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Abstract

Stem cell paracrine activity is implicated in cardiac repair. Linkage between secretome

functionality and therapeutic outcome was here interrogated by systems analytics of

biobanked human cardiopoietic cells, a regenerative biologic in advanced clinical trials.

Protein chip array identified 155 proteins differentially secreted by cardiopoietic cells

with clinical benefit, expanded into a 520 node network, collectively revealing inher-

ent vasculogenic properties along with cardiac and smooth muscle differentiation and

development. Next generation RNA sequencing, refined by pathway analysis,

pinpointed miR-146 dependent regulation upstream of the decoded secretome. Intra-

cellular and extracellular integration unmasked commonality across cardio-

vasculogenic processes. Mirroring the secretome pattern, infarcted hearts benefiting

from cardiopoietic cell therapy restored the disease proteome engaging cardiovascular

system functions. The cardiopoietic cell secretome thus confers a therapeutic

molecular imprint on recipient hearts, with response informed by predictive systems

profiling.
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Significance statement

The secretome of clinical trial-biobanked cardiopoietic cells was here decoded. The mined

(cardiomyo)vasculogenic systems signature was echoed in the response of cell recipients

demonstrating disease rescue. The present clinomics study links innate secretome traits with

outcome.

1 | INTRODUCTION

Cardiopoietic cells, developed for ischemic heart failure treatment, have

reached clinical testing, showing promise in select patient populations.1-4

While mode of action remains uncertain for stem cell-based therapies,

limited integration of delivered cells into infarcted hearts suggests para-

crine contribution.5,6 The association of therapeutic outcome with

cardiopoietic cell secretome identity remains, however, unexplored.

Mixed results observed in stem cell clinical trials provide an oppor-

tunity to probe for determinants of outcome.7,8 Here, leveraging high

vs low response cohorts, a systems interrogation of the composition

and functionality of the differential cardiopoietic cell secretome were

surveyed, in tandem with upstream intracellular regulators induced by

the cardiopoiesis process. Reverse translational decoding offered

insight into the paracrine imprint underlying therapeutic benefit.

2 | MATERIALS AND METHODS

2.1 | Cells

Under regulatory and ethics approval, cardiopoietic cells were generated

from recombinant growth factor cocktail-primed bone marrow mesen-

chymal stromal cells.9 Derived progeny were immunoprobed for cardiac

transcription factor expression to authenticate cellular phenotype

purity.10 Cell donors were patients with documented ischemic heart fail-

ure, receiving optimal standard-of-care therapy and undergoing clinical

trial evaluation, including demographics and comorbidity profiling with

ejection fraction on echocardiography used as an efficacy readout.9 Ali-

quots from ≥5 distinct cell lines, fulfilling predetermined trial quality

release criteria, were biobanked and processed to isolate total RNA for

microRNA (miRNA) profiling or cultured to yield conditioned media col-

lected for protein array scanning of secretome. Primary analysis and vali-

dation were conducted in independent and investigator-blinded fashion.

2.2 | Molecular profiling

Following cardiopoietic induction,9 cells at ≈80% confluency were

washed and incubated 48 hours without serum. Cell viability was

assessed by morphology and Trypan blue exclusion. Centrifugation-

derived (1000g, 10 minutes) conditioned media supernatant was dia-

lyzed against PBS (1:2500) prior to secretome analysis by protein chip

array (RayBio Human Antibody Array L507; RayBiotech), quantified on

a GenePix 4000B scanner with output normalized to corresponding

cell total protein content. Small RNA libraries were prepared from total

RNA (NEBNext Multiplex Small RNA Kit, New England Biolabs),

reverse transcribed into a cDNA library, amplified, and assessed for

miRNA by next generation sequencing. Libraries were sequenced

(Illumina HiSeq 2000, TruSeq SBS sequencing kit), base-calling per-

formed (Illumina RTA v.1.12.4.2), aligned to the reference genome

hg19 and miRBase (Bowtie), and quantified (miRDeep2). With low read

miRNAs filtered, differential expression was conducted (edgeR) using

Benjamini-Hochberg false discovery rate (B-H FDR) correction and

agglomeratively clustered (ClustVis, https://biit.cs.ut.ee/clustvis/).

