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Abstract: The use of smart nanocarriers that can modulate therapeutic release aided by biologi-
cal cues can prevent undesirable cytotoxicity caused by the premature release of cytotoxic drugs
during nanocarrier circulation. In this report, degradable nanocarriers based on pH/reduction dual-
responsive nanogels were synthesized to encapsulate doxorubicin hydrochloride (DOX) and specifi-
cally boost the release of DOX in conditions characteristic of the cancer microenvironment. Nanogels
containing anionic monomer 2-carboxyethyl acrylate (CEA) and N,N′-bis(acryloyl)cystamine (CBA)
as a degradable crosslinker have been successfully synthesized via photoinitiated free radical poly-
merization. The loading process was conducted after polymerization by taking advantage of the
electrostatic interaction between the negatively charged nanogels and the positively charged DOX.
In this case, a high drug loading capacity (DLC) of up to 27.89% was achieved. The entrapment
of DOX into a nanogel network could prevent DOX from aggregating in biological media at DOX
concentrations up to ~160 µg/mL. Anionic nanogels had an average hydrodynamic diameter (dH)
of around 90 nm with a negative zeta (ζ) potential of around −25 mV, making them suitable for
targeting cancer tissue via the enhanced permeation effect. DOX-loaded nanogels formed a stable
dispersion in different biological media, including serum-enriched cell media. In the presence of
glutathione (GSH) and reduced pH, drug release was enhanced, which proves dual responsivity. An
in vitro study using the HCT 116 colon cancer cell line demonstrated the enhanced cytotoxic effect of
the NG-CBA/DOX-1 nanogel compared to free DOX. Taken together, pH/reduction dual-responsive
nanogels show promise as drug delivery systems for anticancer therapy.

Keywords: doxorubicin; drug delivery; glutathione; nanogel; stimuli-responsive

1. Introduction

Doxorubicin hydrochloride (DOX), an anthracycline family antibiotic, is one of the
most effective chemotherapeutic drugs developed against a variety of cancers. Free DOX,
however, tends to aggregate into fibril-like structures under physiological conditions, has
poor bioavailability, and causes cardiotoxicity; therefore several nanocarriers containing
DOX have been developed [1]. DOX-loaded PEGylated liposomes (Doxil) became the first
therapeutic nanomedicine on the market with the FDA approval in 1995. More recently,
two liposomal formulations have been approved (Lipodox and Myocet) and others are
under clinical trials. Liposomal DOX formulations improved circulation time and reduced
cardiotoxicity but low cellular uptake in the tumor microenvironment and a poor DOX
release profile from the particles are still issues [2]. In the search for new carriers, polymer-
based DOX nano delivery systems have drawn attention, and some of them have reached
clinical trials. Among polymeric carriers, nano-scaled hydrogel platforms play a crucial
role because they are biocompatible, have a high loading capacity, and possess a potential
responsivity to environmental stimuli [3–8]. These characteristics make polymer-based
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nanodelivery systems widely studied as tumor drug carriers, with DOX being the most
intensively studied [1]. Polysaccharide-based [9] and composite [10] nanogels have also
been investigated for drug delivery applications. However, nanogels based on synthetic
polymers offer better opportunities for surface modification and conjugation with ligands
to target tumors. Several approaches have been utilized to fabricate bioresponsive nanogels
of synthetic origin that are capable of facile loading and triggering release of DOX in
response to the various biological signals specific to tumor microenvironments or the intra-
cellular compartments of cancer cells. By combining several stimuli-responsive monomers
and a suitable degradable crosslinker, dual-responsive or even multiresponsive DOX de-
livery systems can be produced, such as pH/temperature [11–15], pH/redox [16–23], or
pH/temperature/redox [24].

Among the various stimuli, pH and reductive environments caused by the presence
of glutathione (GSH) are the most prominent and characteristically distinctive stimuli in
cancer cells. The pH of the tumor tissue (pH 6.4–7.0) is lower than that of healthy tissues
(pH 7.2–7.5) [25]. Moreover, pH variations in the extracellular compartments of cells (pH
7.4) compared to the intracellular lysosomes (pH 4.5−5.0) [26] can provide a pH-responsive
drug release. High concentrations of GSH reaching millimolar levels (2–10 mM) within
cells and micromolar levels (2–20 µM) in the blood plasma [27] facilitate the cleavage of
disulfide bonds in intracellular compartments. Therefore, nanogels crosslinked by disulfide
bonds are among the most extensively studied.

