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MOTIVATION Accurate dating is essential to the interpretation of paleogenomic data. The gold standard
method in archeology is radiocarbon dating. However, a major limitation of radiocarbon dating is the
high amount of collagen extraction involved in the process. Consequently, almost half of all published
ancient genomes lack reliable and direct dates, which results in obscure and contradictory reports. Here,
we present the temporal population structure (TPS), a machine learning-based genomic dating method
for genomes ranging from the fringes of the Late Mesolithic to modern times.
SUMMARY
Radiocarbon dating is the gold standard in archeology to estimate the age of skeletons, a key to studying
their origins. Many published ancient genomes lack reliable and direct dates, which results in obscure and
contradictory reports. We developed the temporal population structure (TPS), a DNA-based dating method
for genomes ranging from the LateMesolithic to today, and applied it to 3,591 ancient and 1,307modern Eur-
asians. TPS predictions aligned with the known dates and correctly accounted for kin relationships. TPS
dating of poorly dated Eurasian samples resolved conflicting reports in the literature, as illustrated by one
test case. We also demonstrated how TPS improved the ability to study phenotypic traits over time. TPS
can be usedwhen radiocarbon dating is unfeasible or uncertain or to develop alternative hypotheses for sam-
ples younger than 10,000 years ago, a limitation that may be resolved over time as ancient data accumulate.
INTRODUCTION

Ancient DNA (aDNA) has transformed the study of human demo-

graphic history, allowing us to directly analyze patterns of past ge-

netic variation rather than infer them post-factum. In the last few

years, we have witnessed a conspicuous increase in the volumes

of ancient skeletal DNA and studies attempting to trace their ori-

gins (Morozova et al., 2016). Dating ancient remains is crucial to

producing meaningful and reliable historical reconstructions,

particularly in light of the growing medicalization of the field.

In the second half of the 20th century, radiocarbon dating

dramatically changed archeology (Libby et al., 1949) and

became the gold standard for dating ancient organic materials

(Taylor and Bar-Yosef, 2014). Radiocarbon dating is based on

the observation that living beings exchange 14C with their
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biosphere while alive and cease to do so when dead. At that

point, their 14C atoms decay into 14N with a half-life of �5,700

years, whereas their 12C concentration remains constant (Ram-

sey, 2008). Assuming that the initial ratio of carbon isotopes in

the biosphere remained constant over time, measuring the
14C–12C ratio allows inferring the age of the sample. Over the

past 80 years, many improvements to the original method were

made (e.g., Ramsey, 2008), including pretreatment of the bones

of the samples to eliminate contamination by recent carbon (Ja-

cobi et al., 2006) and the introduction of accelerator mass spec-

trometry (AMS), which advanced themeasurement of the decay-

ing process (Brock et al., 2010). In addition, knowledge of Earth’s

past environment and the quantification of reservoir effects and

paleodiets further improved the calibration curves of the past

biosphere isotope levels (Alves et al., 2018; Ascough et al.,
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2005; Kromer et al., 2001; Ramsey, 2008). For instance, the

bones recovered from Repton (England) were first associated

with the Viking Great Army from 873 to 874 CE (1190–1205 years

before present [YBP]) based on the archeological context. Howev-

er, early radiocarbon results predated some of them to the 7th and

8th centuries CE (Biddle and Kjolbye-Biddle, 2001). Only in a later

radiocarbon dating that considered the marine reservoir effect

were all of the remains consistent with a single late 9th century

event, in line with the numismatic evidence (Jarman et al., 2018).

Despite this progress, the dating of ancient remains is fraught

with challenges. A major limitation of radiocarbon dating is its

requirement for a large amount of collagen. The routine AMS re-

quires at least 60–200 mg of bone (Cersoy et al., 2017), depend-

ing on the protein preservation and the extraction protocol, with

some labs requiring at least 500 mg with an optimum amount of

1,000 mg. However, even the lesser amounts exceed the

collagen available in small vertebrates and remain with a patri-

monial value (e.g., hominid remains, bones). For instance, the

Repton Viking Army site was dated to 1400–1600 BP (10 mg

collagen) and 1250 BP (60 mg collagen), with the higher yield

dates being closer to the true values (Bronk Ramsey et al.,

2004). Only 50% of the �6,500 ancient skeletons whose aDNA

was sequenced and published were radiocarbon dated

(IntCal20 or SHCal20), and over 10% of the Allen Ancient DNA

Resource (AADR) V50 (https://reich.hms.harvard.edu/allen-

ancient-dna-resource-aadr-downloadable-genotypes-present-

day-and-ancient-dna-data) dates include various warnings. The

remaining skeletons have either been dated according to the ar-

cheological materials found alongside the sample or remain un-

dated. The subjective interpretation of skeletal data has already

led to misunderstandings on numerous occasions. For instance,

a bone from the Darra-i-Kur cave in Afghanistan, initially

assumed to be from the Paleolithic (30,000 YBP) (Dupree et al.,

1972) and often cited as one of the very few Pleistocene human

fossils from Central Asia, was recently radiocarbon dated to the

Neolithic (4,500 YBP) (Douka et al., 2017). Similarly, one of the

Brandýsek site individuals (RISE569) was initially attributed to

the Bell Beaker period (4,800–3,800 YBP) (Allentoft et al.,

2015), but a later radiocarbon dating post-dated it (1,400–

1,100 YBP) (Olalde et al., 2018). Reevaluations of 14C calibration

curves are not rare (Manning et al., 2018). Not only do different

tissues produce different results, but labs may produce radio-

carbon ages that differ up to and over 1,000 years (Higham

et al., 2006). Contamination is a major problem with radiocarbon

dating that leads to erroneous dates. Talamo et al. (2021)

showed that in an ancient bone sample (42,000 years old), add-

ing 1% of modern carbon resulted in an 8,000-year shift to a

younger age. This bias is illustrated in the case of a human skull

from Zlatý k�u�n in Czechia, which was initially radiocarbon dated

to�15,000 YBP (Svoboda et al., 2002), redated to�27,000 YBP,

and again redated to �19,000 YBP after the same bone was

treated. A protocol that aimed to free contaminating carbon pro-

vided a fourth date of �34,000 YBP (Deviese et al., 2018) (re-

viewed by Pr€ufer et al., 2021). Adding to these technological

complications, dates recorded in the AADR continuously change

without documentation of the historical changes (275 samples

were redated between V44.3 [https://reichdata.hms.harvard.

edu/pub/datasets/amh_repo/curated_releases/index_v44.3.html]
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and V50.0). For instance, sample MA2195, initially dated to 3800

BP (V44.3) was redated to 217 BP (V50) based on the context in

both cases and without an explanation. Remarkably, in all cases

of date changes, the original publicationwas cited. Notably, fam-

ily members, dated initially to different times, are post-pro-

cessed to appear closer. As misattributions can lead to erro-

neous conclusions, the uncertainties in the age of nearly half of

the aDNA samples and the actual age of the remaining half

pose a considerable risk of misinterpretation to the field, which

calls into question the cost-effectiveness and overall usefulness

of paleogenomic studies.

