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Abstract
Significant	efforts	are	necessary	to	introduce	new	dietary	protein	sources	to	feed	a	
growing	world	population	while	maintaining	 food	supply	chain	sustainability.	Such	
a	 sustainable	 protein	 transition	 includes	 the	 use	 of	 highly	modified	 proteins	 from	
side	streams	or	the	introduction	of	new	protein	sources	that	may	lead	to	increased	
clinically	relevant	allergic	sensitization.	With	food	allergy	being	a	major	health	prob‐
lem	of	increasing	concern,	understanding	the	potential	allergenicity	of	new	or	modi‐
fied	proteins	 is	crucial	 to	ensure	public	health	protection.	The	best	predictive	 risk	
assessment	methods	 currently	 relied	 on	 are	 in	 vivo	models,	making	 the	 choice	 of	
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1  | INTRODUC TION

A	variety	of	in	vitro	and	in	vivo	models	have	been	developed	that	
address	the	factors	and	mechanisms	involved	in	the	sensitization	to	
food	proteins.1‐4	Currently,	approaches	are	being	developed	using	
protein	chemistry	and	in	vitro	and	in	silico	methods	to	characterize	
food	proteins	and	derivatives	that	arise	during	product	processing	
and	 reformulation,	which	may	 explain	why	 certain	 food	 proteins	
induce	sensitization	of	the	immune	system,	while	others	are	toler‐
ated.5,6	However,	elucidating	the	mechanisms	underlying	allergen	
sensitization	 is	 a	 complex,	 multidimensional	 problem	 that	 often	
requires	a	wide	range	of	additional	in	vivo	and	ex	vivo	experimen‐
tation,5	as	a	wide	range	of	molecules,	tissues,	and	cells	play	a	role	
in	the	mechanisms	underlying	food	allergen	sensitization.1 For in‐
stance,	epithelial	release	of	thymic	stromal	 lymphopoietin	 (TSLP),	
granulocyte‐macrophage	 colony‐stimulating	 factor	 (GM‐CSF),	
IL‐25,	and	IL‐33	upon	local	epithelial	stress	support	type	2	helper	
T	 (Th2)	cell	pathology	by	attracting	 IL‐4	secreting	 lymphoid	cells,	
basophils,	and	invariant	natural	killer	T	(iNKT)	cells.7	Il‐4	promotes	
surface	 expression	 of	 Th2‐costimulatory	 molecule	 OX40	 ligand	

on	dendritic	cells	(DCs)	8	and	cytokine	secretion	by	Th2	lymphoid	
cells	 (ILC2s),	which	 further	augments	DC	activity	and	suppresses	
allergen‐specific	regulatory	T	(Treg)	cells.9,10	This	complexity,	as	de‐
picted	in	Figure	1,	illustrates	the	need	for	experimental	food	allergy	
models	 that	 integrate	 such	complex	cell‐tissue	communication	 to	
assess	 the	sensitization	potential	of	new	protein	sources.	Murine	
food	allergy	models,	even	 though	 they	have	 their	 limitations,	 are	
currently	 the	 best	 predictive	 models	 available	 to	 evaluate	 the	
food‐sensitizing	 capacity	 of	 new	 food	 proteins	 before	 introduc‐
ing	them	into	the	human	diet.	Although	researchers	aim	to	reduce	
the	use	of	 experimental	 animals	 to	 address	 the	3R	principle	 that	
guides	 animal	 experimentation	 to	 replace	 (alternative	model),	 re‐
duce	(minimize	number	of	animals),	and	refine	(minimize	animal	pain	
and	enhance	animal	welfare),	there	is	a	lack	of	replacement	models	
such	as	in	silico	prediction	models,	 in	vitro	primary	cell	assays,	or	
tissue	explants	assays	that	are	able	to	characterize	and	predict	the	
human	 responses	 to	 food	proteins.	 In	 the	past,	 numerous	 exper‐
imental	 food	allergy	models	have	been	developed	 to	assess	 food	
allergenicity.	 However,	 interlaboratory	 differences	 in	 the	models	
used	with	respect	 to	sensitization	and	elicitation	route,	choice	of	

endpoint	 parameters	 a	 key	 element	 in	 evaluating	 the	 sensitizing	 capacity	 of	 novel	
proteins.	Here,	we	provide	a	comprehensive	overview	of	the	most	frequently	used	in	
vivo	and	ex	vivo	endpoints	in	murine	food	allergy	models,	addressing	their	strengths	
and	limitations	for	assessing	sensitization	risks.	For	optimal	laboratory‐to‐laboratory	
reproducibility	and	reliable	use	of	predictive	 tests	 for	protein	 risk	assessment,	 it	 is	
important	that	researchers	maintain	and	apply	the	same	relevant	parameters	and	pro‐
cedures.	Thus,	there	is	an	urgent	need	for	a	consensus	on	key	food	allergy	parameters	
to	be	 applied	 in	 future	 food	allergy	 research	 in	 synergy	between	both	 knowledge	
institutes	and	clinicians.