2.3 | Pathway and network analysis

Differential secretome was interrogated by Ingenuity Pathway Analysis

(IPA) for functional sub-annotations, upstream regulators, and network

generation. Significance was calculated using Fisher's exact test with B-H

FDR correction, and z-score transformed as appropriate. Collective eval-

uation was carried out at network level using IPA for functional annota-

tion, with network interactions exported to Cytoscape (v.3.8.2) for node

topology parameter assessment using NetworkAnalyzer11 and Bioinfor-

matic Network Gene Ontology (BiNGO) to interpret ontological enrich-

ment of biological processes.12 Pairwise interactions were visualized as

an undirected adjacency matrix using the Python package Seaborn.

2.4 | Infarcted heart assessment

With Institutional Animal Care and Use Committee approval, nude mice

were infarcted and at 1-month postinfarction randomized into

untreated or cardiopoietic cell treated cohorts. One-month post-ran-

domization, multi-parametric outcomes measured in blinded fashion

included: left ventricular structure and ejection fraction (EF) by 2D

B-mode echocardiography13; degree and extent of akinesis using myo-

cardial deformation imaging14 (Vevo Strain and Python); plasma N-

terminal pro-atrial natriuretic peptide (NT-proANP, BI-2089, Bio-

Medica) level; and CD31 (AF3628, R&D) plus 40,6-diamidino-

2-phenylindole (DAPI, H-1200-10, VECTASHIELD) staining.15 Signifi-

cance (P < .05) was evaluated by nonparametric Mann-Whitney U test

and repeated measures ANOVA. Proteome was extracted from disease

severity titrated infarcted hearts,16 and analyzed by label-free peptide
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F IGURE 1 Cardiopoietic secretome harbors pro-cardiovasculogenic traits. A, Conditioned media was assessed by biotin labeling on a
507 protein streptavidin-conjugated fluorescent chip array, indicating that effective cardiopoietic cells secreted 155 differentially expressed
proteins at >2-fold change (107 upregulated—orange; 48 downregulated—blue). B, Ingenuity Pathway Analysis (IPA) for enriched cardiovascular
developmental functions revealed vascular development, angiogenesis, vasculogenesis, and multiple endothelial cell (EC) functions as prioritized
annotations associated with the differential secretome, with positive z-scores representing increased likelihood of activation and negative scores
increased likelihood of inhibition. C, IPA integration of the differential secretome generated an interaction network comprising 520 nodes,
clustered along matrix axes by inclusion basis (colored bars), with 8977 pairwise connections (edges) denoted as black squares. Node names and

topological properties are listed in supporting Table S1. The top 10 IPA cardiovascular system development functional annotations associated
with the network were angiogenesis, vascular development, vasculogenesis, EC interaction, EC binding, endothelial tissue development,
cardiovascular tissue development, vascular EC interaction, EC development, and EC adhesion (all P < 1 � 10�14). D, In parallel, network
assessment by Biological Network Gene Ontology (BiNGO) to prioritize enriched biological processes, using hypergeometric distribution with
Benjamini-Hochberg false discovery rate correction, revealed a 660 node hierarchical ontology network, with 583 significantly enriched
(P < .001), and the top 100 presented in supporting Table S2. E, Enriched cardiovascular biological processes within the BiNGO analysis relate to
vascular, angiogenic, and smooth and cardiac muscle development (Positive regulation = + Reg.)
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F IGURE 2 Cardiopoietic secretome miRNA regulators. A, Differential secretome interrogation by Ingenuity Pathway Analysis identified