Genomic dating has tremendous potential to improve paleo-

genomic studies. Compared with radiocarbon dating, DNA ana-

lyses require lessmaterial (x1/5) (Korlevic et al., 2018) and can be

used to directly date skeletal aDNA for which no radiocarbon

date is available or as an independent validation approach for

existing results. Previous efforts focused on dating samples

based on the idea that Neanderthal ancestry decays over time:

Moorjani et al. (2016) reported a correlation between sample

age and Neanderthal ancestry for five ancient human genomes

(45,000–12,000 YBP) and caution that the correlation is stron-

gest over an age range of 20,000–30,000 YBP and lost for

more recent dates. However, this limited cline was likely due to

the small cherry-picked dataset since other studies report no

appreciable change in Neanderthal ancestry over the last

40,000 years (Petr et al., 2019; Svensson et al., 2021). Moreover,

most ancient genomes are younger than 10,000 YBP (Figure S1),

with many non-Europeans.

A second method exploited the idea that introgressed frag-

ments, broken down by recombination, become progressively

shorter over time. This approach was used to date the controver-

sial Zlatý k�u�n (Pr€ufer et al., 2021). Unfortunately, both the mea-

surement of ancestry and estimates of fragment size tend to use

D statistics (ABBA-BABA, f3, and f4), which have attracted several

criticisms. First, D is a relative test and always compares the pro-

portion of archaic ancestry in one population relative to another.

With recent reports that even Africans carry non-human ancestry

(Chen et al., 2020; Povysil and Hochreiter, 2016), it is hard to see

how D can generate absolute values. Second, D statistics and

related measures rely on the assumption that the mutation rate

is constant, yet this assumption appears false in the face of

several reports of mutation rate variation between human popula-

tions (Amos, 2021; Harris, 2015; Harris and Pritchard, 2017; Mal-

lick et al., 2016). Third, supporting the idea that mutation rate vari-

ation can present a problem, Amos (2021) reported that positiveD

is dominated, not by heterozygous sites in non-Africans, as ex-

pected under introgression, but by heterozygous sites in Africans.

This finding is consistent with a signal driven by recurrent muta-

tions, not Neanderthal ancestry. Fourth, it has been pointed out

that the population substructure can generate patterns virtually

identical to those expected from ‘‘Neanderthal ancestry’’ (Eriks-

son and Manica, 2012); and while debate continues (Yang et al.,

2012), this possibility remains a potential confounding factor

that should not be ignored. Finally, D statistics are extremely

simplified models that make many unrealistic assumptions; in

addition to single, discrete episodes of gene flow from Neander-

thals to humans, they also assume a lack of Neanderthal ancestry

in Africans and complete panmictic ancestral populations while
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Figure 1. TPS workflow

Schematic overview of the dating workflow with

TPS (A) and how to apply it to date genomes of

unknown dates (B). The SML model created in

(A) can be applied to genomic data of the same

species (B).

Article
ll

OPEN ACCESS
ignoring the effects of genetic drift over time (Gopalan et al., 2021).

As an alternative to summary statistics likeD, faith is placed in the

inference of introgressed haplotypes to estimate archaic ancestry

(reviewed by Gopalan et al., 2021). Unfortunately, this is no less

problematic because current approaches fail to include several

important real-life complexities, such as mutational non-indepen-

dence, mutation hotspots, a correlation between mutation rate

and recombination rate, and more. These complexities are

ignored, not least because our understanding has not reached a

level at which the key parameter values are known. Thus, despite
Cell Repo
the great potential of genomic dating, too

many issues have yet to be resolved for

these methods to be considered reliable.

Overall, using Neanderthal ancestry to

date genomes remains unsubstantiated

to bedeemed reliable, leaving the potential

of genomic dating unfulfilled.

RESULTS

The temporal population structure
(TPS) model
We present the TPS tool, the first DNA-

based dating method suitable for Eurasian

genomes younger than 10,000 YBP (Fig-

ure 1A). The rationale of TPS is that

because most human variation is within

continental populations (Elhaik, 2012) and

is subjected to processes such as selec-

tion and genetic drift that modulate the

allele frequencies over time (Graur et al.,

2013), there exist markers that exhibit sub-

stantially different allele frequencies be-

tween different periods, irrespective of ge-

ography, that can be used to estimate

temporal trends. We called these markers

time informative markers (TIMs). Concep-

tually, TIMs are reminiscent of ancient

ancestry informative markers (aAIMs) that

vary over space (Esposito et al., 2018),

except that they operate along the time

axis. Whether through natural selection or

genetic drift, the changes in allelic fre-

quencies over time create unique allelic

combinations across multiple loci that

characterize the historical period (not

place) when individuals lived. We called

these allele frequencies combinations

temporal components. Due to their associ-

ation with time, temporal components can
be harnessed to convert genomic data into time and predict the

age of a sample solely from genotype data.

To demonstrate this, we first curated a dataset of �5,500

ancient Eurasian genomes (Figure 2; Table S1) ranging from the

Mesolithic to the 19thcentury from theAADR (V50). Thegenotype

data of the samples in this public compendium consisted of sin-

gle-nucleotide polymorphisms (SNPs) from a panel of �1.24

million known informative positions but with high missingness.

The major challenges for modeling temporal allelic shifts are the

inherent sparsity of the archaeogenetic data and the
rts Methods 2, 100270, August 22, 2022 3



Figure 2. Location and dating of the ancient samples used in this study

Symbols mark geographical macro-areas where samples were found. Samples are shape- and color-coded by the region. Sunbursts depict the regional dating

annotation of the samples. The inner sunburst shows the proportion of ancient samples dated with different dating methods and modern samples. The outer

sunburst marks the distribution of radiocarbon dates for the ancient samples. Radiocarbon dates are divided into 5 temporal bins of 2,000 years (top bar),

covering the timeline of our database.