K E Y W O R D S

animal	models,	biomarkers,	food	allergy,	prevention

F I G U R E  1   Immune	mechanisms	of	
food	allergy	and	its	associated	principal	
measured	endpoints.	A,	Assessment	of	
allergic	symptoms	(body	temperature)	
after	allergen	challenge.	B,	Evaluation	
of	immunoglobulin	(IgE)	in	serum.	C,	
Phenotyping	of	T‐cell	population.	D,	
Cytokine	production	in	response	to	
allergen	restimulation	(ex	vivo	assay)
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adjuvant,	clinical	signs,	genetic	background	of	the	animals,	housing	
conditions,	and	microbiome	composition	and	metabolic	activity	in	
the	different	vivaria	often	make	it	difficult	to	draw	generalized	con‐
clusions.5	It	is	important	to	note	that	almost	all	models	(except	ge‐
netic	models)	require	adjuvants	to	trigger	sensitization.	Therefore,	
the	choice	of	the	adjuvants	together	with	the	exposure	route	are	
crucial	points	to	consider.	In	addition,	there	are	numerous	in	vivo,	
ex	 vivo,	 and	 in	 vitro	parameters	 evaluated	 for	 the	 assessment	of	
food	allergy.	Figure	2	 illustrates	 the	 types	of	 in	vivo	 (inside	a	 liv‐
ing	 organism)	 or	 ex	 vivo	 (outside	 an	 organism)	methodology	 and	
endpoints	 used	 in	 experimental	 murine	 models	 of	 food	 allergy.	
However,	 there	 is	 a	 need	 to	 establish	 a	 list	 of	 reliable,	 validated,	
and	 effective	 endpoint	 parameters	 to	 guide	 researchers	working	
with	 animal	models	of	 food	allergy.	 In	 this	 review,	we	describe	a	
selective	 list	 of	 the	 most	 commonly	 used	 experimental	 applied	
endpoints	 in	 food	allergies	with	a	 focus	on	milk,	egg,	and	peanut	
allergens	 and	 critically	 evaluate	 their	 applicability	 for	 evaluating	
sensitization	 potency.	 Each	 endpoint	 was	 selected	 and	 critically	
described	with	strengths	and	limitation	based	on	consortium	expe‐
rience	and	occurrence	in	literature.

2  | ME A SUREMENT OF BODY 
TEMPER ATURE

In	murine‐type	models	of	food	allergy	to	milk,	eggs,	and	peanuts,	
a	drop	 in	 the	core	body	 temperature	 is	often	observed	after	 re‐
petitive	allergen	challenge.	This	change	in	body	temperature	is	an	
indicator	of	anaphylaxis	(Table	1).	Temperature	is	measured	before	
and	30	minutes	to	1	hour	after	allergen	challenge,	but	this	param‐
eter	can	also	be	monitored	over	time.21,22	Animals	sensitized	to	a	
given	food	matrix	or	protein	may	display	a	significant	reduction	in	
body	temperature	 (0.5‐10°C)3,4	compared	with	that	of	naive	ani‐
mals.	For	an	adequate	level	of	sensitivity,	5‐16	animals	per	group	
should	have	their	temperatures	measured	using	a	rectally	inserted	
thermal	probe,29	but	 it	 is	 also	possible	 to	measure	changes	over	
time	 for	 individual	 animals	 using	 an	 electronic	 ID	 transponder	
implanted	 subcutaneously.11,12	 To	 refine,	 improve,	 and	 objectify	

the	 currently	 applied	manual	monitoring	methods,	 an	 automatic	
imaging	method	has	been	developed.14	 It	 involves	a	noninvasive	
measurement	of	the	whole‐body	surface	temperature	paired	with	
assessment	of	activity	 (see	also	Data	S1	about	activity/behavior	
via	 camera).	Anaphylaxis	 imaging	has	been	used	 in	 three	 in	 vivo	
allergy	mouse	models	 for	 (a)	milk	 allergy,	 (b)	 egg	 allergy,	 and	 (c)	
peanut	allergy	in	proof‐of‐principle	experiments	and	suggests	that	
imaging	technology	represents	a	reliable	noninvasive	method	for	
objective	monitoring	of	small	animals	during	anaphylaxis	over	time.	
This	method	can	be	useful	for	monitoring	diseases	associated	with	
changes	in	both	body	temperature	and	physical	behavior.

