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Abstract: The present study characterizes the flow of three-dimensional viscoelastic
magnetohydrodynamic (MHD) nanofluids flow with entropy generation analysis past an
exponentially permeable stretched surface with simultaneous impacts of chemical reaction and
heat generation/absorption. The analysis was conducted with additional effects nonlinear thermal
radiation and convective heat and mass boundary conditions. Apposite transformations were
considered to transform the presented mathematical model to a system of differential equations.
Analytical solutions of the proposed model were developed via a well-known homotopy analysis
scheme. The numerically calculated values of the dimensionless drag coefficient, local Nusselt number,
and mass transfer Nusselt number are presented, with physical insights. The graphs depicting the
consequences of numerous parameters on involved distributions with requisite deliberations were
also a part of this model. It is seen that the Bejan number is an increasing function of the thermal
radiation parameter.

Keywords: entropy generation; chemical species; nonlinear thermal radiation; exponential
stretched surface

1. Introduction

Rapid growth in the usage of nanofluids in varied engineering arenas such as cancer therapy, finer
coolants in nuclear reactors and computers, numerous electronic devices in military sectors [1], oil and
water [2,3], rapid spry cooling, the food industry, vehicles and transformers, polymer extrusion, safe
surgeries, quenching in foundries, and glass blowing [4] have encouraged scientists and researchers
to scrutinize the numerous aspects of nanofluid flow past different geometries. Nanofluids are an
amalgamation of nanoparticles of size < 100 nm (i.e., metals, nitrides, carbides, and nanotubes (single
or multiwalled)) and orthodox fluids such as water, toluene, engine, kerosene oil, ethylene and
triethylene glycol. Nanofluids are considered to be the best coolants in all engineering applications.
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It was Choi [5] who experimentally revealed that nanofluids possess enhanced thermal conductivity.
Afterward, Buongiorno [6] framed a model pointing out that the heat transfer process is triggered in
the case of nanofluids due to thermophoretic diffusion and the Brownian motion of nanoparticles.
Later, Khan and Pop [7] discussed nanofluid flow past a stretched surface. Makinde and Aziz
supported this model through convective boundary conditions over a stretched surface [8]. The
impact of radiative nanoparticle flow with Lorentz force past a spongy semi annulus region was
investigated by Sheikholeslami et al. [9]. Li et al. [10] examined the effect of adding nanoparticles in
the process of solidification of Nano-enhanced phase change material (NEPCM) in the presence of
thermal radiation. The flow of water-based nanofluid containing carbon nanotubes past a permeable
medium with the effects of Darcy–Forchheimer was deliberated by Muhammad et al. [11]. Lu et al. [12]
pondered on the flow of micropolar nanofluids in the presence of magnetohydrodynamic (MHD),
homogeneous-heterogeneous reactions, mixed convection, and thermal radiation past a nonlinear
stretched surface, numerically. The combined impacts of Arrhenius activation energy with heat and
mass stratification on micropolar nanofluid flow in the presence of binary chemical reactions was
studied by Ramzan et al. [13]. Lu et al. [14] did a tremendous study considering the three-layer vertical
nanofluid model following a Buongiorno scheme. Li et al. [15], using Finite Element method (FEM),
calculated the influence of the transportation of nanoparticles in a permeable enclosure due to electric
force. Recently, some studies have discussed the applications of nanofluids in varied fields such as
electrokinetic transport [16], heat transfer [17], and mass transfer [18].

The inevitable and dynamic applications of MHD nanofluids (e.g., wound treatment, gastric
medications, targeted drug release, sterilized devices, magnetic resonance imagining (MRI), asthma
treatment, and removal of tumors with hyperthermia) have attracted the attention of scientists and
researchers in studying the related field of nanofluids. Sheikholeslami [19] deliberated the flow of
copper oxide-water nanofluids in a spongy channel due to magnetic field effects using the Lattice
Boltzmann method (LBM) method. In a recent article, Lu et al. [20] envisaged the model of MHD
Carreau nanofluid flow over a radially stretching surface with allied impacts of nonlinear thermal
radiation with newly established zero mass flux boundary conditions. They solved the proposed
model numerically by engaging the MATLAB bvp4c function. The simultaneous influences of thermal
radiation and Cattaneo–Christov heat flux (instead of conventional Fourier’s law of heat conduction)
on the MHD nanofluid flow between two parallel plates were examined by Dogonchi and Ganji [21].
They found an analytical solution to the suggested problem by using the Duan–Rach approach
(DRA), which facilitates finding undetermined coefficients without the help of numerical techniques.
Sheikholeslami [22] deliberated the MHD non-Darcy nanofluid flow in a permeable cubic enclosure
using the LBM (lattice Boltzmann method) and highlighted that the Nusselt number is an escalating
function of permeability and buoyancy forces. Keeping in mind the applications of nanofluid flow
in the attendance of magnetohydrodynamics, some featured recent explorations [23–27] have been
added to the literature review.

