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Meta-analysis of active
tuberculosis gene expression
ascertains host directed
drug targets

Nirmaladevi Ponnusamy and Mohanapriya Arumugam *

Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of
Technology, Vellore, Tamil Nadu, India
Multi-drug resistant tuberculosis still remains a major public health crisis

globally. With the emergence of newer active tuberculosis disease, the

requirement of prolonged treatment time and adherence to therapy till its

completion necessitates the search of newer therapeutics, targeting human

host factors. The current work utilized statistical meta-analysis of human gene

transcriptomes of active pulmonary tuberculosis disease obtained from six

public datasets. The meta-analysis resulted in the identification of 2038

significantly differentially expressed genes (DEGs) in the active tuberculosis

disease. The gene ontology (GO) analysis revealed that these genes were major

contributors in immune responses. The pathway enrichment analyses

identified from various human canonical pathways are related to other

infectious diseases. In addition, the comparison of the DEGs with the

tuberculosis genome wide association study (GWAS) datasets revealed the

presence of few genetic variants in their proximity. The analysis of protein

interaction networks (human and Mycobacterium tuberculosis) and host

directed drug-target interaction network led to new candidate drug targets

for drug repurposing studies. The current work sheds light on host genes and

pathways enriched in active tuberculosis disease and suggest potential drug

repurposing targets for host-directed therapies.

KEYWORDS

tuberculosis, meta-analysis, gene ontology, pathway enrichment, genetic variants,
drug repurposing
Introduction

Tuberculosis (TB) is an infectious disease which remained throughout human history.

Mycobacterium tuberculosis (Mtb) is the main causative agent of TB. Around 10% of

individuals develop TBwhen exposed toMtb and 5% of the infected individuals develop TB

within 1-2 years while the remaining 5% develop the disease at any other time (Frieden
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et al., 2003). Active TB has higher burden of TB when compared

to latent TB (Lee, 2016). Individuals with compromised immune

systems, such as people with HIV, diabetes or people with

constant tobacco use are at high risk of falling ill.

TB is the 13th leading cause of death globally in 2020. Around

86% of new cases reported around the world in 2020 were

contributed majorly by China, Indonesia, the Philippines,

Pakistan, Nigeria, Bangladesh and South Africa with India

leading the list (WHO, 2021). Over the period of time Mtb has

adopted newer subversion strategies to successfully evade the host

immune system enabling it to reside in the host resulting in latent

or active disease manifestation (Behar et al., 2010; Ernst, 2018).

The infection results in a complex dynamics between the host

and pathogen triggering various immune signalling cascades and

cross-talks between molecular components (Casadevall and

Pirofski, 2000). Several contributing factors associated with the

disease were identified through genetic and biochemical

experimental studies. The recent surge of omics data has further

aided in understanding of factors influencing predisposition of the

disease and markers associated with the disease severity.

With increased availability of gene expression data, studies based

on TB blood transcriptomics offers a robust approach to study the

immunology of TB. The comparative studied of healthy and TB

cohorts shed light on differentially expressed genes (DEGs) and also

allow observations of such DEG upon vaccine/drug treatment.

Further the DEG analysis also aids in understanding of regulatory

mechanisms contributing to the functional consequences.

In the current study, a statistical meta-analysis was carried

out using whole blood expression profiles from infected TB

patients to identify key human transcriptomics signatures

characteristic of the disease. The study also utilized host

genetic disease association and drug-repurposing analyses to

further to prioritize the results. In addition, the gene ontology

and pathway-based annotations identified genes and pathways

significantly altered in the diseased condition.
Materials and methods

Dataset selection and processing

The whole-blood microarray gene expression profiles of

patients with active pulmonary tuberculosis and healthy

cohorts were retrieved from NCBI GEO (Barrett et al., 2013).

The datasets were further filtered based on the following

conditions: (i) The expression profiles were from human

patients affected by tuberculosis undergoing no prior

treatment, (ii) Only samples from active tuberculosis patients

and control groups were considered, (iii) The datasets should

include both healthy controls and patient group, (iv) The patient

or the control group should not be infected with any other

secondary diseases, (v) The patient and control group should

include more than 5 samples each.
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The background corrected files were processed using limma

package in R (Ritchie et al., 2015). The data were quantile

normalized, log transformed and missing values were removed.