2.1 | Strengths

•	 The	measurement	of	core	body	temperature	 is	a	cost‐effective,	
reliable	assessment	of	the	allergic	reaction.

•	 Therapeutic	or	preventative	strategies	for	the	reduction	of	aller‐
gic	reactions	can	be	easily	evaluated.

•	 Can	be	used	to	evaluate	the	severity	of	allergic	shock	and	differ‐
ences	 between	 allergens	 subjected	 to	 physical	 transformations	
(ie,	native	versus	processed).

2.2 | Limitations

•	 The	occurrence	of	anaphylaxis	is	dependent	on	the	mouse	strain	
used:	 Balbc	 or	 C3H	 mice	 are	 prone	 to	 develop	 anaphylaxis,	
whereas	 C57BL/6	 or	 A/J	 mice	 necessitate	 stringent	 exposure	
protocols	to	achieve	sensitization.

•	 The	clinical	 score	may	be	biased	as	a	consequence	of	 the	 labo‐
ratory	 environment,	 stress	 level,	 animal	 strain,	 and	 technical	
experimenter.

•	 A	 decrease	 in	 temperature	 is	 only	 observed	 after	 a	 food/aller‐
gen	challenge	after	a	previous	sensitization	event;	this	endpoint	
therefore	contains	no	predictive	value	for	the	sensitization	poten‐
tial	of	a	food	protein.

F I G U R E  2   In vivo and ex vivo 
methodological	endpoints	used	in	murine	
food	allergy	models
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2.3 | Technical recommendations

•	 Using	a	rectal	probe,	mice	or	rats	must	be	acclimated	to	the	ex‐
perimental	room	at	least	1	hour	before	starting	the	temperature	
measurements	to	obtain	stable	values.

•	 The	rectal	temperature	must	be	evaluated	10	minutes	to	1.5	hours	
after	the	challenge.

•	 The	 animal	 temperature	 can	 be	 registered	 over	 time	 using	
a	 programmable	 temperature	 transponder	 implanted	
subcutaneously.