Article
ll

OPEN ACCESS
uncertainties associatedwith genotyping anddating. For that,we

selected �150,000 markers with the least missingness and

applied quality control procedures (see Method details), after

which 3,591 Eurasians from the Late Mesolithic to the 19th cen-

tury (10,000–90 YBP) remained. Of these, �60% were directly

radiocarbon dated (DBRDÞ and �40% were indirectly dated

based on archeological context (DBODÞ. We supplemented this

dataset with 1,307 modern Eurasians from the 1000 Genomes

Project.

Building on our previous approach to representing samples as

combinations of genomic components to allow analyzing sam-

ples on even grounds (Elhaik et al., 2014), we sought to identify

temporal components, generate artificial genomes representing

those components, and then represent each ancient genome as

a combination of these components (Figure 1A, ‘‘curating the

temporal components’’). For that, we merged a random subset

of 300 ancient genomes (Table S2) with 250 modern samples

from Europe, Asia, and Africa and applied unsupervised

ADMIXTURE (Alexander et al., 2009) with a various number of

K components (Figure S2A). Five ancient and three modern tem-

poral components captured temporal trends not reflective of

ancestry or geography (Figure S2A). Using the allele frequencies

of the temporal components, we simulated the DNA of putative

‘‘temporal populations’’ with individual genomes that repre-

sented the typical allele combinations of the temporal compo-

nents (Figure S2; Table S2). Finally, we applied a supervised

ADMIXTURE analysis to all of the samples against the temporal
4 Cell Reports Methods 2, 100270, August 22, 2022
populations to calculate the proportion of SNPs associated with

each component per sample (Figure 2; Table S2). As expected,

we found that each temporal component predominates a de-

limited time interval (Figure 3) and that temporal samples exhibit

similar patterns irrespective of geography (Figure S3).

TPS uses a supervised machine learning (SML) approach, a

learning model that uses genomic data (temporal components)

to date samples using random forests (Figure 1A, constructing

the SML model). The random forest algorithm builds on the

concept of a decision tree. A decision tree uses a tree-like struc-

ture (or flowchart) in which each internal node is a test, and

branches represent the outcome of the test, which leads to other

nodes until the end nodes (or leaves) with the outcome are

reached. Random forest is based on an assemblage of decision

trees, randomly and independently generated based on a subset

of the features found in the input data (temporal components)

that produce the most separation between the features.

Because each tree in the forest ‘‘grows’’ from a random set of

features, the trees are diverse and uncorrelated. The output of

the random forest is determined by the vote-of-majority of all

of the trees to reduce the risk of an inaccurate prediction by in-

dividual trees (Breiman, 2001). The SML learns the rules for pro-

ducing correct answers (dates) from the experience of training

on random subsets of the input data. Random forest algorithms

are considered robust to noise, fast, scalable, and accurate in life

sciences. They also require little parameter tuning, can solve the

issue of data overfitting and account for non-linearities in data



Figure 3. Ancient temporal components for

the radiocarbon-dated samples (DBRD)

over time

The 3 modern temporal components are meager

for these samples andwere omitted for coherence.

Samples are sorted by their age (note that the time

x axis is non-linear). Each vertical stacked bar

represents an individual. Colors correspond to the

5 ancient temporal components. The plot demon-

strates that the temporal components are contin-

uous over time and can be used for genomic

dating. Related to Table S2.
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(e.g., Aguiar-Pulido et al., 2021; Boulesteix et al., 2012; Cutler

et al., 2012; Touw et al., 2013; Ziegler and König, 2014).

Ensemble learning algorithms like random forests are, therefore,

appropriate for medium to large datasets like ours.

We evaluated the accuracy of TPS by training the model on

two portions of the samples (validation and training sets) using

10-fold cross-validation. We then applied the model to the third

portion of the samples (unseen set) and compared the difference

between their TPS predicted and reported dates (Figure 1B).

Identifying TIMs
To identify the genomic markers that underlie the temporal

components used by TPS, the temporal components were

sorted from oldest to youngest (Figure S4), creating a temporal

variation profile of allele frequencies for every SNP. A time-se-

ries analysis (see Method details) identified 62,371 SNPs whose

allele frequencies either decreased or increased over at least

3,000 years (Figure 4), which we called TIMs. Non-TIMs were

SNPs whose allele frequency exhibited little or no variation

over time (Table S2). Most of the TIMs (76%) are intronic,

intergenic, and non-coding (McLaren et al., 2016); 50% of the

coding variants are missense variants. The annotation of TIMs

was nearly identical to the annotation of the entire SNP set.

To avoid omitting samples due to the high missingness of the

original dataset, we used the entire SNP set for the remaining

analyses.

Evaluating the accuracy of TPS
Next, we compared the known dates of the ancient and modern

samples with their TPS-predicted dates (Table S3A). The two

dates were significantly correlated (t test, n = 4898, r = 0.93, p

value = 0). Similar results were obtained when we repeated the

analysis for radiocarbon-dated (t test, n = 2,137, r = 0.79, p =
Cell Repo
0.007) and archeological-dated samples

(t test, n = 1454, r = 0.86, p = 0.04). To

gauge the reliability of TPS predictions,

we defined the accuracy per sample as

the absolute difference between its TPS

result and its mean radiocarbon or archeo-

logical dates. TPS median accuracy for all

ancient and modern samples was 259

years, 0 years for the modern samples,

and 428 years for ancient samples, with

75% of the samples being assigned a
TPS date within 445 years from their radiocarbon date. Only 816

(16%) of the samples were TPS dated over 1,000 years from their

mean date (Figure 5B). The general uniformity in the accuracy

across the different periods suggests the absence of temporal

biases toward any particular period, except the oldest samples

for which performance is below average, most likely due to their

small sample size.