The probe identifiers were converted to Entrez gene IDs. If

multiple probes are mapped to a single gene, then the average

expression value of the probes were used for the gene. Post

normalization, individual datasets were subjected to Principal

Component Analysis (PCA). PCA was carried out to observe a

distinct separation between the active and control samples.
Statistical meta-analysis and validation

Statistical meta-analysis was carried out using NetworkAnalyst

(Zhou et al., 2019). NetworkAnalyst interprets gene expression data

including meta-analysis, tissue specific PPI networks, gene

regulatory networks, gene co-expression networks along with

networks for toxicogenomics and pharmacogenomics studies. The

pre-processed expression values were used as input for the web tool.

Differential expression analysis for each dataset was performed

using limma with false discovery rate (FDR) cutoff of 0.05. The

batch effects were adjusted using ComBat method. The corrected

datasets were merged and statistical meta-analysis was carried out

using INMEX. The combined effect size method for meta-analysis

was used to generate the results. The random effect model which

encloses cross-study heterogeneity was used for meta-analysis.

Differentially expressed genes (DEG) were obtained using FDR

cutoff of 0.01 in the meta-analysis. The DEGs with absolute

combined effect size > 1.5 were chosen for genetic variant

analyses and drug interaction analyses.
Validation of meta-analysis

The strength of the results obtained frommeta-analysis was further

validated by comparing the genes expressed in latent and control

samples from the same datasets. Partial Least Square Discriminant

Analysis (PLS-DA) was applied to the DEGs. Significant model was

selected by 7-fold cross validation. The model performance was

evaluated using the area under the Receiver Operating Characteristic

(ROC) curve (AUC). All the above validation process was carried out

using mixOmics package in R (Rohart et al., 2017).
Gene and pathway enrichment

Gene and pathway enrichment analysis was carried out

using DAVID web server to identify significantly enriched

Gene ontology (GO) biological processes (BPs) and KEGG

pathways, which were ranked based on the hypergeometric

test with FDR cutoff of 0.05 (Sherman et al., 2022). DAVID

web server offers functional annotation and enrichment analyses

of gene lists provided by the user.
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Protein-protein interaction network
construction

A comprehensive human protein-protein interaction

network (hPPI) was constructed. High confidence,

experimentally verified interactions extracted from STRING

database was used for the construction (Szklarczyk et al.,

2021). The STRING database integrates known and predicted

associations between proteins encompassing physical

interactions and functional associations. Similarly, the

pathogen proteins interacting with host DEG were mined

from various literature sources (Rapanoel et al., 2013; Penn

et al., 2018; Augenstreich and Briken, 2020; Verma et al., 2022).

These data were used to construct human protein –Mtb protein

interaction network (hmPPI).

The highly interconnected components of the hPPI and

hmPPI were identified using the Cytoscape plugin CytoHubba.

CytoHubba is a user-friendly interface to explore important

nodes in biological networks using various topological metrics.

The hub genes of the networks were identified using the

topological metrics degree and Maximal Clique Centrality

(MCC) (Chin et al., 2014).
Drug-target interaction

The drug compounds interacting with DEG were retrieved from

DrugBank Version 5 (Wishart et al., 2018). DrugBank is a

comprehensive database which holds information about drugs,

their mechanisms, interactions and targets. Drugs with

experimental or clinical evidence for direct interactions with the

protein were selected. Drugs with pharmacological actions as the

same direction of the DEG and drugs with unknown

pharmacological actions were excluded. Only DEGs with a

combined effect size greater than 1.5 were considered for the analysis.
Genetic variant analysis

The genetic differences between tuberculosis-affected and

healthy individuals can give a mechanistic insight about the

disease and functional implication of the affected gene. The

single nucleotide polymorphisms (SNPs) proximal to the DEG

were obtained from GRASP database (P-value < 5e-8) (Leslie

et al., 2014). GRASP database encloses deeply extracted and

annotated database of genome-wide association studies (GWAS)

results enclosing more than 6.2 million SNP-phenotype

association. Similarly, the regulatory SNP were retrieved from

Slidebase database using the enhancer regions of the DEG

(Ienasescu et al., 2016). SlideBase offers a new way of selecting

genes, promoters, enhancers and microRNAs that are
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preferentially expressed/used in a specified set of cells/tissues.