At acidic conditions, the controlled self-assembly of carboxyl-containing anionic
nanogels with oppositely charged DOX can produce nanocarriers with a high drug load-
ing and pH-sensitive drug release due to the decreased electrostatic interactions with the
drug [16,21,22,24]. Another strategy for ensuring pH-sensitivity is the incorporation of
protonable amino groups into the nanogel network since they are prone to swell at slightly
acidic pH and thus can trigger drug release. In such a case, DOX is usually encapsulated
by hydrophobic interactions, which results in a substantially lower DLC. The examples are
nanogels containing tertiary amines [17,23].

In the previously mentioned examples of pH/reduction dual-responsive nanogels,
DOX was incorporated by physical entrapment, mostly by controlled self-assembly or
due to hydrophobic interactions. The drug was loaded during polymerization [19,20] or
in the post-polymerization process [16,17,21–24]. In contrast, the Haag group developed
pH/reduction dual-responsive nanogels where DOX was covalently conjugated to the
biodegradable nanogel matrix via an acid-labile hydrazone linker and achieved a DLC of
~4 wt% [18].

The most effective way to obtain high DLCs relies on the controlled self-assembly of
anionic polyelectrolyte-based nanogels with the positively charged DOX amine group. Free
DOX itself is prone to aggregate under physiological conditions, which can influence the
colloidal stability of nanocomplexes. By increasing the DOX content (DLC), it is more likely
that nanogels will not be stable at high concentrations, which are demanded during the
preparation of stock solutions for both in vitro and in vivo study purposes. The colloidal
stability of DOX-loaded nanogels is usually not fully explained or not addressed. In
light of the foregoing, this study was conducted with the main purpose of synthesizing
nanogels that can encapsulate high content of DOX via an electrostatic interaction, maintain
DOX-loaded nanogel stability in biological media, and enhance the DOX release profile
in a cancer-like environment where the GSH level is high, and the environment is acidic.
In this study, we compared the aggregation tendencies of free DOX (hydrochloride salt)
with DOX complexed with nanogel carriers in physiological conditions to determine the
encapsulation limit with regard to the colloidal stability of nanocarriers.

In this work, nanogels were synthesized via photoinitiated free radical polymerization
(FRP) of N,N-dimethylacrylamide (DMAM) and 2-carboxyethyl acrylate (CEA) in the
presence of a disulfide-type CBA crosslinker (Figure 1A). The anionic monomer, CEA, was
chosen to provide the electrostatic interactions with the positively charged DOX. CBA
was selected as the crosslinker to achieve accelerated drug release triggered by the high
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concentration of GSH in the tumor cytoplasm. Polymerization was carried out by an inverse
microemulsion technique to create the nanogels, which are able to form stable dispersions
in various biological media, including serum-enriched media.
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Fluorescence spectra of DOX and NG/DOX nanogels. The data were reported as mean ± SD (n = 4). 

Figure 1. Nanogel synthesis and characterization. (A) A schematic diagram of the synthetic pro-
cedure of pH/reduction dual-responsive nanogels. (B) Cryo-TEM micrographs of NG-CBA with
(right) and without (left) GSH treatment. Scale bar = 0.5 µm. (C) Z-average dH of NG-CBA and
NG-MBA nanogels in 1 mM KCl measured by DLS. Due to the interference of DOX fluorescence,
DLS measurements of NG-CBA/DOX-1 and NG-MBA/DOX-1 nanogels were not possible. (D) ζ
potential of NG-CBA, NG-CBA/DOX-1, NG-MBA, and NG-MBA/DOX-1 nanogels in 1 mM KCl.
(E) Fluorescence spectra of DOX and NG/DOX nanogels. The data were reported as mean ± SD
(n = 4).
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2. Results and Discussion
2.1. Synthesis and Characterization of DOX-Loaded pH/Reduction Dual-Responsive Nanogels