3  | E VALUATION OF IMMUNOGLOBULINS 
IN SERUM

While	in	vivo	measurements	are	essential	to	assess	the	elicitation	
of	an	allergic	 response,	 they	do	not	provide	 insight	 into	de	novo	
allergen	sensitization.	Therefore,	blood,	tissue,	or	organs	must	be	
collected	and	further	analyzed	by	ex	vivo	methods.	Serum	immu‐
noglobulin	(Ig)	content	is	the	most	common	parameter	measured	
when	evaluating	sensitization	to	food	allergens	in	animal	models,	
followed	by	fecal	IgA	(see	Data	S1),	as	antibody	responses	are	con‐
sidered	 a	 direct	 indicator	 of	 allergen	 sensitization	 together	with	
mast	cell	and	basophil	degranulation.	 IgE	 is	 the	most	common	Ig	
isotype	measured	when	evaluating	the	allergenicity	of	 food	pro‐
teins	and	is	regularly	quantified	in	parallel	with	IgG1	(Table	2).	Total	
and	antigen‐specific	Ig	levels	can	be	analyzed,	where	the	latter	is	a	
measure	of	how	dosing	with	a	given	food	or	protein	influences	the	
overall	level	of	IgE	or	IgG.	Serum‐specific	IgE	and	IgG	can	be	quan‐
tified	by	a	series	of	different	ex	vivo	methods,	where	ELISAs	are	
the	most	 commonly	 applied,	 followed	 by	 immunoblotting	meth‐
ods	and	mediator	release	assays	(Figure	3).	Whereas	specific	IgG	
in	general	 is	measured	by	means	of	 an	 indirect	ELISA,43	 specific	
IgE	is	most	often	measured	by	antibody‐capture	ELISA.44	In	fact,	
IgE	is	the	least	abundant	Ig	isotype	in	serum	(with	an	approximate	
amount	 of	 only	 one	 IgE	 for	 every	50	000	 IgGs45),	making	 it	 dif‐
ficult	for	IgE	to	compete	for	binding	to	proteins	coated	on	ELISA	
plates.	Other	methods	of	measuring	specific	 IgE	 include	enzyme	
allergosorbent	 test	 (EAST)	 immunoblotting.34	 When	 measuring	
specific	 IgEs	 by	 means	 of	 in‐house‐developed	 antibody‐capture	
ELISAs,	 there	 is	 a	 need	 for	 coupling	 the	 protein	 of	 interest	 to	 a	
molecule	 against	 which	 labeled	 secondary	 Igs	 are	 commercially	
available,	 as	 secondary	 Igs	 for	 direct	 binding	 to	 the	 proteins	 of	
interest	can	rarely	be	purchased.	Molecules	coupled	to	the	protein	
of	interest	are	most	often	digoxigenin	(DIG)43	or	biotin,30	with	the	
additional	advantage	that	they	serve	as	signal	amplifiers	(Figure	3).	
Not	only	 is	the	total	 level	of	specific	 Igs	of	 interest	 in	evaluating	
the	sensitization	response	in	animal	models,	the	increase	in	affin‐
ity	between	 Igs	 and	 the	 allergen	 is	 also	 important.	 Studies	have	
shown	 that	 the	 binding	 strength	 between	 specific	 IgEs	 and	 the	
corresponding	allergens	is	of	great	importance	for	the	induction	of	
a	degranulation	response	and	thereby	the	severity	of	the	allergic	M
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disease.46,47	The	avidity	can	be	measured	by	means	of	simple	po‐
tassium	 thiocyanate	 (KSCN)	 ELISAs	 which	 have	 shown	 that	 no	
general	 relationship	exists	between	the	 level	and	avidity	of	 spe‐
cific	Igs,48,49	though	a	correlation	may	be	observed	during	a	mul‐
tiple	antigen	exposure	immune	responses.	This	method,	although	
not	very	sensitive,	is	based	on	the	ratio	of	the	areas	derived	from	
the	curves	obtained	by	plotting	the	OD	and	log	of	the	sera	dilution	
in	the	ELISA	experiment	with	and	without	thiocyanate	treatment.	
Where	measures	of	specific	IgE	only	allow	for	evaluation	of	sensi‐
tization,	they	provide	no	indication	of	the	biological	relevance	of	
the	 IgEs	present	 in	 the	serum	and	 thereby	 the	clinical	 relevance	
of	the	food	allergy	model.	To	provide	 insights	 into	the	biological	
relevance	of	secreted	IgEs,	functional	tests	should	be	performed,	
such	 as	 the	 in	 vivo	 temperature	 drop,	 a	 skin	 prick	 test	 (SPT),	 or	
evaluation	 of	 challenge‐derived	 symptoms.	 Further,	 ex	 vivo	me‐
diator	release	tests	such	as	the	rat	basophilic	leukemia	(RBL)	assay	
and	basophil	activation	test	(BAT)	enable	an	evaluation	of	the	bio‐
logical	 relevance	of	 the	 IgE	 raised	 in	 food	allergy	animal	models	
(see	Data	S1	 for	description	and	opinion	about	mediator	 release	
assays	and	additional	passive	cutaneous	anaphylaxis	(PCA)	and	ac‐
tive	cutaneous	anaphylaxis	(ACA)	models).

3.1 | Strengths

•	 Specific	IgE	antibody	analysis	is	the	most	trustworthy	measure	of	
sensitization.

•	 Measures	of	specific	IgE	antibodies	are	often	used	to	evaluate	not	
only	sensitization	but	also	the	potential	severity	of	the	allergic	re‐
action	after	a	second	encounter.

•	 Measurements	of	antibodies	can	be	performed	without	the	use	of	
advanced	equipment	such	as	a	cytometer	or	robotics.

3.2 | Limitations

•	 Assays	often	need	to	be	developed	in‐house,	restricting	the	pos‐
sibilities	for	comparison	between	laboratories.

•	 IgE	only	accounts	for	a	fraction	of	all	serum	antibodies,	requiring	
more	advanced	ELISAs	for	analysis	of	specific	IgE.

•	 IgE	 levels	 do	 not	 predict	 the	 clinical	 severity	 of	 a	 food	 allergy	
model,	and	other	ex	vitro	experiments	are	needed	to	further	ad‐
dress	this	parameter.

F I G U R E  3  ELISA	methods.	Antibodies	(Abs)	can	be	evaluated	by	means	of	different	ELISA	methods	for	assessment	of	their	amount,	
specificity,	and	avidity.	Specific	IgG1	Abs	are	most	often	analyzed	by	means	of	an	indirect	ELISA	(A),	while	specific	IgE	is	most	often	analyzed	by	
means	of	an	Ab‐capture	ELISA	(B,	C).	Total	IgG1	and	total	IgE	are	analyzed	by	a	sandwich	ELISA	(D).	Furthermore,	the	specific	Ab	responses	can	
also	be	evaluated	for	specificity	with	an	inhibitory	ELISA	(E)	or	for	binding	strength	with	an	avidity	ELISA	(F)
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•	 Measures	with	optical	density	(OD)	as	the	unit	only	allow	for	one	
serum	dilution.