The genomic regions in linkage disequilibrium (LD) with the

SNP were collected from SNAP (Johnson et al., 2008). The

association between a gene and its corresponding SNP was

prioritized based on the overlap between the genomic location

of the DEG or its enhancer and LD region of a SNP. The query

tool SNAP enables the identification of single-nucleotide

polymorphisms (SNPs) and annotate nearby SNPs in linkage

disequilibrium (proxies) based on HapMap project results.
Results

The work plan and approaches implemented in the current

study is illustrated in Figure 1.
Identification and validation of DEG from
meta-analysis

The database querying and filtering identified around 149

GEO microarray datasets for TB-related host response at the

time of study (June 2022). Further, filtering based on the study

inclusion criteria, a total of six datasets enclosing control and

active TB samples were selected for next set analyses (Table 1).

The results of PCA indicated that the samples were clustered based

on the observations of the study. However, after batch correction the

samples were clustered based on the disease condition as active TB and

control.We also observed a few samples outside the clusters before and

after the batch correction procedure (Figure 2).

When the datasets DEG were compared, we identified genes

regulated in the same direction. The meta-analysis identified a total

of 2038 DEG of which 861 genes were up-regulated and 1177 genes

were down-regulated (S. Table 1). Further analysis identified a total

of 113 genes (up-regulated – 24 and down-regulated- 89) with

absolute combined effect size as a reference for the log2 fold change

(logFC) greater than 1.5 (Table 2). S1PR1 ranks first among the up-

regulated genes. S1PR1 expression is associated with lymphocyte

recirculation. Similarly, FCGR1B is the top-ranking gene which is

down-regulated in the active TB. To assess the results obtained from

the meta-analysis, we validated the 113 genes with logFC > 1.5 in

three datasets GSE19444 (Illumina), GSE54992 (Affimetrix) and

GSE62525 (Phalanx) from different platforms. The PLS-DAmodels

showed good sensitivity (above 85%) and specificity (above 83%) in

all three datasets. The control, active and latent TB samples formed

three different clusters marking clear differentiation (Figure 3). The

ROC plot for the models suggest that the PLS-DA model can

distinguish active tuberculosis samples from both latent and control

groups with high true positive and low false positive rate (Figure 4).

These measures show that DEG can act as biomarkers for the

detection of active TB cases.
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Identification of significantly enriched
gene ontologies

The functional GO was carried out for the up and down

regulated DEG identified by the meta-analysis (Table 3). The GO

analysis identified that up-regulated DEG significantly involved

in cellular components (CCs) were nucleoplasm, nucleus and

cytosol. For GO BP analysis, the DEG showed involvement in

mRNA splicing, via spliceosome, cytoplasmic translation and

rRNA processing. Similarly for GO molecular function (MF)

analyses, the DEGs were majorly enriched in RNA binding,

protein binding and ATP binding. The GO CC analysis of down-

regulated DEGs showed involvement in extracellular exosome,

cytosol and lysosome. The GO BP analysis identified

involvement in defense response to virus, innate immune

response and response to virus. The GO MF analysis showed
Frontiers in Cellular and Infection Microbiology 04
enriched functions such as protein binding, protease binding

and MHC class I protein binding.
Identification of significantly enriched
pathways

The pathway enrichment analysis implemented using

DAVID identified various dysregulated pathways mediated by

the DEGs (Table 4). The up-regulated DEGs showed enrichment

of pathways involved in Spliceosome, Ribosome and

Nucleocytoplasmic transport. We also observed pathways

overlapping with other infectious diseases such as Herpes

simplex virus 1 infection and Coronavirus disease - COVID-19.

The down-regulated DEGs showed involvement in NOD-

like receptor signaling pathway, Lysosome and other infectious
TABLE 1 List of GEO datasets used in the meta-analysis.