The study of heat and mass transfer of nanofluid flows with chemical reactions past stretched
surfaces has numerous significant applications in core industries such as chemical and metallurgical
engineering. Examples include polymer production and food processing. Furthermore, heat and mass
transfer models with chemical reaction effects are vital in several processes and have gained attention
in recent years. Fascinating applications pertaining to chemical reactions embrace the distribution
of temperature and moisture over agricultural fields and groves of fruit trees, the energy transfer of
drying and evaporation at the surface of a water body, and the energy transfer of a wet cooling tower.
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Entropy is pronounced the nonavailability of the system’s thermal energy for translation into
mechanical work. The second law of thermodynamics asserts that throughout the process of conversion
of energy into some beneficial work, there is forfeiture of energy that lowers the performance of
energy conservation gadgets. Basically, entropy generation is directly proportionate to a loss of
energy. Subsequently, entropy generation in a system results in the reduction of the quantity of
energy present (exergy). Thus, the efficiency of the thermal system may be enhanced by slashing the
entropy generation. In this regard, it is necessary to have the idea of energy generation’s distribution
throughout a thermodynamic process with the intention of reduction in entropy generation. The idea of
entropy generation was first floated by Bejan [28], who examined the reason for energy generation in a
convective heat transfer model. The analysis of entropy generation in viscous fluid flow with an impact
of suction and injection past a flat surface was conducted by Reveillere and Baytas [29]. The flow of
MHD nanofluid past a spongy narrow vertical channel under the influences of nonlinear thermal
radiation, entropy generation, and convective boundary conditions was considered by Lopez et al. [30].
Sheikholeslami [31] deliberated the analysis of exergy and entropy under the influence of Lorentz
force past a permeable medium using a new numerical scheme, Control volume finite element method
(CVFEM). Some useful recent explorations may be found in References [32–36].

The significance of non-Newtonian fluids cannot be denied due to their involvement in varied
engineering and industrial applications such as petroleum production, the thinning of copper wires,
and plastic manufacturing [37]. To exhibit such models, Naiver–Stokes equations are not enough since
a single constitutive relation does not portray the core requirements of non-Newtonian fluids. That is
why several discrete models have been proposed in the literature. Among these, viscoelastic fluid is the
differential-type non-Newtonian fluid model that is simplest on its own and exhibits the characteristics
of normal stress and shear rate viscosity. Hayat et al. [38] examined the flow of 3D viscoelastic
nanofluid over an exponential stretched surface with mixed convection. The 3D viscoelastic nanofluid
flow with nonlinear thermal radiation near a stagnation point was discussed by Farooq et al. [39].
Ramzan et al. [40–42] deliberated the flow of 3D viscoelastic nanofluid flow with the impacts of
Newtonian heating, chemical reaction and MHD, and Soret–Dufour effects. The 3D flow of viscoelastic
flow with temperature-dependent thermal conductivity was deliberated by Alsaedi et al. [43]. Some
recent attempts considering viscoelastic fluids can be seen in References [44,45].

The literature review above indicates that few studies have been made on three-dimensional
viscoelastic nanofluid flows associated with entropy generation and nonlinear thermal radiation past
an exponential stretched surface. Therefore, we present our study on such an investigation by solving
the proposed model analytically with three dimensionless distributions (Section 2) and examining the
effects of different parameters (Section 5).

2. Mathematical Modeling

We considered the flow of MHD viscoelastic nanofluid past a permeable exponentially stretched
surface with entropy generation. The analysis was performed in the attendance of nonlinear thermal
radiation, chemical reaction, and heat generation and absorption with convective heat and mass
boundary conditions. The magnetic field was applied parallel to the z axis. The Hall and electric field
effects were overlooked. The induced magnetic field was also ignored due to our assumption of a
small Reynolds number. The permeable surface was stretched in both the x and y directions with
respective velocities Uw and Vw, as shown in Figure 1.
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subjected to the boundary conditions

u = Uw = U0e
x+y

L ; v = Vw = V0e
x+y

L , w = 0,
−k ∂T

∂z = h f (Tf − T), −DB
∂C
∂z = hs(Cs − C) at z = 0

u→ 0, v→ 0, T → T∞ , C → C∞ → as→ z→ ∞.
(6)

The surface stretching velocities, temperature, and concentration of the wall were given by

Uw = U0e
x+y

L ; Vw = V0e
x+y

L ; Tw = Tf = T∞ + T0e
A(x+y)

L

Cw = Cs = C∞ + C0e
B(x+y)

L .
(7)

The transformations are presented as given below:

u = U0e
x+y

L f ′(η), v = U0e
x+y

L g′(η), w = −
√

vU0
2L e

x+y
L ( f + η f ′ + g + ηg′),

T = T∞ + T0e
A(x+y)

2L θ(η), C = C∞ + C0e
B(x+y)

2L φ(η), η =
√

U0
2vL e

x+y
L z.

