases via a conformational change that follows release of
phosphate after ATP hydrolysis [8]. Here, we add to this
model the idea that the connector could function as a valve to
prevent DNA from leaking out. The spring-like shape of the
connector suggests, indeed, that through compression and
expansion, the connector may act as a ‘‘Chinese finger trap’’
(George Oster, personal communication) allowing the pas-
sage of the DNA in one direction during packaging but
preventing its exit in the reverse. A complete understanding
of the coupling that occurs between the ATPase, the pRNA,
and the connector substructures is needed to refine our
picture of the molecular mechanism of this powerful motor.
Finally, the possibility that translocation could be driven by a
(nonrotating) compression/extension ratchet mechanism is
an intriguing idea, but one for which there is no direct
experimental evidence to date and that is distinct from the
mode of action established for certain AAAþ-related
ATPases.

Materials and Methods

Surface preparation. For all experiments, we used quartz slides
(Finkenbeiner Incorporated, http://www.finkenbeiner.com) cleaned in
piranha at 60 8C overnight, rinsed with purified water (Barnstead, E-
pure), sonicated in 2% Hellmanex (Hellma, http://www.hellma.com),
rinsed again, sonicated, and stored in pure water. Slides were blown
dry with nitrogen immediately before being placed in 1 ml vectabond
(Vector Laboratories, http://www.vectorlabs.com) and 100 ml acetone
for 5–10 min. The slides were then washed in 100 ml water, slowly
pulled out of the water bath such that no water remained on the
hydrophobic surface, and placed in a wet box.

100 ll of a mixture of 3 mg Biotin-PEG-NHS (Mw3400, Nektar
Therapeutics, http://nektar.com), 80 mg mPEG-SPA (Mw5000, Nektar
Therapeutics), and 550 ll 0.1 M bicarbonate buffer was then placed
on each slide and kept in the dark for 3 h. Afterward, the slides were
rinsed thoroughly with water, dried with nitrogen, and assembled
into a flow chamber by placing a Nescofilm gasket in between the
quartz slide and a cover slip and heating for 3 min at 100 8C.

The assembled chamber was then rinsed with 1 ml phosphate-
buffered saline and incubated with 0.2 mg/ml streptavidin for about
20 min. After being rinsed again with phosphate-buffered saline and
incubated with biotinylated antibodies against the capsid protein,
gp8, (0.1 mg/ml) for 25 min, the chamber was rinsed with 1 ml 0.53
TMS (25 mM Tris-HCl, 50 mM NaCl, 5 mM MgCl2) and then with 250
ll of buffer XS (800 ll of 0.53 TMS, 10 lM ATP, 10 lM ATP-cS, 0.2
mg/ml BSA, 2 mg/ml glucose, 1% w/v beta-mercaptoethanol, 0.02 mg/
ml catalase, 0.1 mg/ml glucose oxidase, and 0.8 ll of RNase inhibitor
(SuperaseIn, Ambion, http://www.ambion.com).

Protein preparation, mutation, and labeling. With the exception of
prohead particles, components for the u29 in vitro packaging system
(DNA-gp3, gp16, 120-base pRNA) were produced as previously
described [46,47].

Prohead particles were produced in E. coli by overexpression of
prohead structural proteins in HMS(DE3)pAR 7-8-8.5-9-10 [48]. Two
wild-type cysteines (C76 and C265) in the u29 connector, gp10, were
replaced by serines using standard site-directed mutagenesis to
produce a cysteine-free clone, and individual amino acids in gp10
were replaced with cysteines to produce a library of single-cysteine
mutants. Particles were produced by induction of mid-log cultures
grown in LB media with 0.5 mM IPTG for 2 h. Cells were pelleted and