Dataset PMID Platform Samples* DEGs

Active Latent Control

GSE19435 20725040 Illumina 7 0 12 2793

GSE19439 20725040 Illumina 13 17 12 1600

GSE19444 20725040 Illumina 21 21 12 2063

GSE54992 24647646 Affymetrix 9 6 6 4454

GSE62525 26818387 Phalanx 7 7 7 8739

GSE152532 34555657 Illumina 17 69 11 586
frontie
*Only untreated samples were considered for the analysis.
FIGURE 1

Workflow adopted in this study.
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disease pathways such as Influenza A, Salmonella infection,

Hepatitis C and Epstein-Barr virus infection. We also observed

the presence of Tuberculosis pathway in the list. The presence of

tuberculosis pathway in our analysis indicated that the genes

identified in the meta-analysis demonstrate their significant

association with the disease.
Protein–protein interaction network
construction

Identifying the physical interactions between the proteins

will provide clues to combat infection. The mapping of 2038

DEGs along with their partners resulted in a network enclosing

325 nodes and 1460 edges (Figure 5). The average number of

neighbours in the hPPI was 15. Around 323 genes showed direct
Frontiers in Cellular and Infection Microbiology 05
interactions with their partners. The top ten hub genes which

showed overlaps in degree and MCC measures are RPL10A,

RPS4X, RPS16, RPS23, RPS3, RPS13, RPL7A, RPL4, RPS5 and

RPS6. All the identified hub genes were ribosomal proteins

involved in RNA binding.

The hmPPI interaction network enclosed 99 nodes and

established 66 connections with an average of 1 connection

between the neighbours (Figure 6). Due to the availability of

limited Mtb-host protein-protein interactions we did not

observe any hub genes based on the topological metrics.
Drug – target interaction

The DEGs from the study were queried against DrugBank to

mine drugs targeting genes which may be used for repurposing
A B

D E F

C

FIGURE 2

Principal Component Analysis (PCA) plots showing the separation control and active samples across all datasets used in the study. (A) GSE19435
(B) GSE19439 (C) GSE19444 (D) GSE54992 (E) GSE62525 (F) GSE152532.
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against TB. A total of 22 drugs targeting 8 DEGs were obtained

after the screening process (Table 5). Among them each

compound showed association with at least one target gene

with few exceptions such as ABCB1 which showed interaction

with 14 drugs. Human immunoglobulin G (DB00028) acting on

C5 and FCGR1B were also observed. FYN kinase targeted by the

Fostamatinib was one among the up-regulated genes.
Frontiers in Cellular and Infection Microbiology 06
Genetic variant analysis

The detection of drug targets which has human genetic support

by its involvement in the disease pathologymay aid in success of the

treatment against the disease by preventing late stage clinical

failures. The evidence of involvement in the disease by the 2038

DEGs was retrieved from genome-wide association study (GWAS)

datasets. A total of 483 TB-related SNPs were obtained from

GRASP database. An overlap between the LD region with a SNP

and the DEG location or the enhancer region suggest strong

association between the SNP and that particular gene. A total of

33 genes showed association with TB-related SNPs (Table 6).
Discussion

Meta-analysis of active tuberculosis
samples

The meta-analysis of transcriptomes in this study identified

S1PR1 as an up-regulated gene with highest fold change. S1PR1,

by the detection of its ligand S1P in the blood and lymph, is

crucial for naive lymphocytes to access the circulatory system.

S1P-S1PR1 signaling is crucial for regulating immune cell

development and function. S1P-S1PR1 signaling is needed for

mature thymocytes to leave the thymus and for T/B cells to leave

secondary lymphoid organs and enter the blood or lymph in

both homeostatic and pathological situations (Sinha et al., 2009;

Zachariah and Cyster, 2010; Allende et al., 2010; Zhang et al.,

2012). S1PR1 analog therapy raises IL-6 and lowers IL-10, but it

can’t stop the mycobacterial infection inside the cell (Arish and

Naz, 2022). Consequently, the diminished expression of S1PR1

causes retention of naïve T cells in lymphoid tissues (Skon et al.,
TABLE 2 List of top 20 DEGs (absolute combined effect size > 1.5)
identified in the meta-analysis.