To gauge the geographical effects on TPS accuracy, we

selected the radiocarbon-dated samples from Table S3A, divided

them into six regions (Figure 5C), and compared TPS and radio-

carbon dates (Table S3A). The two dates were significantly corre-

lated in every region (t test: 91 % n % 513, 0.63 % r % 0.82,

3.72*10�168% p % 3.65 3 10�23) with close alignments to the

ideal bisecting line (Figure 5D). Exceptionally high accuracies

were found among eastern Europeans, western Europeans, and

eastern central Asians (TPS accuracy = 323, 384, and 345 years,

respectively), whereas TPS median accuracy for western Asians,

southern Europeans, and northern Europeans was lower (804,

774, and 650 years, respectively).

Evaluated on the same ancient and modern dataset as above,

TPS accuracy for non-TIMs was 339 years (t test, n = 4,976, r =

0.9, p = 0) (Figures S5A and S5B; Table S3B), and 279 years for

TIMs (t test, n = 4,893, r = 0.91, p = 0) (Figures S5C and S5D;

Table S3C). Because the results were comparable to the full

set of SNPs (Figures 5A and 5B) and to avoid dropping samples,

we continued analyzing the latter.

TPS predictions of same-country samples did not cluster

around a single period. Instead, they were spread over the time-

line following their radiocarbon dates, confirming that the tempo-

ral components represent temporal rather than geographical

variation (Figure S5K). TPS accuracy was not correlated with

the genomic coverage (two-sided t test, t statistic = �35.31,

the two-tailed p = 6.7 3 10�240), indicating that TPS is robust
rts Methods 2, 100270, August 22, 2022 5



Figure 4. Time series of minor alleles frequencies for the top 100 TIMs that showed the most pronounced 50 increasing (left) and 50

decreasing (right) trends
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to the high missingness common to aDNA data (within the limita-

tion of the 600 SNPs used).

We contrasted the accuracy of TPS against two controls. First,

we generated a randommatrix of 4,8983 10 with random values

[0,100], associated them with the real dates, applied the TPS

model training as in Figure 1, and measured the prediction accu-

racy (Table S3F). TPS median accuracy was 1,996 years, 2,790

years for the modern samples, and 1,530 years for the ancient

ones, with 75% of the samples being assigned a TPS date within

2,800 years. Most of the samples (�80%) were TPS-dated over

1,000 years from their mean date (Figures S5E and S5F). Sec-

ond, we carried out a principal-component analysis (PCA) by

projecting the ancient DNA samples onto the top 10 PCs defined

by modern-day populations (Lazaridis et al., 2016) (Table S3G).

As before, we applied the TPS model training to the

4,898 3 10 dataset and measured the prediction accuracy.

TPS median accuracy for all of the samples was 592 years,

0 years for the modern samples, and 1,053 years for the ancient

ones, with 75% of the samples being assigned a TPS date within

1,632 years from their radiocarbon date. Many samples (38%)

were TPS dated to over 1,000 years from their mean date

(Figures S5G and S5H). We note the existence of data leakage

in the PCA application due to the projection of the ancient sam-

ples onto the modern ones, which inflates its prediction

accuracy.

To further evaluate the performances and characteristics of

TPS, we applied it to three subcohorts as follows. First, we

TPS dated 414 relatives from 130 ancient families originally

dated with mixed dating methods and then post-processed

(AADR, V50) them to reduce disparities between family members

(Table S3D). Here, we calculated the difference between TPS

dates and other dates and the age difference among family

members, who should be dated to the same period regardless

of the actual date. Each family was analyzed separately. We

adopted a simple post-processing approach for families larger

than two, in which the age of samples predicted outside the

30th–70th percentiles of the median age of all samples would

be the median of that age. TPS median accuracy for pre- and
6 Cell Reports Methods 2, 100270, August 22, 2022
post-processed results was 348 and 225 years, respectively.

TPS median age difference among families for pre- and

post-processed results was 283 and 17 years, respectively,

compared to the 68 years of post-processed dating (Figure S5L)

of the AADR. Post-processed TPS dates also had a significantly

lower median and narrower distribution than the AADR dates

(two-sided Wilcoxon rank-sum test, p = 2.65 3 10�64). TPS me-

dian accuracy for 318 relatives from 145 modern families (dated

to 10 BP) was 0 years (Table S3D).

Second, we TPS dated modern samples from 13 Eurasian

populations (Table S3A). The results were consistent with their

modern origins (n = 1,307, TPS accuracy = 0, TPSaccuracy =

26, 95% confidence interval [CI] 27 ± 6.02, SEM = 6; all of the

units are in years).

Finally, to test whether TPS can resolve discrepancies in the

literature, we TPS dated the Brandýsek individuals fromCzechia.

Two individuals (RISE569 and RISE568) from the Brandýsek site

were originally attributed by archeological context to the Bell

Beaker period (4,800–3,800 YBP) (Allentoft et al., 2015). After

they were redated based on radiocarbon and archeologically

associated materials, respectively (Olalde et al., 2018), they

were removed from the analysis of the Brandýsek individuals

(4,850–4,150 YBP) by the latest authors as they post-date the

Bell Beaker culture. Excepting these two samples, which TPS

excluded as outliers, TPS dates for the remaining 12 Brandýsek

individuals showed high similarity to the radiocarbon and ar-

cheological dates. The questionable date of individual I7272

(radiocarbon dated to 5,417 YBP) was also confirmed by TPS

(5,292 YBP) (Figure 6).

Two observations are noteworthy for these individuals. First, 11

of the remaining 12 individuals were TPS dated to fitwithin the Bell

Beaker and Corded Ware period (4,850–4,150 yBP). Second, the

last individual, I7272, was much older and predated the Corded

Ware culture, as is evidenced by two additional features: First,

I7272 lacked the ancient temporal component present in all of

the other individuals at this site, which is ubiquitous among Bell

Beaker samples and associated with the period following the

Yamnaya invasion (ancient temporal component 2) (Table S3A).



Figure 5. Evaluating the accuracy of TPS dating for ancient and modern samples using the entire SNP set

(A) The correlation between TPS and published dates (t test, n = 4898, r = 0.93, p value = 0). Vertical and horizontal bars represent the SD of TPS and radiocarbon

dating, respectively. The red line represents the linear fit against the y = x line (black).

(B) TPS aggregated accuracy. Samples are sorted into 500-year-period bins according to their mean published dates (BP) (x-axis) (e.g., the 4,000 YBP bin

represents samples dated from 4,000 to 4,499 YBP). Colors reflect the prediction accuracy, calculated as the difference in years between TPS prediction and the

sample date. A total of 60%and 70%of the samples were predicted within 400 and 600 years from their published dates, respectively. The prediction accuracy of

regional radiocarbon-dated samples is shown in (C) and (D).