re-suspended in a lysis buffer containing 50 mM Tris HCl (pH 8.0), 20
mM NaCl, 2 mM EDTA, 2 mM DTT, and 10 mg/ml lysozyme. After a
20-min incubation to produce sphaeroplasts, MgCl2 was added to 4
mM final concentration and DNase was added to a final concen-
tration of 10 lg/ml to digest cellular DNA. Complete lysis was
achieved with the addition of deoxycholate to 0.25% w/v. Extracts
were clarified by centrifugation, and prohead particles were purified
on 10%–40% w/v sucrose zonal gradients (45 kilo-rotations per min,
45 min, 20 8C) in a SW55 rotor (Beckman) buffered with 13 TMS
buffer (50 mM Tris-HCl, 100 mM NaCl, 10 mM MgCl2 [pH7.8]).
Particles were collected, concentrated by pelleting, and re-suspended
in 13 TMS.

Labeling was conducted by adding an equal volume of Cy3-
maleimide in H2O to prohead samples to provide the appropriate
molar amount of dye with respect to available connector cysteine.
After labeling for 1 h at room temperature, particles were purified
away from free dye by sucrose gradient sedimentation (5%–20% w/v
sucrose in 13 TMS, 45 K, 30 min, 20 8C). Particles were pelleted and
re-suspended as above. Particles were quantified and checked for
purity and labeling efficiency by SDS-PAGE and for DNA-packaging
activity (Figure 3).

Stalled complex and bead preparation. Labeled proheads were
reconstituted with 120-base pRNA at a ratio of 10 pRNAs/prohead by
mixing 2 ll of pRNA (0.07 mg/ml) with 2 ll of labeled proheads (1 mg/
ml) for 15 min in 0.53TMS. Reconstituted proheads were then added
to a packaging reaction containing 2 ll of biotinylated DNA (0.44 mg/
ml) and 2 ll of ATPase gp16 (0.025 mg/ml) in a final volume of 18 ll of
buffered in 0.53 TMS (for a final ratio of two proheads:one DNA-
gp3:15 gp16). After 5 min, packaging was initiated with 4 ll of ATP
(250 lM). After 60 s, 2 ll of ATP-cS (1 mM) was added to stall the
reaction. Magnetic beads (MyOne Dynabeads, Invitrogen, http://www.
invitrogen.com) were prepared by washing three times in 0.53 TMS,
then blocked by adding 2 ll of beads to 25 ll of 2 mg/ml BSA in 0.53
TMS. Blocked beads were then treated with 0.5 ll of RNAse inhibitor.
Freshly prepared stalled complexes from above (4 ll) were bound to
beads by mixing 0.1 ll of Superase Inhibitor, 3 ll of BSA (10 mg/ml),
0.5 ll of ApaLI (10 U/ll) in 80 ll of buffer X (0.53TMS, 10 lMATP, 10
lM c-S ATP). After gentle mixing, the sample was incubated for 1 h
for the ApaLI restriction digestion which cleaves at both the extreme
right and left ends of the DNA, to reduce the presence of biotinylated
DNA-gp3 on the bead surface not associated with stalled-packaging
complexes, which can form nonspecific tethers due to the stickiness
of gp3. (Left ends of packaged DNA-gp3 are in the prohead and
protected from digestion.) Using a magnet, we washed the magnetic
beads three times with buffer X. These washes removed free and cut
DNA-gp3 ends, all free dye, and proheads that did not initiate
packaging. Finally, the beads were flowed into the chamber and
incubated for 10 min. To restart packaging, 0.53 TMS buffer
containing 0.2 mg/ml BSA, 2 mg/ml glucose, 1% w/v beta-mercaptoe-
thanol, 0.02 mg/ml catalase, 0.1 mg/ml glucose oxidase, and 50 lM
ATP was flushed into the chamber.