(8)

Equation (1) was satisfied automatically, whereas Equations (2)–(5) took the form

f ′′′ + ( f + g) f ′′ − 2( f ′ + g′) f ′ − K(6 f ′′′ f ′ + (3g′′ − 3 f ′′ + ηg′′′ ) f ′′ + (4g′ + 2ηg′′ ) f ′′′ )
−( f + g + ηg′) f ′′′′ )−M2 f ′ = 0,

(9)
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g′′′ + ( f + g)g′′ − 2( f ′ + g′)g′ − K(6g′′′ g′ + (3 f ′′ − 3g′′ + η f ′′′ )g′′ + (4 f ′ + 2η f ′′ )g′′′ )
−( f + g + η f ′) f ′′′′ −M2g′ = 0,

(10)

θ′′ + Pr(( f + g)θ′ − A( f ′ + g′)θ + Nbθ′φ′ + Ntθ
′2 + Rd( 4

3 θ′′ + 4(θw − 1)2θ2θ′′

+4(θw − 1)θθ′′ + 8(θw − 1)θ + 8(θw − 1)θθ′2 + 4θ′2 + 4(θw − 1)2θ2θ′2

+ 4
3 (θw − 1)3θ3θ′′ + PrQθ = 0,

(11)

φ′′ + LePr( f + g)φ′ − BLePr( f ′ + g′)φ +
Nt

Nb
θ′′ − PrLeγφ = 0, (12)

subject to the transformed boundary conditions

f = 0, g = 0, f ′ = 1, g′ = β, θ′ = − λ1(1− θ(0)), φ′ = − λ2(1− φ(0)), at η = 0
f ′ → 0, g′ → 0, θ → 0, φ→ 0 as η → ∞.

(13)

The parameters given in Equations (9)–(12) are defined as follows:

K = k0Uw
2νL , β = V0

U0
, M2 = 2σB0

2L
ρUw

, Pr = ν
α , Nb =

(ρc)pDB(Cw−C∞)

(ρc) f ν
,

Nt =
(ρc)pDT(Tw−T∞)

(ρc) f νT∞
, Le = α

DB
, θw = Tw

T∞
, Rd = 4σ∗ T∞

3

3k∗k1
, γ =

h f
k

√
ν
α .

(14)

Skin Friction Coefficient and Local Nusselt and Sherwood Numbers

The equations of the skin friction coefficients along the x and y directions were given by

C f x =
τwx

1/2ρU2
w
=

(u ∂u
∂z + α1(u ∂2

u
∂x∂z + v ∂2

u
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∂x −
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∂z

∂u
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1/2ρU2
w

, (15)

C f y =
τwx

1/2ρU2
w
=

(u ∂y
∂z + α1(u ∂2

v
∂x∂z + v ∂2

v
∂y∂z + w ∂2

v
∂z2 +

∂u
∂z

∂u
∂y + ∂v

∂z
∂v
∂y −

∂w
∂z

∂v
∂z ))|z=0

1/2ρU2
w

. (16)

The equations of the skin friction coefficients in dimensionless form were given by

C f x = (
Re
2
)
− 1

2
( f ′′ + K(−( f + g) f ′′′ + 5( f ′ + g′) f ′′ + 2 f ′ f ′′ + 2g′g′′ ))|η=0, (17)

C f y = (
Re
2
)
− 1

2
(′′+K(−( f + g) f ′′′ + 5( f ′ + g′)g′′ + 2 f ′ f ′′ + 2g′g′′ ))|η=0, (18)

and the rates of heat and mass transfers in dimensionless forms were appended

Nux = − x
(Tw − T∞)

(
∂T
∂z

)|z=0 = − x
L
(

Re
2
)

1
2
θ′(0), (19)

Shx = − x
(Cw − C∞)

(
∂C
∂z

)|z=0 = − x
L
(

Re
2
)

1
2
φ′(0). (20)

3. Convergence Analysis

The convergence of the series solutions was adjusted and regulated with the aid of auxiliary
parameters }f,}g,}θ, and }∅. For tolerable ranges, }-curves were drawn and are given in Figure 2.
These admissible ranges were }f,}g,}θ, and }φ, which were −1.85 � }f � −0.70, −1.85 � }f �
−0.70, −1.80 � }g � −0.90, −1.80 � }θ � −0.70, and −1.80 � }φ � −0.70. These values were
corroborated by the numerical values given in Table 1.
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Table 1. Series solution convergence for varied orders of approximations when λ = 0.1, Nb = 0.5,
Nt = 0.3, K = 0.2, M = 0.3, Le = 1, Pr = 1.2, Rd = 0.2, A = B = 0.1.