(C) Contrasting TPS and radiocarbon dates for ancient samples by region. Samples are split into 1,500 years and dated by TPS (outer pie charts) and radiocarbon

(inner pie charts). TPS accuracy can be visualized by the overlap of the 2 circles. The number of samples per region is noted.

(D) The correlation between TPS and radiocarbon dates for the same samples as in (C) (t test; 91 < n < 513, 0.63 < r < 0.82, 3.72*10�168% p% 3.653 10�23). SD

bars and the red lines are as in (A).
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Figure 6. Comparing the TPS and alternative dates for 12 Brandý-

seks samples

TPS dating generally agreed with both radiocarbon and archeological dates.
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Second, the Y haplogroup of I7272 is I2, whereas all of the other

males at that site, including the other two attributed to Corded

Ware, are R1. HaplogroupR1dominates post-Yamnayamigration

populations (Freeman et al., 2020; Myres et al., 2011; Underhill

et al., 2015), while I2 is primarily associated with Paleolithic and

Neolithic Europe (Fu et al., 2016; Mathieson et al., 2015). TPS

dating, temporal components, and Y haplogroup suggest that

I7272 is related to anearlier Neolithic occupation at this site.More-

over, the site consists of architectural features that are not usually

associated with Bell Beaker burials, such as the use of stone in

graves (Olalde et al., 2018).

Evaluating the robustness of TPS
We carried out five additional analyses to evaluate the robust-

ness and stringency of TPS to erroneous or noisy input data

and mismatching training data. In the first analysis, we tested

to what extent samples with identical temporal components

but incorrect dates affect the accuracy of the age prediction.

For that, we divided the ancient samples (9,647–90 BP) into 10

roughly equal-sized bins (332–382 samples per bin) by their

ages and countries. We randomly sampled 740 samples strati-

fied by age and geography and considered unseen samples.

Training TPS on the remaining dataset yielded amedian base ac-

curacy of 164 years for these 740 samples. We copied these

samples to the training set and added 1,000 years to their

ages. Their temporal components remained unchanged. Re-

training the model on the original training set and the biased

samples yielded a median accuracy of 298 years for these sam-

ples. Repeating the process after increasing the bias by 2,000

years yielded a similar median accuracy (314 years) (Figure S6A).

We thereby showed that (1) TPS predictions become worse

when identical samples with biased ages are used in training,

although the prediction error is of the same magnitude as the

median accuracy of TPS, (2) the prediction error does not in-

crease linearly with the bias, but is roughly capped at approxi-
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mately twice the number of years from their originally predicted

age, and (3) the random forest regression is more robust to

dating errors compared to methods based on sequence similar-

ity that would have reported much higher errors.

In our second analysis, we tested the effect of introducing

noise to the temporal components of the samples, such as can

be generated due to genotyping errors. For that, we used the

740 samples for the unseen test (base median prediction accu-

racy of 164 years) (Figures S5I, S5J, and Table S3E). We found

that even at a maximum noise level applied to 10% of the sam-

ples, the accuracy decreased slightly to 199 years (Table S4A).

Only when the noise was applied to all of the samples had the

median prediction accuracy decreased to 873 (100% noise)

years. These results demonstrate the robustness of TPS to

biased genotype data.

In our third analysis, we evaluated systematic biases in the 20

studies that published the most ancient samples by TPS dating

them separately and comparing the TPS prediction accuracy

(Figure S6B). Whereas most of the top 10 studies were well pre-

dicted with high TPS accuracy (584 years), the following 10

studies were more poorly predicted (840 years), mainly due to

three publications (de Barros Damgaard et al., 2018; Fernandes

et al., 2020; Marcus et al., 2020). To understand why these da-

tasets were poorly predicted, we followed up with the same

scheme described before, with the 740 unseen samples with

a median base accuracy of 164 years. When we excluded the

samples of Fernandes et al. from the unseen dataset, the

TPS median accuracy improved to 129 years. When we added

all of their samples to the unseen dataset, TPS median accu-

racy decreased to 338 years. After excluding their samples

from the training set, retraining the model, and repeating the

calculation, the accuracy remained unchanged. A similar trend

was found when repeating this procedure for the two other da-

tasets. In other words, although they were poorly predicted,

these samples were useful for training the TPS model and pre-

dicting the dates of other samples. To understand why this is

the case, we plotted the average standard deviation (SD) of

the mean age (BP) of samples from each study against their

TPS-predicted accuracy (Figure S6C). We found a significant

positive correlation (n = 20, r = 0.52, two-sided t test, t statistic =

2.59, p = 0.018), suggesting that using the mean age of sam-

ples with a wide SD of the age is more challenging for TPS;

however, when embedded with other training samples and after

filtering samples with a high SD of the mean date (see Method

details), they positively contributed toward TPS prediction

accuracy.

In our fourth analysis, we evaluated the ability of TPS to date

samples when the training dataset lacks samples of comparable

ages. For that, we divided all of the samples into 20 windows of

500 consecutive years by their ages. Then, for each age group

separately, we dropped the samples of that age window from

the training set and predicted the age of the unseen samples af-

ter training TPS on the remaining windows.We report themedian

predicted age (Figure S6D). The overall weighted mean TPS ac-

curacy was 847 years and, as expected, was lower in the

extreme windows and higher in the middle windows. The mean

TPS accuracy was 1,031 for an analysis of 10 windows of

1,000 consecutive years. These results demonstrate the



Figure 7. Temporal variation in the allele frequencies of 3 TIMs

Bars show the number of individuals genotyped for that TIM. Lines show the centered moving averages of the minor allele frequencies (MAFs) over time and the

SEs. Blue refers to radiocarbon-dated samples and green refers to TPS-dated samples. The black line shows the weighted average of the 2 MAF measures.

(A) rs1393350 (G/A) in the TYR gene involved in pigmentation.

(B) rs2269424 (G/A) is adjacent to the PPT2 and EGFL8 genes associated with immunity.

(C) rs2073711 (A/G) is in the CILP gene.

Article
ll

OPEN ACCESS
robustness of TPS to age mismatches between the training and

unseen datasets.