Instrument design. During SMFP, the sample is illuminated in
prism type total internal reflection geometry with a green laser (532
nm, CrystaLaser, http://www.crystalaser.com). There are two ways for
a dye molecule to report on the rotation of a macromolecule: First,
one could excite the dye molecule with linearly polarized light. The
emitted fluorescence intensity would then be proportional to the
square of the scalar product of dipole orientation and polarization
direction. For a rotating dye molecule in the plane of the evanescent
field, the emitted intensity would oscillate between a maximum and
minimum within a given polarization as the molecule changes its
orientation. A second option for using a dye molecule as a direction
sensor is to illuminate with both horizontal and vertical polarization
(with equal intensities, i.e., homogeneous polarization) but detect the
polarization state of the emitted fluorescence. Here, the angle
between emission dipole and polarizer in the detection path becomes
important. For a molecule rotating in the polarization plane, the
result would be an anti-correlated signal between the vertical and
horizontal polarization. We chose to use the second option, since an
anti-correlated signal cannot be confused with other events such as
blinking or changes in molecular brightness. In order to achieve an
illumination with homogeneous polarization, the light of the laser is

point sliding average. (A) Fluorescence recorded for a single complex of mutant 170C. The shutter is opened after about half a second. After t¼ 4 s the
first dye bleaches and after 19 s the second. After about t¼ 100 s the fluorescence signal again starts to increase, since the magnetic bead is pulled into
the evanescent field as the prohead reels in the DNA. The signal increases in an exponential fashion as the fluorescent bead samples the intensity profile
of the evanescent wave. Similar behavior was observed for (B) 97C; (C) 168C; (D) 189C; (E) 190C; and (F) 260C.
doi:10.1371/journal.pbio.0050059.g006
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coupled into an electro optical modulator (Linos Photonics,
Incorporated, http://www.linos-photonics.com) that switches between
two perpendicular polarization directions with a frequency of 10
kHz. This switch is orders of magnitude faster than the integration
time during the experiment, and therefore, only homogenous
polarization is observed. The two perpendicular polarizations are
then split by a polarizing beam splitter (PBS). The resulting beams are
both brought to the chamber in s-polarization, but from perpendic-
ular directions—one from the side and one from the top. For this
reason, we used a custom-made prism with two input ports. We
checked the light intensity from both directions by comparing the
signal scattered by beads attached to the flow chamber surface and
adjusted the intensities to be equal in the center of the field of view;
the intensities varied by less than 50% across the field of view.

The fluorescence light is collected by a high NA objective (Nikon,
1.2 NA, http://www.nikon.com) and separated in two perpendicular
polarization components by a PBS. The two beams are spatially offset
and recombined by another PBS. The two beams are then focused on
a CCD camera (Cascade 512B, Photometrics, Roper Scientific
Incorporated, http://www.roperscientific.com), such that two images,
one for each polarization, can be read out simultaneously. One pixel
on the camera (physical size 14 lm) corresponds to about 400 nm.
Because of the huge dilution of phages, and therefore dyes on the
substrate (less than one dye per 10 lm2), we used hardware binning by
3 3 3 pixels. Furthermore, since the fluorescent spot was not always
centered on one point, we added up to four adjacent points for signal
optimization. Two band-pass filters (580BP50, Omega Optical, http://
www.omegafilters.com) are used to separate excitation and LED
illumination from the single-molecule fluorescence signal. At the
same time, the sample is illuminated with a red LED to observe the
magnetic beads that are pulled away from the surface by two magnets.
The red light scattered from the magnetic beads is separated from the
fluorescence light with a dichroic mirror (630 DCLP, Omega Optical)
and detected on a separate CCD camera (Watec, 902C; Watec
Company, http://www.watec.com). In addition, an epi illumination can

be used to focus onto the chamber surface without illuminating (and
therefore bleaching) the surface.

Supporting Information

Text S1. Supporting Online Text

A rigorous assessment of the experimental uncertainties, and
therefore, for the probability of nonrotation is described in the
online text. The text includes, furthermore, a description of the
statistical analysis, the results of this analysis, additional controls, and
a table comparing the results of all six mutants.

Found at doi:10.1371/journal.pbio.0050059.sd001 (437 KB DOC).
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