Dual stimuli-responsive nanogels were synthesized via FRP in inverse water-in-oil
(w/o) miniemulsions using a photoinitiator (LAP) under optimized light irradiation at a
wavelength of 395–405 nm (Figure 1A). The monomer composition and initiator concentra-
tion were based on our previously reported synthesis of trehalose-containing nanogels to
ensure the relevant size and good stability of the nanogels [28]. DMAM was chosen as the
main monomer, while CBA was used as the degradable disulfide crosslinker. To ensure
the negative charge of nanogels, which is required for electrostatic interaction-mediated
DOX loading, CEA monomer was incorporated. In all cases, a cyclohexane/Span 80 system
was used as a continuous phase, whereas a PB solution containing monomers and LAP
was used as the aqueous phase. Polymerizations were accomplished under LED irradi-
ation at room temperature for 30 min with yields in the range of 60–65% depending on
composition (Table 1). Moreover, in the same procedure, the reduction-insensitive nanogel
crosslinked by MBA was prepared to compare the behavior of the nanogels in a reducing
or non-reducing environment. For degradable nanogels, the notation NG-CBA was used,
whereas the notation NG-MBA was adopted for non-degradable nanogels (Table 1). Both
NG-CBA and NG-MBA nanogels had similar average sizes of around 90 nm, determined
by DLS (Table 1, Figures 1C, S1 and S2). The cryo-TEM micrographs revealed a spherical
shape with particle sizes similar to those of the DLS analysis (Figure 1B). Degradation
induced by GSH led to the disintegration of the nanogel network, which was also observed
using cryo-TEM.

Table 1. Monomer feed composition and physicochemical properties of nanogels.

Nanogel

Monomer Feed
Composition a Post-Polymerization Loading

DLC (%) DLE (%) dH (PdI)
(nm)

ζ Potential
(mV)CEA

mg (mmol)
DMAM

mg (mmol)
NG
(mg)

DOX
(mg)

CEA:DOX
(mol:mol)

NG-CBA 16.0 (0.111) 183.6 (1.852) - - - - - 87.67 (0.30) −23.6
NG-MBA 16.0 (0.111) 183.6 (1.852) - - - - - 91.19 (0.38) −20.4

NG-CBA/DOX-1 16.0 (0.111) 183.6 (1.852) 5.0 1.0 1:0.85 16.29 97.74 b −6.33
NG-CBA/DOX-2 16.0 (0.111) 183.6 (1.852) 5.0 0.5 1:0.42 9.09 99.62 b −18.6
NG-CBA/DOX-3 32.0 (0.222) 167.6 (1.691) 5.0 2.0 1:0.85 27.89 97.61 b −11.3
NG-MBA/DOX-1 16.0 (0.111) 183.6 (1.852) 5.0 1.0 1:0.85 16.47 98.78 b −8.92

a CBA or MBA were used in an equimolar quantity of 0.10 mmol, LAP was used at a concentration of 0.008 mmol,
and the total mass of the monomers was 227.9 mg and 217.2 mg for NG-CBA and NG-MBA nanogels, respectively.
b DLS measurement of DOX-containing nanogels was not possible due to the interference of DOX fluorescence.

DOX was loaded into nanogel in the post-polymerization process. Three different
compositions were prepared, differing in the molar ratios of anionic units of nanogel
to DOX (NG-CBA/DOX-1,2) and the content of anionic units (NG-CBA/DOX-3). The
unloaded NG-CBA and NG-MBA nanogels showed similar ζ potentials of −23.6 and
−20.4 mV, respectively (Table 1, Figures 1D and S3–S8). After DOX loading, the ζ potential
of the nanogels increased above −15 mV (Table 1, Figure 1D), depending on the DLC of
DOX, due to the neutralizing effects of the positively charged DOX. DOX was loaded at
DLCs ranging from 9.09 to 27.89% w/w, according to the molar ratio of anionic units of
nanogel to DOX. Similar DLCs were observed in NG-CBA-DOX-1 and NG-MBA-DOX-1
nanogels due to the same molar amount of anionic CEA units in the structure.