In our final analysis, we evaluated the effect of geography

on TPS predictions by excluding geographically adjacent

samples from the training set. For that, we developed 7

different clustering approaches (see Method details).

Methods varied in cluster sizes (10–40 clusters), whether

clusters had equal (methods 1–2) or unequal numbers of sam-

ples (methods 3–7), and the number of samples per cluster.

The median TPS accuracies of the 7 analyses ranged from

636 to 887 years (Tables S4B–S4J). These results demon-

strate that TPS has a limited reliance on the temporal compo-

nents of geographically adjacent samples to achieve accurate

dating predictions.

Phenotypic traits are connected to the TIMs
It is often of interest to trace the changes in allele frequencies

over time. Here, TPS can be used to "rescue" poorly dated sam-

ples to bolster the sample size and power of such analyses.

TIMs, such as rs1393350, have been associated with pheno-

types, such as those harbored in the HERC2, OCA2, and TYR

genes involved in skin, eye, and hair pigmentation (Figure 7A).

At least since the Mesolithic, these traits were, reportedly, under

selective pressure in favor of variants associated with lighter

pigmentation (Olalde et al., 2014; Wilde et al., 2014).

rs2269424 (G/A) is another TIM adjacent to the PPT2 and

EGFL8, genes associated with immunity. This marker was re-

ported to be under strong selection (Broushaki et al., 2016; Ma-

thieson et al., 2015).

Our temporal trends (Figure 7B) support these findings and the

presence of negative selection (Figure 7B). TIM rs2073711 (A/G)

(Figure 7C), located in the CILP gene, was reported to be asso-

ciated with cartilage scaffolding (Wang et al., 2016). Further

research is necessary to understand what factors shaped the

incline or decline trends of the allele frequencies. Overall, we

demonstrated that alleles of poorly dated samples, "rescued"

by TPS, yield consistent trends to alleles of radiocarbon dated

samples.
DISCUSSION

Only 48% of the ancient human genomes in the latest AADR

release (V50) have a strict direct radiocarbon date (IntCal19,

IntCal20, or SHCal20). The remaining samples are imprecisely

dated, mostly using archeological context and various estimates.

The absence of a reliable alternative to radiocarbon dating is a

challenging problem in paleogenomics, which relies on dates to

study genomic data. Moreover, although radiocarbon dating is

widely accepted as the benchmark standard for dating ancient re-

mains (Mellars, 2006; Ramsey, 2008), its relianceon large amounts

of organic material renders many samples undatable and thus un-

studied. Radiocarbon dating is also exposed to various environ-

mental biases that decrease its accuracy (Korlevic et al., 2018).

By contrast, genomic dating relies solely on the DNA

sequence, making it possible to date remains whose radio-

carbon dating cannot be established directly, are in doubt, or

are absent. Motivated by our observations that allele frequencies

show temporal variability over time, we introduced the concept

of TIMs and demonstrated their usefulness to genomic dating.

For example, we showed that TIMs associated with traits have

increased or decreased their frequency over time, as reported

elsewhere (Broushaki et al., 2016;G€unther et al., 2018; Hofmanová

et al., 2016;Mathieson et al., 2015) and can be used as biomarkers

for specific periods. We defined temporal components as aggre-

gations of allele frequency profiles that peaked in specific periods

throughout history and modeled genomes as consisting of eight

temporal components. We then developed the TPS, an SML tool

that converts genomic information into dates. TPS uses random

forest regression, which trains on the temporal components of

thousands of ancient and modern genomes dating from the Late

Mesolithic to modern times and learns how to predict their ages.

We demonstrated the accuracy of TPS by showing its ability to

correctly predict 3,591 ancient Eurasian skeletons and 1,307mod-

ern individuals, including 731 family members from 130 ancient

and 145 modern families. We showed that TPS is robust to incor-

rect data, noise, and missing data. We further demonstrated its

ability to resolve conflicting findings in the literature and increase
Cell Reports Methods 2, 100270, August 22, 2022 9
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the power of association studies by dating ancient samples that

lacked reliable dates.

TPS is a powerful instrument in the growing paleogeneticist tool-

kit that can be usedwhen dating is unavailable or in doubt and ad-

dresses contradictory findings in the paleogenomic literature. The

advantage of adopting an admixture scheme to derive the tempo-

ral components over alternative techniques such as linear regres-

sion is its resilience tomissing data, common to aDNAdata. Oneof

the strengths of random forest over dating based on sequence

similarity is finding a consensus of correct dates and reducing

the effect of outliers and incorrect radiocarbon dates. As an SML

algorithm independent of physical measure, TPS can also identify

incorrect radiocarbon dates. This is a major advantage for TPS

since radiocarbon dating is a physical measure independent of

previously dated samples, which is not informed by experience,

whereas SMLalgorithms becomemore accurate with the increase

in sample size (i.e., learning opportunities).

Overall, TPS can be used to date samples, evaluate dated

samples, detect outliers or misdated samples, and develop

alternative hypotheses to other dating techniques. We envision

that genomic dating will become evenmore accurate with the in-

crease in the number of sequenced populations over time.

Therefore, our results should be considered a lower bound to

the full potential genomic dating. We note that TPS is neither

comparable to genetic dating methods based on measuring

the level of Neanderthal inbreeding nor suffers from their biases

(Moorjani et al., 2016; Pr€ufer et al., 2021).

Limitations of the study
Aswith all machine learningmethods, TPS requires a large training

dataset to yield accurate predictions. This limits its applicability to

humans and a few farmanimalswith the large availability of ancient

genomes. In humans, TPS is further limited to samples dated from

the past 10,000 YBP, where sufficient genomes are available. We

note that all of the reported dates off bymore than 1,000 YBPwere

for older samples, for which the training data are sparse. For the

same reason, TPS may be limited to Eurasians due to the high

availability of their ancient genomes. We also showed that the ac-

curacy of TPS decreases for unsampled periods. This limitation

can be resolvedwhenmore data are available. Compared to phys-

ical measures that are relatively independent of past analyses, the

ability of TPS to learn from experience is its advantage—and its

weakness, since it may incorporate incorrect data into its model.