3.3 | Technical recommendations

•	 Antibody‐capture	ELISAs	should	be	used	for	the	measurement	of	
specific	IgE.

•	 Other	antibody	parameters	in	addition	to	the	amount	of	total	and	
specific	antibodies	are	relevant	and	should	be	measured,	such	as	
clonality	and	avidity.

•	 Measures	 of	 total	 and	 specific	 antibodies	 should	 always	 be	 ex‐
pressed	 as	 titer	 values	 or	 as	 concentrations	 with	 no	 upper	 or	
lower	limit	for	dilutions.

•	 Serum	depleted	of	IgG	using	protein	G	columns	before	use	in	indi‐
rect	ELISAs	needs	to	be	considered.

4  | PHENOT YPING OF T‐ CELL 
POPUL ATIONS

Assessment	of	serum	Ig	levels	provides	important	information	about	
the	sensitization	phase	but	does	not	allow	for	quantification	of	im‐
mune	cell	responses,	including	cellular	infiltration	to	sites	of	allergic	
inflammation.	The	phenotyping	of	innate	(eg,	macrophages,	eosino‐
phils,	basophils,	neutrophils,	dendritic	 cells)	 and	adaptive	 (B	and	T	
cells)	 responses	 is	 indispensable	 for	 assessing	 the	 mechanisms	 of	
allergic	 sensitization	 (Table	3).	 Immune	 cells	 are	 generally	 isolated	
from	 organs,	 including	 the	mesenteric	 lymph	 nodes,	 spleen,	 lung,	
skin,	or	 intestine,	and	analyzed	by	 flow	cytometry.	Typically,	 aller‐
gic	inflammation	is	characterized	by	a	predominantly	type	2	immune	
response	and	secretion	of	the	canonical	type	2	cytokines	IL‐4,	IL‐5,	
IL‐9,	 and	 IL‐13	 by	 innate	 immune	 cells	 (eg,	 eosinophils,	 basophils,	
mast	 cells	 (MCs),	 type	 2	 innate	 lymphoid	 cells,	 and	 polarized	 Th2	
cells).44,45	 Indeed,	 in	mice	 specifically	expressing	 the	ovalbumin	T‐
cell	receptor,	sensitization	to	ovalbumin	in	their	diet	induced	the	ex‐
pansion	of	IL‐4‐producing	CD4+	T	cells	in	mesenteric	lymph	nodes,	
the	spleen,	and	Peyer's	patches.60	Importantly,	adoptive	transfer	of	
antigen‐specific	CD4+	T	cells	derived	from	mesenteric	lymph	nodes	
of	 OVA‐sensitized	 mice	 is	 sufficient	 to	 transfer	 allergen‐induced	
diarrhea	to	naïve	recipients.	The	recipient	mice	also	display	an	up‐
regulation	of	the	Th2‐related	chemokines	CCL17	and	CCL22	in	the	
small	intestine.61	In	addition	to	polarized	Th2	responses,	the	propor‐
tion	of	other	 common	T‐cell	 subtypes,	 such	as	Th1	and	Th17	 that	
are	characterized	by	the	production	of	IFN‐γ	and	IL‐17,	respectively,	
can	also	be	elevated	in	lymphoid	organs	of	allergic	mice.	In	contrast,	
expansion	and/or	the	regulatory	capacity	of	CD25+	Foxp3+	T	cells	
associated	with	tolerance	are	often	compromised	in	many	food	al‐
lergy	models.62	Additionally,	other	T‐cell	subtypes	can	be	 involved	
in	 food	 allergy	 pathogenesis.	 The	 recently	 discovered	 Th9	 subset	
and	associated	IL‐9	secretion	were	found	to	be	involved	in	food	al‐
lergy	and	especially	in	peanut	allergies.63	IL‐9	is	mainly	responsible	
for	the	production	of	IL‐4	by	Th2	cells	to	promote	mucosal	mast	cell	

accumulation	and	secretion	of	mucus	and	chemokines	by	epithelial	
cells	to	sustain	allergic	inflammation.64	To	a	lesser	extent,	γδT	cells	
found	 in	 the	 intestinal	 epithelium	 and	 in	 the	 lamina	 propria	were	
also	shown	to	be	 involved	 in	food	allergy.	These	cells	are	 involved	
in	blocking	the	induction	of	tolerance	and	modulating	inflammatory	
responses.65,66

4.1 | Strengths

•	 Precise	mechanistic	insights	into	the	cellular	response	in	isolated	
organs	and	tissues	support	the	sensitizing	potential	of	food	pro‐
teins	when	combined	with	additional	readouts.