In comparison to the similar design of nanogels with pH/reduction responsivity, the
currently studied nanogels exhibited relatively satisfying DLCs (up to ~28% w/w). In post-
polymerization loading, other pH/reduction dual-responsive nanogels were characterized
by DLCs from 2.5 to 15.1% w/w [17,22–24]. They also displayed a comparable release profile,
ranging from 50 to 70% within 12 h in a cancer-mimicking environment (acidic environment
and high GSH levels), but only a limited release (less than 30%) under normal physiological
conditions [17,22–24]. In contrast, covalent conjugation of DOX to pH/reduction dual-
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responsive nanogels resulted in a significantly lower DLC (below 5% w/w), but it also
enabled us to limit DOX release under physiological conditions (less than 10%), while
accelerating it by almost six times in a cancer-like environment [18]. Additionally, as shown
in Figure 1E, the nanogels (NG-CBA and NG-MBA) did not interfere with the fluorescence
property of DOX, as indicated by identical (Ex/Em) fluorescence spectra.

2.2. Aggregation Behavior of DOX and DOX-Loaded pH/Reduction Dual-Responsive Nanogels

It is well known that DOX (hydrochloride salt) forms fibril-shaped aggregates under
physiological conditions, and this can result in a decrease in the drug’s intercellular trans-
portation efficiency [29]. DOX solutions in PBS (pH 7.4) at concentrations above 40 µg/mL
start to aggregate. Considering DOX’s IC50 is in the range of 0.06 to 0.50 µg/mL depending
on cancer cell line [30], one would not expect aggregation to be a problem. However, stock
solutions are usually two orders of magnitude greater for biological assays. As a result,
aggregation may cause a disturbance in reproducibility when a drug solution is dispensed.
Therefore, aggregation of DOX in solutions should always be avoided. A substantial
amount of DOX encapsulated in nanogel can also induce the aggregation of supramolecu-
lar structures formed after complexation. Our study revealed that DOX entrapment into
the nanogel network could prevent aggregation at concentrations up to 160 µg/mL.

Figure 2A,B shows how the NG-CBA/DOX-1 nanogel improved the solubility of
DOX in 10 mM PB (pH 7.4). The transmittance value of free DOX at a concentration of
20 µg/mL was nearly 100% over 3 days which indicates that the solution is free of insoluble
aggregates. However, the transmittance value decreased over time at concentrations of
40–80 µg/mL, indicating DOX aggregation (Figure 2A). DOX instantly aggregated and sed-
imented at a concentration of 100 µg/mL (Figure 2B). Moreover, at this DOX concentration,
the transmittance value was nearly zero. In contrast, the NG-CBA/DOX-1 nanogel con-
taining 100 µg/mL of DOX exhibited a transmittance value of 95%, which proves the lack
of aggregation. The stability of NG-CBA and NG-CBA/DOX-1,2,3 nanogels was further
studied in different biological media, including serum-enriched media, where nanopar-
ticle dispersion might collapse and form aggregates. Figure 2C showed that both bare
nanogel and DOX-containing nanogels were stable for at least 2 days in different biological
media at a nanogel concentration of 100 µg/mL. In the higher nanogel concentration of
1000 µg/mL, the unloaded NG-CBA nanogel was stable in all tested media. However,
the DOX-containing nanogels showed limited stability in serum-enriched media for both
fresh solutions and solutions incubated at 37 ◦C; for 2 days (Figure 2D). The greater the
DOX content, the greater the decrease in transparency. Therefore, in order to avoid any
aggregation, NG-CBA-DOX-1 nanogel containing only 16.29 wt% of DOX was used for
further drug release studies.
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Figure 2. (A) DOX aggregation tendency in 10 mM PB (pH 7.4) at different concentrations (20, 40,
60, 80, and 100 µg/mL) compared to NG-CBA/DOX-1 nanogels (20, 40, 60, 80, and 100 µg/mL
DOX) for 3 days at 37 ◦C. (B) Visual appearance of DOX 100 µg/mL and NG-CBA/DOX-1 nanogel
containing 100 µg/mL DOX in 10 mM PB (pH 7.4) after 1 day at 37 ◦C. The white arrow indicates DOX
aggregates. (C,D) Stability of NG-CBA, NG-CBA/DOX-1, NG-CBA/DOX-2, and NG-CBA-DOX-3
nanogels at concentrations of (C) 100 µg/mL and (D) 1000 µg/mL in different biological media for
48 h at 37 ◦C by OD 650 nm. Data were presented as mean ± SD (n = 4).