DEG Fold change in
meta-analysis

FDR P-value in
meta-analysis

S1PR1 2.0215 0.000123

ZNF91 1.8479 0

PASK 1.7283 3.29E-06

PIK3IP1 1.7086 7.08E-09

CCR7 1.699 2.22E-06

GRAP 1.6851 1.70E-07

PDCD4 1.6847 0.01366

LAX1 1.68 0.005286

SLC38A1 1.6476 1.59E-06

ABCB1 1.6387 0.001482

FCGR1B -2.2365 0

VAMP5 -2.2051 6.28E-12

GBP5 -2.0828 0

LY96 -2.0495 3.19E-10

TNFSF13B -2.0145 3.61E-06

PSMB9 -1.9828 6.79E-13

CASP1 -1.9688 0

IL15 -1.9614 0

RNF135 -1.9367 0.002385

BATF2 -1.9255 0
FIGURE 3

Partial least squares-discriminate analysis (PLS-DA) plots showing differentiation between the control and TB samples.
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2013). Similarly, FCGR1B is the top ranking gene with highest

fold change and is down-regulated in the active TB condition.

The FCGR1B gene is a member of immunoglobulin G, which

binds directly with pathogens and neutralizes them. Changes in

the Fc gamma receptors affect the response of a host to infection

(Song et al., 2017). The FCGR1B gene aids in the host’s immune

response during a mycobacterial infection. According to

Maertzdorf’s research, people with TB and LTBI had more

DEGs than uninfected individuals (Maertzdorf et al., 2011). In

a different study, Satproedprai et al. found that the

overexpression of FCGR1B in response to bacterial infection

caused a humoral immune response and contributed to the

development of lung inflammation (Satproedprai et al., 2015).

Our results showed downregulation of FCGR1B, probably as a

result of active TB.

The enrichment of spliceosomes and lysosomes in GO,

indicates its crucial role in active TB infection. The functions of

spliceosomes are also regulated differently in infected

macrophages. The lysosomes protect against Mtb by

controlling how Mtb moves through the lysosomes and

stopping it from spreading in cells. Pre-mRNA splicing plays

a crucial role in regulating gene expression and protein

diversity. The Serine/Arginine rich (SR) proteins are the

major components contributing to the selective splicing

mechanism. The disruption in the RNA splicing mechanism
Frontiers in Cellular and Infection Microbiology 07
can lead to crosstalk in the intricate network interactions. The

Mtb infection alters the patterns of alternate splicing within the

macrophages by affecting the expression of SR proteins (Zhang

et al., 2018).

The evolution of Mtb infection has proven its ability to

successfully gain access to host cellular components needed for

its survival before the initiation of innate antimicrobial response.

The process is accomplished by altering various immune

response elements such as interferon (IFN)-induced

transmembrane (IFITM) gene family members. The IFITM

members receive signals for their activation through type I and

II IFN stimulation to preclude the establishment of productive

infection. Ranjbar et al. show that IFITM proteins inhibit Mtb

intracellular growth, indicating that they may contribute to host

defense against intracellular bacterial infection (Ranjbar et al.,

2015). The IFITMs act on host membrane fluidity at the sites of

viral entry by preventing the formation of viral fusion pore. In

addition, they increase the trafficking of trapped viruses to the

lysosome for its degradation. However, Mtb alters this

phagocytic mechanism by switching off the acidification of the

phagosomes mediated by the IFTIM family members. One such

example is the vacuolar ATPase, a mediator of endosomal

acidification which is excluded from Mtb-containing

phagosome by Mtb’s bacterial tyrosine phosphatase (Ranjbar

et al., 2015).
FIGURE 4

Receiver operating characteristic (ROC) and Area under curve (AUC) from the PLS-DA on the 113 DEGs data.
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In addition, pathways related to immune mediated cascades

such as T cell receptor signaling pathway, Th17 cell

differentiation and NF-kappa B signaling pathway were also

observed (Urdahl et al., 2011). The order of appearance of T cell

receptor signaling pathway down the list indicate that the onset

of genes contributing to this pathways are delayed. Nuclear

factor-kappa B (NFkB) pathway mediates pro-inflammatory

responses which are required by the host to control of many

microbial pathogens. The activation of NFkB has proven to

increase the viability of intracellularMtb in human macrophages

by preventing apoptosis and autophagy (Bai et al., 2013). The

lysosomal and pathogenic pathways indicate the dominance of

these pathways used by the pathogens to avoid lysosomal

targeting. They function by actively manipulating the host

vesicular trafficking and reside in a vacuoles altered from the

default lysosomal trafficking (Sachdeva and Sundaramurthy,

2020). The overlap of infectious disease pathways signals the

usage of similar players for evading the infection and using host

counterparts to reproduce.
TABLE 3 Top 10 significantly enriched Gene ontologies.