Solving dating conflicts in the literature (e.g., among relatives) to

improve the results without clear traces, as done in the AADR, is

a form of genomic photoshopping that poses a challenge for

TPS that trains on these data and could resolve such conflicts it-

self. Finally, we showed that genomes with a wide age range

pose difficulties in TPS dating. This limitationmay also be resolved

when more data are available.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Allen Ancient DNA Resource (AADR) V44.3 David Reich Lab https://reichdata.hms.harvard.edu/pub/

datasets/amh_repo/curated_releases/

index_v44.3.html

Allen Ancient DNA Resource (AADR) V50 David Reich Lab https://reich.hms.harvard.edu/allen-

ancient-dna-resource-aadr-downloadable-

genotypes-present-day-and-ancient-dna-

data

1000 Genomes Phase 3 Project (Auton et al., 2015) https://www.internationalgenome.org/

data/

Software and algorithms

ADMIXTURE v1.3.0 (Alexander et al. 2009) http://dalexander.github.io/admixture/

download.html

PCA Matlab https://se.mathworks.com/help/stats/pca.

html

PLINK v1.9 (Chang et al., 2015) https://www.cog-genomics.org/plink/

Python (v3.0) Python Software Foundation https://www.python.org/

scikit-learn (Pedregosa et al., 2011) https://scikit-learn.org/stable/

Pandas (McKinney 2010) https://pandas.pydata.org/

Temporal Population Structure (TPS) This study https://doi.org/10.5061/dryad.s1rn8pkbk
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to andwill be fulfilled by the lead contact, Eran Elhaik

(eran.elhaik@biol.lu.se).

Materials availability
No biological material was used in this study.

Data and code availability
This paper analyzes existing, publicly available data. These datasets are listed in the key resources table.

All original code has been deposited at datadryad and is publicly and freely available as of the date of publication. The DOI is listed

in the key resources table.

All additional information required to reanalyze the data reported in this paper is available from datadryad.

METHOD DETAILS

Curating the ancient genomic dataset
Genotype, dating, and relatedness information for all ancient sampleswere obtained from theAllen Ancient DNAResource (AADR) (V50)

(https://reich.hms.harvard.edu/allen-ancient-dna-resource-aadr-downloadable-genotypes-present-day-and-ancient-dna-data), a uni-

formly curated dataset with genotypes andmetadata.We constructed a dataset of ancient andmodern samples (Figure 1A) by curating

5,563 ancient Eurasian genomes dated between 14,000 and 90 yBP from the AADR. We also obtained 1,307 Eurasians from the 1000

Genomes database (Auton et al., 2015) (Table S1). We retained 147,229 SNPs with the least missingness genotypes for ancient ge-

nomes (Esposito et al., 2018). Modern sample ages were set to 10 BP. Because the age of ancient samples is described as a range,

we used the mean date obtained from the samples’ annotation data throughout the paper. Files were processed using PLINK v1.9

(Chang et al., 2015).
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Constructing the temporal components
To identify the temporal components, we randomly selected 300 ancient Eurasians and 50 modern samples from each of five pre-

sent-day 1000 Genomes populations (Chinese [CHB], Yoruba [YRI], Finnish [FIN], British [GBR], and Tuscan [TSI]). We next applied

unsupervised ADMIXTURE (v1.3.0) (Alexander et al., 2009) for nineK’s [4,12]. Sampleswere sorted by age (Figure S2A). For each plot,

we selected putative temporal components that exhibited a temporal characteristic (not geography), i.e., components that were

evenly distributed in all samples within a certain period. Initially, ten and three putative modern and ancient components were iden-

tified, respectively, with a clear split between the ancient andmodern components. Using ADMIXTURE’s allele frequencies output (p-

file), 15 synthetic samples associated with each temporal component candidate were generated for each component (Elhaik et al.,

2014; Esposito et al., 2018).

We continued refining the ancient putative components by plotting the primary two principal components of the 150 ancient

synthetic samples. The scatter plot showed two overlapping. After applying supervised ADMIXTURE, as in Elhaik and Ryan

(2019), to the 300 ancient samples with respect to the 135 synthetic ancient ones, we dropped four more components that did

not show temporal trends, retaining five ancient temporal components (Figure S2B and Table S2). For the modern components,

we found that three components best described our samples. When merging them with the ancient samples, these final eight

components had minimum noise, smooth profiles, and high ancient-modern sample separation (Figure S2C). We calculated the

eight temporal components for all the samples using supervised ADMIXTURE with respect to the synthetic samples. The datasets

had no missing values.

Identifying Time Informative Markers (TIMs)
Considering the final temporal components (supervised ADMIXTURE’s q-file), non-random temporal trends were observed over time

(Figure 3), suggesting that it is feasible to associate the temporal components with samples’ ages and identify SNPs that contribute to

the temporal trends using the per-SNP allele frequencies (supervised ADMIXTURE’s p-file) (Figures S2B and S4). Sorting the five

ancient temporal components from old to recent, we used the allele frequencies of each temporal component (Table S2) to detect

SNPs whose allele frequencies show directed behavior over time. For that, we constructed a time series with the date ranges as-

signed to the temporal components in 500-year bins (from 10,000 to 0 yBP), resulting in 21 data points (Figure S4). Overlaps in

the assigned date ranges of the temporal components were averaged to construct the time series. The resulting temporal trends

were smoothed using a moving average filter to reduce noise. A total of 62,371 SNPs showing global increasing or decreasing trends

or displaying local behavior over sub-intervals of at least 3,000 years were considered TIMs (Figure 3 and Table S2). For a null model,

we randomly sampled from the remaining SNPs an equal-sized dataset, considered non-TIMs. We last calculated the eight temporal

components for all the samples using supervised ADMIXTURE with respect to the synthetic samples using all the marker, TIM, and

non-TIM sets. These datasets had no missing values.

Converting the temporal components to genomic dates
Assuming a dataset (Table S1) where rows represent samples and columns represent the temporal components with age as the

target variable to be predicted – we developed the Temporal Population Structure (TPS), a supervised machine learning (SML) algo-

rithm that employs a random forest regression (Breiman, 2001) to predict dates from temporal components. Additional data like

country, dating method, and date standard deviation, were not used for date prediction. TPS calibration consists of four major steps:

Preprocessing, learning, evaluation, and prediction (Harrison, 2019, P. 9). TPS was coded in Python (v3.0) using scikit-learn (Pedre-

gosa et al., 2011) and Pandas (McKinney, 2010) libraries.