2.3. DOX Release Study

The drug release behaviors of nanogels containing DOX were investigated with and
without GSH at pH values of 7.4 and 5.0 using the dialysis method. The cumulative release
percentages of DOX-loaded in the nanogels versus time are plotted in Figure 3. In the
absence of GSH, less than 33% of loaded DOX was released from the NG-CBA/DOX-1
nanogel in 12 h at pH 7.4. The DOX release was enhanced by GSH and in the presence of
5 mM GSH, nearly 50% of the loaded DOX was released within 12 h. Additional enhance-
ment in DOX release was observed at pH 5.0 where the cumulative release percentage
after 12 h reached 50 and 58% in the absence and presence of 5 mM GSH, respectively.
Larger differences became apparent after 48 h, when almost complete release of DOX from
NG-CBA-DOX-1 was observed at pH 5.0 in 5 mM GSH, while only 50% of DOX release
occurred at pH 7.4 without reducing the environment.
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Figure 3. Drug release profile from NG-CBA/DOX-1 nanogels (squares and solid lines) and NG-
MBA/DOX-1 nanogels (stars and dotted lines) in four solutions: GSH (0 and 5 mM) in PBS (pH 7.4
and 5.0). The nanogel concentrations were 250 µg/mL and the solution temperature was 37 ◦C. The
data were presented as mean ± SD (n = 4).

As expected, in the case of the NG-MBA/DOX-1 nanogel, which contains the
reduction-insensitive crosslinker, no significant changes in DOX release were observed
in the presence and absence of GSH. In turn, decreasing the pH of the environment from
7.4 to 5.0 increased the DOX release rate and the cumulative DOX release reached about
40 and 55%, respectively.

2.4. Cytotoxicity Study in Cancer Cell Line

The cytotoxicity profile of DOX and the two nanogels, NG-CBA and NG-CBA/DOX-1,
was assessed in the HCT 116 colon cancer cell line. Firstly, in vitro studies revealed that
the unloaded nanogel NG-CBA was not cytotoxic to HCT 116 cells after incubation at
different concentrations ranging from 17.5 to 600 µg/mL (Figure 4A). Notably, DOX-loaded
nanogels had a higher efficiency than free DOX in causing cytotoxic effects on cancer cells
(Figure 4B). Moreover, one can speculate that the rate of drug release from GSH-mediated
degradable nanogels will be even greater in cells with much higher GSH levels, such as
breast or ovarian cancer cells [31].
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Figure 4. (A) Cytotoxicity profile of bare NG-CBA nanogels in the HCT 116 colon cancer cell line at
different concentrations (17.5, 37.5, 75, 150, 300, and 600 µg/mL) after 48 h of incubation at 37 ◦C.
(B) Cytotoxicity profile of DOX and NG-CBA/DOX-1 nanogel in the HCT 116 colon cancer cell line
at different DOX concentrations (0.0625, 0.125, 0.25, 0.75, 1.0, and 10.0 µM) after 48 h of incubation at
37 ◦C. The data were presented as mean ± SD (n = 4).



Molecules 2022, 27, 5983 8 of 12

3. Materials and Methods
3.1. Materials and Reagents
3.1.1. General Methods

Miniemulsion formation and nanogel redispersion were accomplished by ultrason-
ication using Sonics VCX 130 (Sonics & Materials, Inc., Newtown, CT, USA) using 60%
and 40% amplitudes, respectively. Lyophilization of purified nanogels and DOX-loaded
nanogels from frozen samples (in water, at −80 ◦C) was carried out under 0.035 mbar at
−50 ◦C (ALPHA 1-2 LDplus, CHRIST). A SpectraMax i3x Multi-Mode Microplate Reader
(Molecular Devices, USA) was used for stability, cytotoxicity, and fluorescence assays.
Phosphate buffered saline (PBS), phosphate buffer (PB), and normal saline solutions were
freshly prepared. Deionized water (DI water) was produced using a reverse osmosis system
(conductivity < 2 µS/cm).