Order of Approximation −f”(0) −g”(0) −θ
′
(0) −φ(0)

1 1.19588 0.12037 0.16113 0.16180
3 1.37115 0.13887 0.15382 0.15745
7 1.42903 0.14518 0.14911 0.15586
10 1.45762 0.14852 0.14206 0.15476
13 1.46000 0.14883 0.13937 0.15471
14 1.46000 0.14883 0.13798 0.15460
15 1.46000 0.14883 0.13796 0.15460
18 1.46000 0.14883 0.13796 0.15460

3.1. Homotopic Solutions

The homotopy analysis method necessitated the initial guesstimates ( f0, g0, θ0, φ0) with auxiliary
linear operators (L f , Lg, Lθ , Lφ) in the form [43]

f0(η) = 1− e−η , g0(η) = λ(1− e−η), θ0(η) =
γ

1 + γ
e−η , φ0(η) =

γ

1 + γ
e−η , (21)

L f = f ′′′ − f ′, Lg = g′′′−g′, Lθ = θ′′ − θ, Lφ = φ′′ − φ (22)

These auxiliary linear operators possessed the ensuing features

L f (B1 + B2eη + B3e−η) = 0, Lg(B4 + B5eη + B6e−η) = 0,
Lθ(B7eη + B8e−η) = 0, Lφ(B9eη + B10e−η) = 0,

(23)

where Bi, i = 1− 10 are arbitrary constants.

3.2. Deformation Problems at Zeroth Order

Here,
(1− p)L f ( f̂ (η; p)− f0(η)) = p} f N f ( f̂ (η; p), ĝ(η; p)), (24)

(1− p)Lg(ĝ(η; p)− g0(η)) = p}gNg( f̂ (η; p), ĝ(η; p)), (25)

(1− p)Lθ(θ̂(η; p)− θ0(η)) = p}θ Nθ( f̂ (η; p), ĝ(η; p), θ̂(η; p), φ̂(η; p)), (26)



Entropy 2018, 20, 930 7 of 21

(1− p)Lφ(φ̂(η; p)− φ0(η)) = p}φNφ( f̂ (η; p), ĝ(η; p), θ̂(η; p), φ̂(η; p)), (27)

ĝ(0; p) = 0, f̂ ′(∞; p) = 0, ĝ′(∞; p) = 0, (28)

ĝ(0; p) = 0, ĝ′(0; p) = β, ĝ′(∞; p) = 0, (29)

θ̂(0; p) = −γ(1− θ̂(0; p)), θ̂(∞; p) = 0, φ(0; p) = Nbφ̂(0; p) + Ntθ̂(0; p), φ(∞; p) = 0, (30)

where }f,}g,}θ, and }φ characterize the nonzero convergence control parameters and p ∈ [0, 1]
specifies the embedding parameter, whereas the nonlinear operators N f , Ng, Nθ , and Nφ are
specified by

N f ( f̂ (η; p), ĝ(η; p)) =
∂3 f̂ (η; p)

∂η3 −M2 ∂ f̂ (η; p)
∂η

+ ( f̂ (η, p) + ĝ(η, p))
∂2 f̂ (η; p)

∂η2 −

2

(
∂ f̂ (η; p)

∂η
+

∂ĝ(η, p)
∂η

)
∂ f̂ (η, p)

∂η
−

K

(
6

∂ f̂ (η, p)
∂η

∂3 f (η, p)
∂η3 +

{
3

∂2 ĝ(η, p)
∂η2 − 3

∂2 f̂ (η, p)
∂η2 − 3

∂2 f̂ (η, p)
∂η2 + η

∂3 ĝ(η, p)
∂η3

}
∂2 f̂ (η; p)

∂η2 +

{
4

∂ĝ(η, p)
∂η

+ 2η
∂2 ĝ(η, p)

∂η2

}
∂3 f̂ (η; p)

∂η3

)
−
(

f̂ (η, p) + ĝ(η, p) + η
∂ĝ(η, p)

∂η

)
∂4 f̂ (η; p)

∂η4 ,

(31)

Ng(ĝ(η; p), ĝ(η; p)) =
∂3 ĝ(η; p)

∂η3 −M2 ∂ĝ(η; p)
∂η

+ ( f̂ (η, p) + ĝ(η, p))
∂2 ĝ(η; p)

∂η2 −

2

(
∂ f̂ (η; p)

∂η
+

∂ĝ(η, p)
∂η

)
∂ĝ(η, p)

∂η
−K
(

6
∂ĝ(η, p)

∂η

∂3 ĝ(η, p)
∂η3 +{

3
∂2 f̂ (η, p)

∂η2 − 3
∂2 ĝ(η, p)

∂η2 + η
∂3 f̂ (η, p)

∂η3

}
∂2 ĝ(η; p)

∂η2 +4

{
∂ f̂ (η, p)

∂η
+ 2η

∂2 f̂ (η, p)
∂η2

}
∂3 ĝ(η; p)

∂η3

)
−(

f̂ (η, p) + ĝ(η, p) + η
∂ f̂ (η, p)

∂η

)
∂4 ĝ(η; p)

∂η4 ,

(32)

Nθ( f̂ (η; p), ĝ(η; p), θ̂(η, p), φ̂(η, p)) =
∂2θ̂(η, p)

∂η2 + Pr( f̂ (η, p) + ĝ(η, p))
∂θ̂(η, p)