65 miRNAs as upstream candidate regulators induced by the cardiopoietic process, with individual identities rank ordered by corresponding
enrichment P-value. B, Independently, the miRNA makeup of high vs low response cardiopoietic cells was evaluated by miRNA-Seq detecting
447 discrete miRNAs, of which 17 were differentially expressed at >1.5-fold change, P < .05, as visualized by volcano plot (B, upper, with
11 upregulated—orange; 6 downregulated—blue). Differential miRNA clustering segregated high vs low response cardiopoietic cells (hrCP and
lrCP, respectively), as visualized by agglomerative hierarchical heatmap (B, lower, with differentially expressed miRNAs listed). For each miRNA, z-
scores represent intensity for individual samples normalized to mean intensity. C, Overlap between the 65 candidate miRNA regulators of the
secretome (blue) and the 17 differentially expressed miRNAs of hrCP (red) revealed a subset of 4 shared miRNAs, visualized by Venn diagram.
miR-146, 146a-5p/146b-5p (black ellipse) exhibited consistent directionality, with observed downregulation in miRNA-Seq and predicted
inhibition based on the secretome profile. In fact, it presented as the most extensively enriched (miR-146, P = 9.27 � 10�10) of predicted
upstream miRNA regulators and had the greatest extent of observed downregulated change (miR-146b-5p, 2.84-fold, P = 5.97 � 10�3) among
cohorts
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quantification following nano-flow liquid chromatography electrospray

tandem mass spectrometry.17 Protein identities were assigned and

quantified using MaxQuant v.1.5.1.2, and differential expression calcu-

lated by two-sided ANOVA with Gaussian linked function using R.17

Cohort level differences were evaluated in IPA, using Fisher's exact test

with B-H FDR correction to identify enriched cardiac adverse effects

and prioritized cardiovascular system development functions.

3 | RESULTS

3.1 | Cardiopoietic cell secretome

Profiled by chip array, conditioned media revealed 155 proteins differ-

entially released (>2-fold up or down; Figure 1A) from clinical trial bio-

banked cardiopoietic cells with high vs low therapeutic response.9

Differential secretome pathway analysis prioritized, within cardiovascu-

lar system development and functions, activation of vasculogenic, angio-

genic, and endothelial cell development (Figure 1B). Cohesiveness of

vascular functionality was further demonstrated within the integrated

secretome network (Figure 1C; supporting Table S1). Neovasculogenesis

and smooth/cardiac muscle development were also prioritized from car-

diovascular biological process enrichment (Figure 1D,E; supporting

Table S2). Thus, cardiopoietic cells with higher efficacy exhibit a dis-

tinguishing secretome signature, with cardio-vasculogenic functionality

predicted at the protein and expanded network levels.

3.2 | Integrated miRNome confers secretome
functionality

Secretome upstream analysis projected 65 miRNAs as potential regu-

lators (Figure 2A). Out of 447 miRNAs detected by next-generation

sequencing, 17 were differentially expressed (>1.5-fold up or down,

P < .05; Figure 2B upper) segregating high vs low response

cardiopoietic cells (Figure 2B, lower). Among four miRNAs that over-

lapped between predicted (Figure 2C, blue) and observed (Figure 2C,

red) regulators, only the miR-146 family exhibited consistent

directionality of expression change (Figure 2C, black ellipse) with most

significant P-value (Figure 2A) and greatest downregulation

(Figure 2B). Notably, miR-146a-5p and miR-146b-5p share a seed

sequence and common gene targets.18 The downregulated miR-146

cluster linked to a 14-protein directed network, characterized by acti-

vation of NFκB, STAT1/6 and CREB1 transcription pathways

(Figure 3A upper). The miR-146 dependent cassette was linked down-

stream with 101 of the 155 protein differential secretome (Figure 3A

lower), yielding a 430 node extended neighborhood (Figure 3B;

supporting Table S3). Accordingly, the miR-146 dependent network

encompassed enrichment consistent with prioritized cardio-

vasculogenesis of the full secretome (Figure 3C and Figure 3D;

supporting Table S4). Conversely, the miR-146 independent 54 pro-

teins of the differential secretome lacked this signature (Figure 3D).

Thus, systems interrogation specifies integration of miRNome and

secretome functionality in high response cardiopoietic cells.