Regulation Cellular component (cc) Biological Process (BP) Molecular Function (MF)

Up GO:0005654-nucleoplasm GO:0000398-mRNA splicing, via spliceosome GO:0003723-RNA binding

GO:0005634-nucleus GO:0002181-cytoplasmic translation GO:0005515-protein binding

GO:0005829-cytosol GO:0006364-rRNA processing GO:0005524-ATP binding

GO:0005737-cytoplasm GO:0006357-regulation of transcription from RNA polymerase II
promoter

GO:0003724-RNA helicase activity

GO:0016020-membrane GO:0006281-DNA repair GO:0016887-ATPase activity

GO:0005730-nucleolus GO:0006412-translation GO:0003676-nucleic acid binding

GO:1990904-ribonucleoprotein
complex

GO:0006355-regulation of transcription, DNA-templated GO:0003677-DNA binding

GO:0022626-cytosolic ribosome GO:0000122-negative regulation of transcription from RNA
polymerase II promoter

GO:0003735-structural constituent of
ribosome

GO:0016607-nuclear speck GO:0006397-mRNA processing GO:0004386-helicase activity

GO:0005840-ribosome GO:0006338-chromatin remodelling GO:0003682-chromatin binding

Down GO:0070062-extracellular exosome GO:0051607-defense response to virus GO:0005515-protein binding

GO:0005829-cytosol GO:0045087-innate immune response GO:0042802-identical protein binding

GO:0005764-lysosome GO:0009615-response to virus GO:0003725-double-stranded RNA
binding

GO:0005765-lysosomal membrane GO:0045071-negative regulation of viral genome replication GO:0004298-threonine-type endopeptidase
activity

GO:1904813-ficolin-1-rich granule
lumen

GO:0032731-positive regulation of interleukin-1 beta production GO:0001730-2'-5'-oligoadenylate
synthetase activity

GO:0016020-membrane GO:0006954-inflammatory response GO:0042803-protein homodimerization
activity

GO:0035580-specific granule
lumen

GO:0032755-positive regulation of interleukin-6 production GO:0002020-protease binding

GO:0010008-endosome membrane GO:0050729-positive regulation of inflammatory response GO:0061133-endopeptidase activator
activity

GO:0005886-plasma membrane GO:0006915-apoptotic process GO:0050786-RAGE receptor binding

GO:0035578-azurophil granule
lumen

GO:0032757-positive regulation of interleukin-8 production GO:0004175-endopeptidase activity
TABLE 4 List of top 10 significantly enriched human pathways in the
meta-analysis.

Up regulated pathways Down regulated pathways

hsa03040:Spliceosome hsa04621:NOD-like receptor signaling
pathway

hsa03010:Ribosome hsa04142:Lysosome

hsa03013:Nucleocytoplasmic transport hsa05164:Influenza A

hsa05168:Herpes simplex virus 1
infection

hsa05132:Salmonella infection

hsa04660:T cell receptor signaling
pathway

hsa05160:Hepatitis C

hsa03018:RNA degradation hsa04145:Phagosome

hsa05340:Primary immunodeficiency hsa05169:Epstein-Barr virus infection

hsa03008:Ribosome biogenesis in
eukaryotes

hsa05152:Tuberculosis

hsa05171:Coronavirus disease - COVID-
19

hsa05162:Measles

hsa05166:Human T-cell leukemia virus
1 infection

hsa05140:Leishmaniasis
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The PPI networks reveal the involvement of major players

contributing to the infection. The hPPI network identified ten

hub genes which play crucial role in the infection. All these

identified hub genes were ribosomal proteins involved in RNA

binding. These RNA-binding proteins play critical roles in co-

and post-translational regulation. Due to the distinct

differences in ribosome structure between Mtb and the host,

the ribosome is a multiprotein complex, and the protein-

protein interactions of its subunits may be an appealing

target for novel antibiotics (Lin et al., 2012). Earlier report

based on microarray expression analysis such as Wang et al.,

also reported up-regulation of 22 unique ribosomal proteins in
Frontiers in Cellular and Infection Microbiology 09
tuberculosis infection (Wang et al., 2003). In the current work