∂η

−APr

(
∂ f̂ (η; p)

∂η
+

∂ĝ(η, p)
∂η

)
θ̂(η, p) + NbPr

(
∂θ̂(η, p)

∂η

∂φ̂(η, p)
∂η

)
+ NtPr

(
∂θ̂(η, p)

∂η

)2

+
4
3

Rd(θw − 1)3θ̂3(η, p)
∂2θ̂(η, p)

∂η2 +
4
3

Rd
∂2θ̂(η, p)

∂η2 + 4Rd(θw − 1)θ̂2(η, p)
∂2θ̂(η, p)

∂η2

+4Rd(θw − 1)θ̂(η, p)
∂2θ̂(η, p)

∂η2 + 8Rd(θw − 1)θ̂(η, p)

(
∂θ̂(η, p)

∂η

)2

+

+4Rd

(
∂θ̂(η, p)

∂η

)2

+ 4Rd(θw − 1)2θ̂2(η, p)

(
∂θ̂(η, p)

∂η

)2

+ PrQθ̂(η, p),

(33)

Nφ( f̂ (η; p), ĝ(η; p), θ̂(η, p), φ̂(η, p)) =
∂2φ̂(η, p)

∂η2 + LePr
(

f̂ (η, p) + ĝ(η, p)
)

∂φ̂(η, p)
∂η

− BLePr(
∂ f̂ (η, p)

∂η
+

∂ĝ(η, p)
∂η

)φ̂(η, p) +
Nt
Nb

∂2θ̂(η, p)
∂η2 +

Nt
Nb

∂2θ̂(η, p)
∂η2 − PrLeφ̂(η, p).

(34)

For p = 0 and p = 1, we get

f̂ (η; 0) = f0(η), ĝ(η; 0) = g0(η), θ̂(η; 0) = θ0(η), φ̂(η; 0) = φ0(η)− γ(1− θ̂(η; 0)),
φ̂(η; 0) = Nbφ̂(η; 0) + Ntθ̂(η; 0), f̂ (η; 1) = f (η), ĝ(η; 1) = g(η), θ̂(η; 1) = θ(η), φ̂(η; 1) = φ(η)

(35)
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The subsequent expressions were attained via Taylor’s series expansion:

f̂ (η; p) = f0(η) +
∞

∑
m=1

fm pm, fm(η) =
1

m!
∂m f̂ (η; p)

∂pm

∣∣∣∣∣
p=0

, (36)

ĝ(η; p) = g0(η) +
∞

∑
m=1

gm pm,gm(η) =
1

m!
∂m ĝ(η; p)

∂pm

∣∣∣∣
p=0

, (37)

θ̂(η; p) = θ0(η) +
∞

∑
m=1

θm(η)pm,θm(η) =
1

m!
∂m θ̂(η; p)

∂pm

∣∣∣∣∣
p=0

, (38)

φ̂(η; p) = φ0(η) +
∞

∑
m=1

φm(η)pm,φm(η) =
1

m!
∂mφ(η; p)

∂pm

∣∣∣∣
p=0

. (39)

The convergence of control parameters }f,}g, }θ, and }φ were selected in such a way that the
series (36)–(39) converged at p = 1. Then

f̂ (η, p) = f0(η) +
∞

∑
m=1

fm(η), (40)

ĝ(η; p) = g0(η) +
∞

∑
m=1

gm(η), (41)

θ̂(η; p) = θ0(η) +
∞

∑
m=1

θm(η), (42)

φ̂(η; p) = φ0(η) +
∞

∑
m=1

φm(η). (43)

3.3. The m-th Order Problem

The equations of the m-th order are

L f ( fm(η)− Xm fm−1(η)) = } f Rm
f (η), (44)

Lg(gm(η)− Xmgm−1(η)) = }gRm
g (η), (45)

Lθ(θm(η)− Xmθm−1(η)) = }θ Rm
θ (η), (46)

Lφ(φm(η)− Xmφm−1(η)) = }φRm
φ (η), (47)

Rm
f (η) = f ′′′m−1(η)−M2 f ′m−1(η) +

m−1

∑
k=0

( fm−1−k f ′′k + g′m−1−k f ′′k )− 2
m−1

∑
k=0

f ′m−1−k f ′k

−2
m−1

∑
k=0

g′m−1−k f ′k − k(6
m−1

∑
k=0

f ′m−1−k f ′′′k + 3
m−1

∑
k=0

g′′m−1−k f ′′k − 3
m−1

∑
k=0

f ′′m−1−k f ′′k +
m−1

∑
k=0

ηg′′′m−1−k f ′′k

+4
m−1

∑
k=0

g′m−1−k f ′′′k + 2
m−1

∑
k=0

ηg′′m−1−k f ′′′k −
m−1

∑
k=0

fm−1−k f ′′′′k −
m−1

∑
k=0

ηg′m−1−k f ′′′′ ),

(48)
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Rm
g (η) = g′′′m−1(η)−M2g′m−1(η) +