3.1.2. Materials and Reagents for pH/Reduction Dual-Responsive Nanogels Synthesis

Doxorubicin hydrochloride (DOX, Cayman Chemical), (N,N-dimethylacrylamide
(DMAM, Sigma Aldrich, Burlington, MA, USA), 2-carboxyethyl acrylate (CEA, Sigma
Aldrich), N,N′-bis(acryloyl)cystamine (CBA, Alfa Aesar), N,N′-methylenebisacrylamide
(MBA, Acros Organics, Geel, Belgium), lithium phenyl (2,4,6-trimethylbenzoyl)phosphinate
(LAP, Carbosynth), Span 80 (Sigma Aldrich), cyclohexane (Chempur), acetone (Chempur),
dimethyl sulfoxide (DMSO, Fisher Bioreagents, Pittsburgh, PA, USA), and dialysis mem-
brane (Spectrum™ Spectra/Por™ 2 RC Dialysis Membrane, MWCO: 12–14 kDa).

3.1.3. Materials and Reagents for Cell Culture and In Vitro Assays

HCT 116 colon cancer cell line (catalog no. CCL-247) was obtained from the American
Type Culture Collection (ATCC, Manassas, VA, USA), Dulbecco’s Modified Eagle Medium
(DMEM, PAN Biotech), Fetal Bovine Serum (FBS, PAN Biotech, Aidenbach, Germany), PBS
(PAN Biotech), and CCK-8 kit (Bimake).

3.2. Synthesis of pH/Reduction Dual-Responsive Nanogels

pH/reduction dual-responsive nanogels were synthesized via free radical polymeriza-
tion (FRP) in an inverse water-in-oil (w/o) miniemulsion. A 10:1 (v:v) water-in-oil (w/o)
miniemulsion was composed of cyclohexane (10.0 mL) containing Span 80 (600 mg) as the
organic continuous phase; the aqueous phase (1.0 mL) consisted of PB solution (pH 7.0)
containing monomers and the photoinitiator LAP. The general procedure for the synthesis
of nanogels was as follows (Figure 1A). Briefly, the aqueous phase was prepared in a 4 mL
dark vial by adding CBA (26.0 mg, 0.10 mmol) and 0.2 M PB (pH 7.0) containing DMSO
(10% v/v) with the main monomers: DMAM and CEA (amounts specified in Table 1).
The mixture was vortexed for approximately 10–15 min to completely dissolve all the
monomers. Finally, the solution of LAP initiator (2.3 mg, 0.008 mmol) was added. Then,
the aqueous phase was transferred into a 20 mL glass vial containing a cold organic phase
(4 ◦C) and sonicated at 60% amplitude for 5 min to create a miniemulsion. The vial was
then wrapped with aluminum foil and photoirradiated from the bottom of the vial with
High Power Light-Emitting Diodes (LEDs, 3 W, 395–405 nm) for 30 min. Nanogels were
precipitated in cold acetone (40 mL), centrifuged at 11,000 rpm for 10 min, and washed
twice with acetone. After air drying overnight, crude nanogels were redispersed in DI
water and dialyzed against water for 24 h using a dialysis membrane (MWCO 12–14 kDa)
with multiple media changes. Pure nanogel dispersions (after dialysis) were frozen at
−80 ◦C and lyophilized to obtain the nanogel powder. The MBA-crosslinked nanogels
were synthesized using the same procedure as mentioned above, except CBA was replaced
with MBA at the same molar ratio (Table 1).

3.3. Loading of DOX into Anionic Nanogels

Post-polymerization loading of DOX into the nanogels was accomplished as follows.
Initially, 5.0 mg of dry nanogel was placed in a 4 mL glass vial. Then, the DOX solution
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(1.0 mg of DOX in 800 µL of water) was added. After the nanogels swelled (approximately
5 min), the suspension was stirred in the dark overnight at 400 rpm. Afterward, the excess
DOX was eliminated by dialysis using a dialysis membrane (MWCO 12–14 kDa) against DI
water with multiple media changes. Finally, pure DOX-loaded nanogels were lyophilized
and stored as nanogel powder.