3.3 | Favorable outcome reflects pro-
cardiovasculogenic impact

In murine infarcted hearts with altered myocardial proteome

(Figure 4A), delivery of human cardiopoietic cells improved cardiac

performance (n = 34) in contrast to untreated counterparts (n = 28;

Figure 4B). Compared with untreated, high (ΔEF >4%; hrCP) vs low

(ΔEF <0%; lrCP) response treated hearts displayed greater proteome

adjustments, with 154 proteins up and 227 down in hrCP vs 134 up

and 151 down in lrCP, beyond the 280 proteins commonly altered

(Figure 4C). Adverse outcomes of infarcted proteome were projected

to be countered in hrCP and lrCP cohorts (Figure 4D). Notably, how-

ever, the hrCP reformed proteome was distinguished from lrCP by

enhanced aptitude to engage across enriched cardiovascular system

functions (Figure 4E). hrCP superiority was supported by documented

improvement in cardiac pump function and reversal of chamber

enlargement, with reductions in a heart failure biomarker and wall

thinning (Figure 4F-I), achieving reverse remodeling of ischemic car-

diomyopathy. In hrCP relative to lrCP, regional mapping unveiled

CD31+ tissue, greater contractility, and reduced akinetic scar,14

F IGURE 3 Secretome functionality concentrated within the miR-146 dependent sub-secretome. (A) Pathway interrogation pinpointed miR-
146 at the apex of a 14-protein network upstream of the secretome (A, upper) comprising interdependent transcriptional regulators (TNFα;
CREB1; PPARγ; CCL5; IRF8; STAT1; STAT3; STAT6; and the NFκB complex, including NFκB1, NFκBIA, NFκBIB, and RELA) predicted to be
activated or inhibited (orange or blue, respectively). Each node of the miR-146 directed network regulates one or more downstream components
of a cardiopoietic sub-secretome (A, lower), comprising 65% of the overall differential secretome (101 of 155 proteins), with protein increase or
decrease shown (red or green, respectively). B, Integrating the 101 protein miR-146 dependent sub-secretome into an expanded interaction
neighborhood generated a 430 node network, clustered along matrix axes by inclusion basis (colored bars), connected by 6755 interactions
(edges) shown as black squares. Network node names and topological parameters are listed in supporting Table S3. C, BiNGO analysis of the miR-
146 dependent secretome network yielded 558 significantly enriched terms (P < .001; with the top 100 listed in supporting Table S4), and
revealed enriched cardiovascular biological processes related to vascular, angiogenic, and smooth/cardiac muscle development (Positive
regulation = + Reg.). D, Enriched cardiovascular system development and functions of the full secretome (orange) and the miR-146 dependent
(blue) and independent (yellow) sub-secretomes indicated that proteins responsible for pro-cardiovasculogenic functionality were largely

contained within the miR-146 dependent subset. Indeed, this sub-secretome included 77%-100% of proteins associated with individual enriched
cardiovascular functions within the full secretome
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indicating myocardial viability (Figure 4J-M). Thus, responsiveness of

treated hearts reflected functionality inherent to the cardiopoietic cell

secretome.

4 | DISCUSSION

Heterogeneity in regenerative outcome is multifactorial.19,20 While genetic

and structural determinants intrinsic to recipient hearts are recognized,

less is known regarding stem cell characteristics governing therapeutic

effectiveness.16,21,22 We explored here, at systems level, cardiopoietic cell

imprints that segregate with benefit. Merging multi-omics datasets pro-

vides inclusive, unbiased strategies enabling functional prioritization of

complex multidimensional outputs.23 Systems integration of a (cardio)vas-

culogenic secretome, arising from a distinct intracellular miRNA profile,

distinguished cardiopoietic cells endowed with enhanced capacity. This is

concordant with miRNA centrality in regulating regenerative and cardi-

oprotective capacity.24,25 Downregulation of miR-146a-5p or miR-146b-

5p alters paracrine-mediated immunomodulatory outcomes in cardiac sig-

naling and facilitates repair postinfarction.26,27 The present study supports

the notion that secretome proficiency contributes to rescue of organ fail-

ure.28-34 Indeed, paracrine functionality was echoed in proteome restora-

tion, underscoring connectivity between secretome signature and realized

regenerative efficacy. Predelivery molecular profiling would thus aid in

forecasting suitability of paracrine action. Moreover, assessment of the

interaction of transplanted cells with recipient tissue, in conjunction with

pharmaco-kinetic/dynamic secretome behavior, would further advance

the translational readiness of paracrine-based biotherapy.

5 | CONCLUSION

This proof-of-concept study suggests that therapeutic fitness is

inherent to the cardiopoietic cell secretome. Pre-intervention

profiling would offer a predictive strategy to optimize cardio-

regenerative biologics, refined by understanding secretome fate

postdelivery.
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