we identified the involvement of 10 (RPL10A, RPS4X, RPS16,

RPS23, RPS3, RPS13, RPL7A, RPL4, RPS5 and RPS6) unique

ribosomal proteins in the active disease stage with high degree

of connectedness. However, the significance of these genes is

unclear and requires future studies. The hmPPI network

showed MAT2A of the host protein interacted with ten Mtb

proteins. MAT2A catalyse the conversion of L-methionine to

S-adenosyl-L-methionine in cysteine and methionine

metabolism. The Mtb protein partners also perform similar

function, for example MetK which is a methionine

adenosyltransferanse (Wang et al., 2003).
FIGURE 5

Protein-protein interaction network (hPPI) of the 2038 DEGs in the meta-analysis. The up-regulated genes are colored in red and down-
regulated genes are colored green. The edges are represented as orange lines.
FIGURE 6

Mtb-host protein-protein interaction network (hmPPI). The Mtb proteins are colored green and human proteins are colored in orange. The
edges are represented as blue lines.
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TABLE 5 List of drugs in DrugBank targeting DEGs in the meta-analysis.

DEG Fold
change

Drug name Pharmacological
action

Disease treated Mechanism of action

TSPO -1.5792 Chlormezanone
(DB01178)

Agonist Muscle spasms Inhibition of the ascending reticular activating system; Blocking the
cortical and limbic – reticular pathways.

Zopiclone (DB01198) Agonist Insomnia Inhibitory actions of GABA.

FYN 1.5683 Fostamatinib*
(DB12010)

Inhibitor Immune
thrombocytopenia

LRRK2 and spleen tyrosine kinase inhibition.

Dasatinib* (DB01254) Multitarget Chronic myeloid
leukemia

Src family tyrosine kinase inhibitor.

C5 -1.5903 Human
immunoglobulin G
(DB00028)

Binder Immunodeficiency;
Autoimmune
disorders

Prevent infection by attaching to the surface of invading pathogens and
aiding in their disposal before they can infect cells.

Eculizumab
(DB01257)

Antibody Autoimmune
disorders

Inhibition of complement complex C5b-9.

TNFSF13B -2.0145 Belimumab
(DB08879)

Neutralizer Systemic lupus
erythematosus; Active
lupus nephritis

Blocks its interaction with B cell receptors - transmembrane activator
and calcium-modulator.

ABCB1 1.6387 Medroxyprogesterone
acetate

Inhibitor Secondary
amenorrhea; Renal
carcinomas

Production of gonadotropin inhibition.

Fentanyl
(DB00813)

Inhibitor Anesthesia Inhibition of nerve activity.

Voacamine
(DB04877)

Inhibitor Multidrug-resistance
in tumor cells

It is possibly a substrate for P-glycoprotein (P-gp), an efflux pump
responsible for multidrug resistance in tumor cells.

Tocofersolan
(DB11635)

Antagonist Vitamin E
deficiencies

It acts as a free radical chain breaking molecule, halting the
peroxidation of polyunsaturated fatty acids and maintaining both the
stability and integrity of cell membranes.

Hycanthone
(DB14061)

Inhibitor Schistosomiasis

Concanamycin A
(DB14062)

Inhibitor Fungal infection Binds to specific cell-surface receptors.

Dexverapamil*
(DB14063)

Inhibitor Cardiac arrhythmias Anti-arrhythmia drugs are divided into four main groups: calcium
channel blockers; beta-adrenergic blockers; sodium channel blockers;
and repolarization prolongers.

Emopamil*
(DB14064)

Inhibitor Renal injury

Lomerizine
(DB14065)

Inhibitor Migraines Inhibition of calcium influx through cellular membranes.

Tetrandrine*
(DB14066)

Inhibitor Immunosuppression;
Proliferation

Inhibition of calcium influx through cellular membranes.

Dofequidar
(DB14067)

Inhibitor Neoplasm Inhibits or prevents the proliferation of NEOPLASM.