3.4. Nanogel Characterization
3.4.1. Measurement of Drug Loading Efficiency (DLE) and Drug Loading Capacity (DLC)

The measurements of drug loading efficiency (DLE) and drug loading capacity (DLC)
of nanogels were based on the fluorescence intensity using the standard curve of DOX in
water (Ex/Em max of 498/593 nm, R2 = 0.997). According to the fluorescence spectra, both
DOX and DOX-loaded nanogels share identical fluorescence spectra with the same Ex/Em
max (Figure 1E). Following measurement of its fluorescence intensity, DOX-loaded nanogels
were dispersed in DI water and diluted to a final concentration of 10.0 µg/mL. DLE and
DLC were then calculated using the following equations:

DLE (%) =
actual loaded DOX

Initial f eed o f DOX
× 100

DLC (%) =
actual loaded DOX

DOX− loaded nanogel
× 100

The Z-average hydrodynamic diameter (dH) and polydispersity index (PdI) of DOX-
loaded nanogels (1.0 mg/mL) in 1 mM KCl solution or PBS (pH 7.4) were determined
using a dynamic light scattering (DLS, Malvern, Zetasizer Nano 90S) system equipped
with a 4 mV He–Ne ion laser (λ = 633 nm) as the light source at a scattering angle of
90◦. All samples were diluted from stock (10 mg/mL, prepared with sonication at 40%
amplitude for 30 s) to the desired media concentration (1.0 mg/mL) without additional
sonication. The ζ potentials of bare nanogels and DOX-loaded nanogels were measured
using electrophoretic light scattering (ELS) measurements (Malvern, Zetasizer Nano ZC) in
1 mM KCl solution.

3.4.2. Cryogenic Transmission Electron Microscopy (cryo-TEM)

GSH-treated and untreated nanogels (500 µg/mL) in DI water were observed under
cryo-TEM using a Tecnai F20 X TWIN microscope (FEI Company, Hillsboro, Oregon, USA).
Specimens were prepared via the vitrification of aqueous solutions on oxygen plasma-
activated grids with holey carbon film (Quantifoil R 2/2; Quantifoil Micro Tools GmbH,
Großlöbichau, Germany).

3.4.3. Measurement of DOX and DOX-Loaded Nanogel Aggregation in Biological Media

The aggregation of DOX was observed in 10 mM PB (pH 7.4) within 3 days. DOX was
dispersed in 10 mM PB (pH 7.4) at various concentrations (20, 40, 60, 80, and 100 g/mL)
and placed in a 48-well plate (volume: 1.0 mL for each concentration) and incubated at
37 ◦C. NG-CBA/DOX-1 at DOX concentrations of 20, 40, 60, 80, and 100 µg/mL were
also dispersed in 10 mM PB (pH 7.4, stock was prepared in water with sonication at 40%
amplitude for 30 s). At predetermined time intervals (0, 20, 40, 60, 80, 100, 120, 140, 160, 180,
1440, 2880, and 4320 min), the samples were observed visually and their optical densities
(OD) at 650 nm were measured. The absorbance value was converted to % transmittance
using the following equation:

Transmittance (%) = antilog (2 − absorbance)

3.4.4. Stability Study of Nanogel in Biological Media

For the stability study, stock solutions of nanogels were prepared in water with
sonication at 40% amplitude for 30 s. The colloidal stability of bare NG-CBA and NG-
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CBA/DOX-1,2,3 nanogels was measured at concentrations of 100 and 1000 µg/mL, low
and high concentrations, respectively, in different biological media, including water, PBS
(pH 7.4), normal saline (0.90% w/v of NaCl), and DMEM + 10% FBS at 37 ◦C for 48 h.
NG-CBA/DOX-1,2,3 (concentration: 100 µg/mL) contained DOX at concentrations of
16.29, 9.09, and 27.89 µg/mL, respectively. Meanwhile, NG-CBA/DOX-1,2,3 (concentration:
1000 µg/mL) contained exactly 10×more DOX: 162.9, 90.9, and 278.9 µg/mL, respectively.
The colloidal stability was observed by measuring OD at 650 nm in 96-well plates using a
microplate reader. OD values ranging from 0.00–0.15 were considered a stable dispersion.