Preprocessing

To identify ancient outliers in the dataset, we plotted the age distribution of the samples and used maximum likelihood estimation to

estimate the Gaussian distribution fitting. The distribution was moderately skewed (skewness 0.6 7˛ (0.5,1)) (Figure S1A). Prepro-

cessing consistsmainly of data cleaning, checking for missing values, and normalizing the data (Garcı́a et al., 2015, P. 10). For the first

steps, we removed i) 66 samples with a mean age of more than 10,000 YBP and ii) 1,235 samples whose dating annotation was not

radiocarbon (Direct: IntCal20) nor archeological context (Context: Archaeological–Period). Overall, 4,158 ancient samples were re-

tained. We next normalized the data by calculating the Z-score for all the features and removed 567 outliers whose Z-score wasR3

or <=-3 (Ozdemir and Susarla, 2018, P. 93) andwhose standard deviation of the datewasmore than 400 years. The remaining dataset

of 3,591 samples had a skewness of 0.23 ˛ (-0.5,0.5) and an approximately symmetric distribution (Figure S1B). Overall, 3,591

ancient and 1,307 modern samples were further analyzed.

Feature engineering (feature creation or selection)

Features are independent numeric variables that describe the temporal components used as input for the SML model. To increase

the number of features, we adopted simple mathematical operations (Rogel-Salazar, 2018, Pp. 100–102) to include 1) the mean of all

ancient temporal components, 2) the absolute difference between the mean of the first ancient component (calculated for all sam-

ples) and the first ancient component, and 3) the sum of the first ancient component and three times the column added in 2), which

substitute the first ancient component.
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To train the SML on these ten features, we split the ancient samples in a stratified fashion into ten roughly equal-sized subsets based

on themean date and country. Themodern samples were stratified into ten roughly equal-sized subsets based only on the country as

age was set to 10 BP. A small fraction of the ancient samples (63 samples (<1%)) that could not be matched by date and country

appeared only in the training set. Next, the ten ancient subsets were collapsed into two groups stratified as follows: 85% (training

and validation) and 15% (unseen or test). For modern samples, the same process was executed. The training set of the ancient sam-

ples was combined with the training set of modern samples. Similarly, the testing set of ancient samples was combined with that of

the modern samples. Overall, both ancient and modern samples from different ages and locations were included in both the training

and testing sets. The combined training set was reshuffled. We then split the training set into 90% (training) and 10% (validation). The

training was performed using 10-fold cross-validation. We employed random forest regression that uses ensemble learning for

regression with a maximum number of 20 trees (Breiman, 2001). In this procedure, the training dataset is divided into 10 subsets.

A holdout method is then repeated 10 times so that each time one of the subsets is used as the validation set, and the remaining

nine are combined to form a training set. The random forest algorithm is trained on the nine training sets against the single validation

set, evaluating different models that maximize the dating prediction accuracy from the input data and selecting the best model by the

vote of the majority of all the trees. Of these ten replicas, a random model is selected as the final model.

Predicting the age of undated samples

To date a sample (Figure 2B), the TPSmodel should be provided with the temporal components of the test samples, which are calcu-

lated by applying supervised ADMIXTURE to its genomic data against the synthetic temporal components available from datadryad.

Evaluation and prediction

We applied the process above to several cohorts. First, we TPS-dated 740 random samples (15%of the data) stratified over time and

space (Figures S5I and S5J) after training themodel on the remaining dataset. Second, we TPS-dated all the samples by retaining one

sample, at a time, in the unseen set (Figure 7). We carried out this analysis on the entire SNP set, TIMs (Figures S5C and S5D), and

non-TIMs (Figures S5A and S5B). Third, families were dated separately, with all the family members as unseen. Likewise, to date the

Brandysek individuals, all the Brandyseks were held together in the unseen set. To calculate the standard deviation, standard error,

and 95% confidence intervals of the age per sample, we considered each sample at a time as unseen, resampled 90% of the training

dataset, retrained the model, dated the unseen sample ten times, and calculated the statistics on the outcome.

Evaluating the accuracy of dating predictions
The accuracy of dating prediction was evaluated by comparing the sample’s predicted date (always calculated as unseen data) with

its mean published date. Typically, this was assessed using linear regression with significance calculated using T-test. To evaluate

TPS performances to noisy data, we introduced noise with varying levels of 1%, 10%, and 100% to 1%, 10%, and 100% of the un-

seen samples. The noise affected all the temporal components of the unseen dataset as follows: Temporal components within 0.9

quantiles were randomly either increased or decreased by a random value selected from a uniform distribution [0,1]. The noise level

represented the proportion of temporal component values modified by this procedure. We also evaluated the accuracy of the TPS

model by applying the model to an equally-sized dataset of principal components, calculated using Matlab’s pca.m function, by pro-

jecting the ancient DNA samples onto the top ten principal components defined by modern-day populations and to an equal-sized

dataset with random numbers. When testing family relatives, we evaluated the accuracy against the radiocarbon date and, when un-

available, archeologically-derived date. Additionally, we calculated the predicted age difference among family members, which

should be small, regardless of the dating method. Significance was assessed with the two-sided Wilcoxon rank-sum test.

We evaluated the effects of geography on TPS using seven geographical analyses. In each analysis, samples were split between

clusters identified based on the similarity of their geographical coordinates using K-means clustering so that the seven analyses had:

15 clusters (10-fold cross-validation), 40 clusters (10-fold cross-validation), 20 clusters (10-fold cross-validation), 30 clusters (10-fold

cross-validation), 30 clusters (5-fold cross-validation), 15 clusters (10-fold cross-validation), and 10 clusters (10-fold cross-valida-

tion). Cluster size varied in the first two methods and was similar in the latter five. The following procedure was applied for all the

methods: Following the removal of 22 samples with invalid coordinates, the samples of each cluster were considered unseen,

and TPS was trained using the remaining clusters using 5 to 10-fold cross-validation to predict the unseen samples. This process

was repeated until all the clusters were predicted. The samples were then divided into a fixed number of 1018 groups based on their

latitude and longitude, and their mean accuracies were calculated. The medians of the mean accuracy of each method were then

calculated. For example, in the fourth analysis, the dataset was divided into 30 geographical clusters with 100-200 samples per clus-

ter (Figure S7). Then, each cluster was considered unseen at a time, and the model was trained on the remaining clusters using

10-fold cross-validation.
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