Dexniguldipine
(DB14068)

Inhibitor Hypertension It exhibited a binding affinity for P-glycoprotein, assuming it could
impede P-glycoprotein pumping and modify multidrug resistance.

Desmethylsertraline
(DB14071)

Inhibitor Depressive disorder

Reversin 121
(DB14072)

Inhibitor

FCGR1B -2.2365 Human
immunoglobulin G*
(DB00028)

Antagonist Immunodeficiency;
Autoimmune
disorders.

Blocks gamma Fc receptors, preventing the binding and ingestion of
phagocytes and suppressing platelet depletion.

MYC 1.5067 Aspirin* (DB00945) Down regulator Inflammation;
Migraines;
Cardiovascular events

Blocks prostaglandin synthesis; With high dose for COX-2 inhibition.

(Continued)
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The meta-analysis identified the involvement of various

kinases in active TB. The drug bank list also narrowed down

few drugs acting on kinases. Various classes of tyrosine kinase

inhibitors exhibit distinct mechanism of action to inhibit

phagocytosis of tubercle bacilli in dose and time-dependent
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manner. Early studies have proven that tyrosine kinase

inhibitors including Dasatinib, Bosutinib, Imatinib, Nilotinib,

Ponatinib, Nintedanib, Fostamatinib and Tirbanibulin reduce

the growth of intracellular Mtb. The ligation of complement

receptors by Mtb plays a major role in stimulation of tyrosine

phosphorylation (Schlesinger and DesJardin, 2022). Focusing on

drugs targeting these proteins can act as a starting point for the

development of host mediated drug repurposing studies. The

genetic-variant analysis recognized genes contributing to drug

resistance such as ABCB1 (Pontual et al., 2017) and susceptibility

to latent tuberculosis such as SP110 and OAS1 (Chang et al., 2018;

Leisching et al., 2019). Analyzing the genetic variants of the

tuberculosis patients before starting any treatment regimens is

highly suggested to prevent late stage failures.
Conclusion

The current study focuses on meta-analysis and highlights

host genes and pathways crucial for tuberculosis disease. The

DEGs identified in the current work shed light on promising

drug targets for host-directed repurposing therapies. The work

also suggests considering the genetic variants associated with the

TB-related genes to enhance the success rate of therapies in

individuals affected with tuberculosis. Future studies assessing

the behavior of the identified DEGs during and after the

treatment can ascertain their involvement in the disease

pathogenesis and progression.
Data availability statement

The datasets presented in this study can be found in online

repositories. The names of the repository/repositories and accession

number(s) can be found in the article/Supplementary Material.
Author contributions

Collected data, Implemented the analysis and Manuscript

writing: NP. Conceived and designed the analysis: MA. All

authors contributed to the article and approved the

submitted version.
TABLE 5 Continued

DEG Fold
change

Drug name Pharmacological
action

Disease treated Mechanism of action

Nadroparin*
(DB08813)

Inhibitor Prophylaxis of
thrombotic events

It inhibits coagulation cascade.

S1PR1 2.0215 Fingolimod*
(DB08868)

Modulator Multiple sclerosis To reduced lymphocyte circulation into the central nervous system.
*used for tuberculosis via varying mechanism.
TABLE 6 List of DEGs proximal to TB-associated SNPs.

DEG SNP associated with the gene

ABCB1 rs1128503, rs1045642

ACSS1 rs6138553

ACTA2 rs1800682

BLK rs2254546

CCR7 rs11659024

CD5 rs10897125

CD6 rs10897125

CIRBP rs2285899

COX19 rs11761941

CSTA rs10934559

ENTPD1 rs10882657

FAS rs1800682

FBXO31 rs10779243

GBP2 rs12121223

GBP5 rs2146340

GMFG rs10412931

HLA-DPA1 rs3129750

KIF1B rs11121555

LAP3 rs10939733

MDC1 rs1317834

MICB rs2532929

OAS1 rs10774671

PBX4 rs1859287

PGD rs11121555

PSMB10 rs12102971

PSMB8 rs3129750

PSMB9 rs3129750

SCO2 rs12148

SP110 rs3948464

TAP1 rs3129750

TAP2 rs3129750

TIMM10 rs2649662

WDR6 rs1134591
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