3.5. Drug Release Study

DOX release from the nanogel was analyzed using the dialysis method. Initially, a
dispersion of nanogel at a concentration of 250 µg/mL in relevant PBS (pH 7.4 or 5.0)
containing 5 mM GSH or without GSH additive was prepared. Then 800 µL of NG-
CBA/DOX-1 or NG-MBA/DOX-1 at a DOX concentration of 40.7 µg/mL or free DOX
at 40.7 µg/mL was placed into the dialysis capsule (QuixSep®, 1 mL) using a dialysis
membrane (MWCO 12–14 kDa). The dialysis capsules were immersed in 40 mL of PBS
(pH 7.4 with 0 or 5 mM GSH and pH 5.0 with 0 or 5 mM GSH) and incubated at 37 ◦C
under continuous shaking (110 rpm). At each predetermined time interval of 3, 6, 12, 24,
36, and 48 h, 400 µL of dissolution medium was withdrawn from each vial and replaced
with the same amount of pre-warmed fresh medium. The amount of released DOX in the
withdrawn samples was determined by measuring its fluorescence intensity using a λex of
498 nm and λem of 593 nm and converting it to DOX concentration using a standard curve.

3.6. Cytotoxicity Study

For the cytotoxicity study, stock solutions of nanogels were prepared in water with
sonication at 40% amplitude for 30 s. The cytotoxicity profile of NG-CBA/DOX-1 was
assessed in the HCT 116 colon cancer cell line using a standard CCK-8 assay. For 24 h, HCT
116 colon cancer cells (5× 103 cells/well) were seeded in 96-well plates in 100 µL of DMEM
+ 10% FBS. Then, the cells were incubated with DOX and NG-CBA/DOX-1 at various
concentrations of DOX (0.0625, 0.125, 0.25, 0.75, 1.0, and 10.0 µM) for 48 h. In addition, the
cytotoxicity of bare NG-CBA was also evaluated at different concentrations of nanogels
(17.5, 37.5, 75, 150, 300, and 600 µg/mL). The CCK-8 assay was carried out by adding 10 µL
of CCK-8 solution to each well after 2 h of incubation at 37 ◦C. The absorbance was then
measured by a microplate reader at 450 nm. The relative cell viability (%) was expressed
as a fraction of the percentage of cell growth occurring in the presence of nanogel vs. the
absence of nanogel (control).

3.7. Statistical Analysis

GraphPad Prism Version 6.0 software (GraphPad, San Diego, CA, USA) was used for
the statistical analysis. Data analysis was performed using one-way analysis of variance
(ANOVA). The minimum level of significance was set at p < 0.05, with all data displayed as
mean ± SD (n = 4).

4. Conclusions

Dual stimuli-responsive nanogels based on acrylic polymers have been produced in a
facile and straightforward method. DOX-encapsulation was achieved by a facile diffusion
process, forming a complex with ionized carboxylic groups of CEA units. Nanogels showed
high DLCs (up to 27.89 wt%) and suitable nanoparticle size for enhanced permeation effects.
More importantly, nanogels could prevent DOX from aggregating in biological media up
to DOX concentrations of ~160 µg/mL (NG-CBA/DOX-1), whereas free DOX was only
stable at concentrations lower than 40 µg/mL.

DOX-encapsulated degradable nanogels showed enhanced release rates at lower pH
(i.e., pH of 5.0) and in a reducing environment showing an obvious pH/reduction dual-
responsive controlled drug release capability. In vitro studies revealed that the bare nanogel
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was not cytotoxic to HCT 116 colon cancer cells, whereas DOX-containing nanogels were
toxic against HCT 116 colon cancer cells with a better efficacy than free DOX. The presented
nanogels were conveniently synthesized and exhibited excellent colloidal stability and
cationic drug entrapment capability making them a promising alternative to existing DOX
carrier systems. Additionally, nanogels can be further modified and conjugated with
targeting ligands for active targeted delivery.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules27185983/s1, Figure S1: Average size distribution
(dH) of NG-CBA, (n = 4); Figure S2: Average size distribution (dH) of NG-MBA, (n = 4); Figure S3:
Average zeta potential of NG-CBA, (n = 4); Figure S4: Average zeta potential of NG-MBA, (n = 4);
Figure S5: Average zeta potential of NG-CBA/DOX-1, (n = 4); Figure S6: Average zeta potential of
NG-MBA/DOX-1, (n = 4); Figure S7: Average zeta potential of NG-CBA/DOX-2, (n = 4); Figure S8:
Average zeta potential of NG-CBA/DOX-3, (n = 4).
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