•	 Precise	determination	of	the	T‐cell	profile	by	using	specific	mark‐
ers	of	the	T‐cell	population.

•	 Quantitative	evaluation	of	the	infiltrating	cell	population	by	flow	
cytometry.

4.2 | Limitations

•	 Analysis	of	cell	populations	without	the	contribution	of	neighbor‐
ing	cell	tissue	(loss	of	microenvironment).

•	 Isolation	of	immune	cells	from	tissues	relies	on	enzymatic	diges‐
tion	 protocols	 and	 may	 thus	 alter	 phenotypical	 and	 functional	
properties	of	the	cells	of	interest.

•	 Difficulty	with	the	separation	of	minor	subpopulations.
•	 Sacrifice	of	the	animal	is	required	for	organ	and	tissue	sampling.
•	 Need	for	sophisticated	equipment	such	as	FACS.
•	 Type	2	immune	response‐associated	mucus	production	in	tissues	
makes	cell	isolation	difficult	and	can	create	bias	in	cell	phenotyp‐
ing	and	frequencies.

4.3 | Technical recommendations

•	 Remove	fat	and	store	organs,	tissues	and	cells	at	4°C	to	avoid	un‐
controlled	cell	death	or	degradation	of	surface	markers.

•	 Perform	flow	cytometry	and	culturing	the	same	day	as	the	animal	
kill.

•	 Phenotyping	of	T	cells	can	be	achieved	by	intracellular	cytokine/
transcription	factor	staining	using	flow	cytometry.

5  | CY TOKINE PRODUC TION IN 
RESPONSE TO ALLERGEN RESTIMUL ATION

The	 logical	 follow‐up	 to	 the	 analysis	 of	 infiltration/expansion	 of	
innate	and	adaptive	immune	cells	in	the	tissues	and	organs	is	the	
evaluation	 of	 cytokine	 secretion.	 This	 evaluation	 comes	 directly	
from	 serum	 or	 from	 lymphatic	 tissue	 cells	 restimulated	 ex	 vivo.	
Food	allergen	stimulation	of	only	 lymphatic	tissue	cells,	or	 in	co‐
culture	with	dendritic	cells,	allows	for	the	immunophenotyping	of	
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the	immune	cell	populations	specific	for	the	exposed	food	antigen	
or	matrix.	To	confirm	allergen	specificity,	splenocytes,	mesenteric	
lymph	node	cells,	or	 lamina	propria	cells	 isolated	from	sensitized	
and/or	challenged	mice	are	restimulated	with	corresponding	aller‐
genic	proteins	or	peptides.	After	culture	for	up	to	5	days,	cytokines	
associated	with	the	inflammatory	response	(IL‐4,	IL‐5,	IL‐13,	IL‐17,	
and	IFN‐γ)	and	the	regulatory	response	(IL‐10	and	TGF‐β)	are	ana‐
lyzed	in	the	supernatants	by	ELISA60‐64	or	a	multiplex	system.	The	
cytokine	production	indicates	whether	T	cells	were	primed	toward	
the	 challenged	 food	 proteins	 and	 distinguishes	 Th1	 or	 Th2	 cell	
type	 responses.	 The	 prototypical	 type	 2	 cytokines	 include	 IL‐4,	
IL‐5,	and	IL‐13.	While	IL‐4	is	critical	for	the	polarization	of	Th2	cells	
and	IgE	class‐switching	in	B	cells,64	IL‐5	promotes	the	activation,	
proliferation,	and	survival	of	eosinophils,	and	IL‐13	induces	mucus	
production	 from	 goblet	 cells.	 Additional	 assays	may	 be	 used	 in‐
cluding	proteomics	and	gene	expression	profiling	by	PCR	or	micro‐
array	technology,	that	provide	mechanistic	insights	and	potential	
drug	targets.

5.1 | Strengths

•	 Precise	 assessment	 of	 the	 allergen	 specificity	 by	 restimulating	
cells	with	the	same	allergen	used	in	the	animal	model.

•	 Class	determination	of	the	T‐cell	response	by	evaluation	of	cyto‐
kine	production	in	the	supernatant	of	sorted	T	cells.