m−1

∑
k=0

( fm−1−kg′′k + g′m−1−kg′′k )− 2
m−1

∑
k=0

g′m−1−kg′k

−2
m−1

∑
k=0

g′m−1−k f ′k − k(6
m−1

∑
k=0

g′m−1−k f ′′′k + 3
m−1

∑
k=0

f ′′m−1−kg′′k − 3
m−1

∑
k=0

g′′m−1−kg′′k +
m−1

∑
k=0

η f ′′′m−1−kg′′k

+4
m−1

∑
k=0

f ′m−1−kg′′′k + 2
m−1

∑
k=0

η f ′′m−1−kg′′′k −
m−1

∑
k=0

gm−1−kg′′′′k −
m−1

∑
k=0

η f ′m−1−kg′′′′ ),

(49)

Rm
θ (η) = θ

′′
m−1(η) + Pr

m−1

∑
k=0

( fm−1−kθ′k + gm−1−kθ′k)− APr
m−1

∑
k=0

( f ′m−1−kθk + g′m−1−kθk)

+NbPr
m−1

∑
k=0

θ′m−1−kφ′k + NtPr
m−1

∑
k=0

θ′m−1−kθ′k + Rd(
4
3
(θw − 1)3

m−1

∑
k=0

θ3
m−1−kθ

′′
k +

4
3

θ
′′
m−1(η) + 4(θw − 1)2

m−1

∑
k=0

θ2
m−1−kθ

′′
k + 4(θw − 1)

m−1

∑
k=0

θm−1−kθ
′′
k +

8(θw − 1)
m−1

∑
k=0

θm−1−kθ
′′
k + 4θ′m−1(η) + 4(θw − 1)2

m−1

∑
k=0

θ2
m−1−kθ′

2

k ) + PrQθm−1(η),

(50)

Rm
φ (η) = φ

′′
m−1(η) + LePr

m−1

∑
k=0

( fm−1−kφ′k − gm−1−kφ′k)− BLePr, (51)

Xm =

{
0m ≤ 1
1m > 1

. (52)

The general solutions ( fm, gm, θm, φm) for Equations (48)–(51) in terms of special solutions
( f ∗m, g∗m, θ∗m, φ∗m) are given by

fm(η) = f ∗m(η) + C1 + C2eη + C3e−η , (53)

gm(η) = g∗m(η) + C4 + C5eη + C6e−η , (54)

θm(η) = θ∗m(η) + C7eη + C8e−η , (55)

φm(η) = φ∗m(η) + C9eη + C10e−η . (56)

4. Entropy Analysis

The equation of entropy generation [47–49] was given by

SG =
K

T∞
2

(
1 +

16σ∗T3

3KK∗

)
(

∂T
∂z

)
2

︸ ︷︷ ︸
a

+
RDB
C∞

(
∂C
∂z

)
2
+

RDB
T∞

(
∂C
∂z

∂T
∂z

)︸ ︷︷ ︸
b

+
ρCp

T∞
D︸ ︷︷ ︸

c

+
σB0

2

T∞
(u2 + v2)︸ ︷︷ ︸

d

,
(57)

where a, b, c and d represent the thermal irreversibility or entropy generation due to heat transfer,
the concentration irreversibility or entropy generation due to mass transfer, the entropy generation
due to viscous effects in the fluid, and the entropy generation due to magnetic effects of the fluid,
respectively. Then

D = (
∂C
∂z

)
2
 ( ∂u

∂x )(
2ν

Cp(1+λ1)
( ∂u

∂x ) +
2νλ2

Cp(1+λ1)
(u ∂2u

∂x2 + v ∂2u
∂x∂y + w ∂2u

∂x∂z ))+

( ∂v
∂y )(

2ν
Cp(1+λ1)

( ∂v
∂x ) +

2νλ2
Cp(1+λ1)

(u ∂2v
∂x∂y + v ∂2v

∂2y + w ∂2v
∂y∂z ))

, (58)
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and

(Sgen)0 =
K

T∞2

(
∆T
L2

)2
(59)

is the characteristic entropy generation rate. Using the transformations in Equation (6), Equation (21)
takes the form

Ns = Sgen
(Sgen)0

= Re
2 eχ

((
1 + 4Rd

3 (θ(θw − 1) + 1)3
)

θ′2 + ∑2 ε

Ω2 φ′2 + ∑ ε
Ω θ′φ′

)
+ Breχ

Ω(1+λ1)
d + MBr

Ω f ′2
(60)

where

d = (2 f ′ + η f ′′ )
(
(2 f ′ + η f ′′ ) + βS

2 ((4 f ′ + 2η f ′′ )( f ′ + g′)− (3 f ′′ + η f ′′′ )( f + g))
)
+

(2g′ + ηg′′ ) ((2g′ + ηg′′ ) + βS
2 ((4g′ + 2ηg′′ )( f ′ + g′)− (3g′′ + ηg′′′ )( f + g))

) (61)