•	 Higher	production	of	cytokines	can	be	obtained	after	prolifera‐
tion	and	restimulation	with	the	antigen	than	by	direct	measure‐
ment	in	serum.

5.2 | Limitations

•	 Restimulation	with	allergens	can	activate	nonspecific	T	cells	due	
to	certain	cross‐reactivity.

•	 Difficult	to	obtain	a	level	above	the	sensitivity	threshold	with	cells	
isolated	from	naïve	mice.

•	 Some	mechanistic	endpoints	are	not	equally	important	in	animals	
and	humans.

5.3 | Technical recommendations

•	 For	 allergen	 presentation,	 presorted	 T	 cells	 need	 to	 be	 co‐cul‐
tured	with	dendritic	cells.

•	 MHC	peptide—tetramers	can	be	used	to	sort	specific	T	cells	and	
have	better	assessment	of	allergen	specificity.

•	 Need	 for	 positive	 (polyclonal	 anti‐CD3/anti‐CD28)	 and	 neg‐
ative	 control	 (nonallergen)	 stimuli	 to	 ensure	 proper	 T‐cell	
responsiveness.

•	 Endotoxin	levels	within	the	allergen	extract	need	to	be	controlled	
to	prevent	bias	in	restimulation	responses.

•	 Ideally,	when	using	gene	expression	sequencing	data,	this	method	
should	be	confirmed	with	at	least	one	other	technology	(eg,	flow	
cytometry).

•	 As	cells	and	mediators	associated	with	immune	responses	change	
rapidly,	longitudinal	assessments	of	mechanistic	endpoints	will	be	
more	informative	than	single	time	point	assessments.	The	timing	
of	 the	measurements	will	depend	on	 the	 research	question,	 for	
example,	sensitization	mechanisms	vs	mechanisms	of	acute	aller‐
gic	responses	following	(re)challenge.

6  | FUTURE ANALYSIS OF FOOD ALLERGY 
MODEL S

To	 date,	 the	methods	 to	 study	 intestinal	 pathophysiology	 are	 in	
vitro	 culture	 systems	with	 cell	 lines	 or	 explanted	mucosa	 grown	
in	monolayers,67,68	intestinal	organoid	cultures,69,70	and	“gut‐on‐a‐
chip”	devices.71,72	These	technologies	have	offered	many	insights	
into	gut	physiology,	but	they	lack	cellular	complexity,	architecture,	
and	 immune	 and	 inflammatory	 responses	 that	 are	 crucial	 for	 a	
comprehensive	understanding	of	underlying	disease	mechanisms	
and	pathways.	Alternatively,	in	vivo	animal	models	provide	the	in‐
tact	organ	in	the	context	of	the	vascular	supply,	systemic	media‐
tors,	 and	 circulating	 cells.	 However,	 in	 vivo	 experiments	may	 be	
hampered	 by	 technical	 difficulties,	 including	 interindividual	 vari‐
ability	and	maintenance	of	constant	and	reproducible	experimen‐
tal	 conditions.5	 To	 address	 the	 limitations	of	 in	 vitro	 and	 in	 vivo	
models	of	gut	disease,	Yissachar	et	al73	developed	a	chamber	unit	
for	culturing	12‐	to	14‐day‐old	mouse	colon	or	small	intestine	seg‐
ments	 under	 highly	 controlled	 conditions.	 Of	 particular	 interest	
is	 that	 the	 chamber	unit	 has	 two	paired	 inputs	 and	outputs	 that	
allow	for	controlled	introduction	of	molecules	or	microbes	into	the	
lumen	while	simultaneously	introducing	continuous	replenishment	
of	medium	 to	 support	 tissue	 viability.	 The	 tissue	 remains	 intact,	
and	the	overall	structure	with	epithelial	cell	layers	is	preserved	for	
at	least	24	hours,	making	this	method	suitable	for	studying	epithe‐
lial	transport	of	food	allergens	and	their	effect	on	epithelial	integ‐
rity.	However,	other	measurements	are	 currently	difficult	due	 to	
the	very	short	 time	 that	such	 tissue	explants	can	be	maintained.	
Furthermore,	the	enteric	nervous	system	structure	is	maintained,	
and	immune	cells	are	detected	as	they	found	in	healthy	intestinal	
biopsies.	 It	 is	possible	to	envisage	the	use	of	this	type	of	ex	vivo	
chamber	unit	in	food	allergy	research	by	using	intestinal	fragments	
from	naive,	sensitized,	and	allergic	animals	to	introduce	a	variety	of	
food	proteins.	It	is	thus	possible	to	further	elucidate	pathways	in‐
volved	in	luminal	physiology	and	antigen	uptake	and	presentation	
and	 make	 comparisons	 between	 known	 allergenic	 and	 nonaller‐
genic	proteins.	This	approach	may	lead	to	novel	insights	into	new	
proteins	and	cross‐reactive	proteins	and	to	the	development	of	a	
predictive	model	for	food	allergy.	Additional	studies	related	to	the	
survival	and	growth	of	anaerobic	and	aerobic	microbiota	revealed	
that	 the	 ex	 vivo	 colonization	 of	 cultured	 tissue	 with	 selected	
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microbes	 may	 be	 possible.	 Indeed,	 changes	 in	 the	 composition	
and	metabolic	 activity	 of	 gut	microbes	 can	 influence	 all	 aspects	
of	innate	and	adaptive	immune	processes	within	the	mucosa	(see	
also	Data	S1	for	stool	consistency	as	a	readout	in	food	allergy	as‐
sessment).	Thus,	focusing	on	the	effect	of	diverse	microbiota	pro‐
files	 and	 specific	 bacteria	 on	 immunological	 responses	 upon	 the	
introduction	of	allergenic	proteins	may	lead	to	novel	mechanisms,	
therapeutic	targets,	or	predictive	models.	However,	intra‐	and	in‐
terlaboratory	variability	in	microbiome	composition	and	metabolic	
activity	after	birth	as	a	result	of	the	breeding	environment	is	also	
a	major	 underlying	 cause	 for	 conflicting	 results	 between	 experi‐
ments.	This	variability	must	be	taken	 into	account	beforehand	 in	
the	experimental	design	of	an	animal	 trial.5	 It	 is	also	noteworthy	
to	consider	the	possible	development	of	highly	controlled	chamber	
units	 for	 food	 allergy	 research	 used	 in	 combination	with	 in	 vivo	
models	 to	 provide	 a	 new	powerful	 strategy	 for	 studying	mecha‐
nisms	in	the	intestine.

6.1 | Strengths

•	 The	tissue	structure,	cellular	components,	and	neural	system	are	
highly	preserved.

•	 The	model	provides	the	possibility	to	study	immediate	responses	
generated	 after	 the	 introduction	 of	 different	 molecules	 and	
microbes.

6.2 | Limitations

•	 Only	short‐term	responses	can	be	evaluated	due	to	changes	that	
can	occur	in	the	tissue	over	time.

•	 Currently,	only	 intestinal	segments	from	12‐	to	14‐day‐old	mice	
have	been	tested.

•	 Tissue	preparation	and	assembly	require	specific	skills.

7  | CONCLUSION

The	recent	broadening	of	our	knowledge	of	food	allergy	pathogen‐
esis	 and	 development	 of	murine	 food	 allergy	models	 has	 enabled	
us	to	model	the	allergic	elicitation	reaction	as	well	as	the	preceding	
sensitization	events	and	observe	relevant	symptoms	with	different	
food	proteins	(milk,	egg,	and	peanut).	The	principal	endpoint	param‐
eters	described	in	this	review	are	critical	parameters	that	should	be	
evaluated	in	a	correct	manner	so	that	they	may	be	powerful	in	the	
different	rodent	models.

Characterizing	 a	 food	 allergy	 model	 using	 temperature,	 level	
of	 Igs,	 phenotyping	 of	 the	 cell	 infiltrate,	 and	 cytokine	 production	
gives	an	overview	of	the	reaction	while	providing	us	insight	into	the	
degree	 of	 sensitizing	 capacity	 of	 the	 allergen	 used.	 Nevertheless,	
even	though	the	in	vivo	measurements	and	the	ex	vivo	experiments	
provide	us	with	many	answers	about	the	immune	response	and	the	

sensitization	phase,	we	still	do	not	have	a	complete	overview	of	the	
immune	mechanisms	 behind	 each	 reaction.	 There	 is	 still	 a	 strong	
need	to	better	define	the	allergic	reaction	to	predict	the	clinical	out‐
comes	of	sensitization	to	novel	food	proteins.	Although	the	current	
available	models	 are	 suitable	 for	 studying	 the	 pathophysiology	 of	
food	allergy,	they	still	cannot	predict	the	magnitude	of	the	allergic	
potential	 of	 a	 particular	 allergen.	Discovering	 and	highlighting	 the	
molecules	and	cells	involved	in	both	sensitization	and	elicitation	are	
necessary	 to	 improve	 risk	assessment	models	and	 to	 facilitate	 the	
introduction	of	novel	protein	sources	into	our	diet	with	a	low	risk	of	
allergic	sensitization.
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