An important Bejan number defined by the ratio of entropy generation due to thermal effect and
total entropy generated by thermal, concentration, and fluid frictions forces was as follows [50]:

Be =
The entropy generation due to thermal irreversibility

The total entropy generation
. (62)

In dimensionless form, it became

Be =
Re
2 eχ

(
1 + 4Rd

3 (θ(θw − 1) + 1)3
)

θ′2

Re
2 eχ

((
1 + 4Rd

3 (θ(θw − 1) + 1)3
)

θ′2 + ∑2 ε

Ω2 φ′2 + ∑ ε
Ω θ′φ′

)
+ Breχ

Ω(1+λ1)
d + MBr

Ω f ′2
. (63)

The value of the irreversibility parameter must lie between 0 < Be < 1. if Be = 0, then there is
no entropy generated due to heat transfer. When Be < 0.5, then the entropy generation due to fluid
friction is dominant over the entropy generation due to heat transfer. On the other hand, if Be > 0,
then reverse relation is obvious for the entropy generation due to heat and total entropy generation.

The averaged entropy generation number could be evaluated using the following integral formula:

[Ns]avg =
1
∀

∫
∀

Nsd∀, (64)

where ∀ is the length of the boundary layer region.

5. Results and Discussion

This section is dedicated to having a deep insight into changes of sundry parameters on involved
profiles. The ranges of all parameters were selected via Turkyilmazoglu [51]. Figure 3 was drawn
to show the impact of viscoelastic parameter K on both velocities. Both velocity distributions were
declining functions of K. Augmented values of the K meant the development of tensile stress, which
ultimately lowered both velocity components. The impression of magnetic parameter M on both
velocity components is depicted in Figure 4. A diminishing behavior was witnessed for both velocity
components. A strong Lorentz force was perceived due to the magnetic field, hindering the movement
of the fluid flow. Thus, the reduction in velocity components was noticed. Figure 5 is outlined to grasp
the impact of chemical reaction parameter γ and Prandtl number Pr on the concentration field. It was
visualized that the rate of mass transfer was on the decline with augmented values of γ. Thus, the
respected boundary layer was also enhanced. Smaller values of thermal diffusivity augmented the Pr
and thereby lowered the concentration distributions. The outcome of temperature exponent A and
Prandtl number Pr on temperature profile can be visualized in Figure 6. The Prandtl number is the
quotient of momentum to thermal diffusivity. Smaller numbers for thermal diffusivity meant higher
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values of Pr, thus lowering the temperature. A similar effect was noted in the case of A. Figure 7 was
illustrated to depict the influence of thermophoretic parameter Nt and Brownian motion parameter
Nb on temperature field. It was comprehended that temperature was an increasing function of both
parameters. This is because smaller particles were pushed toward the colder surface from the hotter
one. Another reason for this phenomenon is that enhanced random movement of the fluid’s particles
also became the main source of heightening the temperature of the fluid. To understand the influence
of Brownian motion parameter Nb and thermophoresis parameter Nt on the concentration distribution,
Figure 8 was plotted. Higher values of both parameters augmented the concentration profile. Smaller
particles were pulled toward the colder region due to increased values of the thermophoretic parameter,
thus lowering the concentration of the fluid. Figure 9 was drawn to grasp the impact of radiation
parameter Rd and heat absorption parameter Q on the temperature field. In the experiment, the
temperature rose with higher values of Rd. This is because growing values of Rd meant more emission
of heat that ultimately raised the temperature of the fluid. Also, the higher estimates of Q produced
more heat that also resulted in an increase in the fluid’s temperature. The variation of magnetic
parameter M for the entropy generation Ns is presented in Figure 10. Initially, due to drag forces
produced by the magnetic field, the energy was produced, which increased the entropy of the fluid.
However, as it moved away from the plate, the influence of these forces reduced gradually and
eventually lessened the effect of entropy as well. The effect of viscoelastic parameter K on entropy
generation and the Bejan number Be is displayed in Figures 11 and 12, respectively. Both the figures
clearly indicate that the enhancement of values of K enhanced entropy generation as well as the Bejan
number near the surface due to an increase in viscous effects. However, the opposite trend was noticed
in both cases while moving away from the surface. In Figure 13, a relationship between the thermal
radiation parameter Rd and dimensionless Bejan number Be is portrayed. An increment in thermal
radiation parameter Rd enhanced the internal heat generation in the moving fluid, which caused
the Bejan number to escalate. Figures 14–17 were illustrated to show the impacts of dimensionless
temperature difference Ω, Reynolds number Re, thermal radiation parameter Rd, and Brinkman
number Br on the variation of local entropy generation number Ns, respectively. From Figure 14, it is
revealed that as the temperature difference increased, a decrease in the entropy generation parameter
was noticed. Larger values of Ω did not affect the viscous part of the entropy generation. However,
only the thermal entropy generation segment was responsible for higher temperature gradients in the
transverse direction. In Figures 15–17, Ns was an increasing function of these three: Re, Rd, and Br.
Figures 18 and 19 were drawn to depict the influence of M, K, Pr, and Rd on average entropy Ns(avg).
From these figures, it was gathered that Ns(avg) was an escalating function of all four parameters. This
meant irreversibility mounted as the group parameters grew.Entropy 2018, 20 12 
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Table 2 was initiated for the rate of heat and mass transfers versus varied involved parameters. It 
was noticed that the Nusselt number was a growing function of , ,  and was a declining function 
of , , .  Similarly, the Sherwood number decreased for the values of , , , , ,  and 
increased for the values of . Table 3 depicts the values of both skin friction coefficients along the	  
and 	directions. It was gathered that both coefficients were growing functions of , , and . Table 
4 was erected to check the reliability of the presented solution by comparing it to Liu [52} in the limiting 
case. An excellent concurrence was obtained, confirming the reliability of the presented results. 

Table 2. Values of local Nusselt and Sherwood numbers for involved parameters. 

λ Nb Nt Le Pr M K Rd A Q −  −  

0.1 - - - - - - - - - 0.13878 0.12199 

0.2 - - - - - - - - - 0.1388 0.12157 

0.5 - - - - - - - - - 0.1421 0.12032 

- 0.5 - - - - - - - - 0.13878 0.12199 

- 1.0 - - - - - - - - 0.13772 0.11917 

- 1.5 - - - - - - - - 0.13770 0.11823 

- - 0.0 - - - - - - - 0.13878 0.11635 

- - 0.2 - - - - - - - 0.13878 0.12199 

- - 0.5 - - - - - - - 0.13878 0.12576 

- - - 1.0 - - - - - - 0.14447 0.12981 

- - - 1.5 - - - - - - 0.13878 0.12199 

- - - 2.0 - - - - - - 0.12572 0.11010 

- - - - 1.0 - - - - - 0.13878 0.12199 

- - - - 1.2 - - - - - 0.13775 0.08889 

- - - - 1.5 - - - - - 0.13774 0.06499 

- - - - - 0.0 - - - - 0.13878 0.12199 

- - - - - 0.2 - - - - 0.13878 0.12199 

- - - - - 0.3 - - - - 0.13878 0.12199 

- - - - - - 0.0 - - - 0.13878 0.12199 

- - - - - - 0.02 - - - 0.13878 0.12199 

Figure 19. Effect of Pr and Rd on average entropy generation.
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Table 2 was initiated for the rate of heat and mass transfers versus varied involved parameters.
It was noticed that the Nusselt number was a growing function of λ, Rd, Q and was a declining
function of Nb, Le, Pr. Similarly, the Sherwood number decreased for the values of λ, Nb, Le, Pr, Rd,
and increased for the values of Nt. Table 3 depicts the values of both skin friction coefficients along the x
and y directions. It was gathered that both coefficients were growing functions of λ, M, and K. Table 4
was erected to check the reliability of the presented solution by comparing it to Liu et al. [52] in the
limiting case. An excellent concurrence was obtained, confirming the reliability of the presented results.

Table 2. Values of local Nusselt and Sherwood numbers for involved parameters.

λ Nb Nt Le Pr M K Rd A Q −(Re
2 )
− 1

2 Nux. −(Re
2 )
− 1

2 Shx

0.1 - - - - - - - - - 0.13878 0.12199
0.2 - - - - - - - - - 0.1388 0.12157
0.5 - - - - - - - - - 0.1421 0.12032
- 0.5 - - - - - - - - 0.13878 0.12199
- 1.0 - - - - - - - - 0.13772 0.11917
- 1.5 - - - - - - - - 0.13770 0.11823
- - 0.0 - - - - - - - 0.13878 0.11635
- - 0.2 - - - - - - - 0.13878 0.12199
- - 0.5 - - - - - - - 0.13878 0.12576
- - - 1.0 - - - - - - 0.14447 0.12981
- - - 1.5 - - - - - - 0.13878 0.12199
- - - 2.0 - - - - - - 0.12572 0.11010
- - - - 1.0 - - - - - 0.13878 0.12199
- - - - 1.2 - - - - - 0.13775 0.08889
- - - - 1.5 - - - - - 0.13774 0.06499
- - - - - 0.0 - - - - 0.13878 0.12199
- - - - - 0.2 - - - - 0.13878 0.12199
- - - - - 0.3 - - - - 0.13878 0.12199
- - - - - - 0.0 - - - 0.13878 0.12199
- - - - - - 0.02 - - - 0.13878 0.12199
- - - - - - 0.04 - - - 0.13878 0.12199
- - - - - - - 0.2 - - 0.13878 0.12199
- - - - - - - 0.4 - - 0.14392 0.12146
- - - - - - - 0.5 - - 0.14480 0.12123
- - - - - - - - 0.1 - 0.13878 0.12199
- - - - - - - - 0.5 - 0.13878 0.12199
- - - - - - - - 0.7 - 0.13878 0.12199
- - - - - - - - - 0.2 0.13878 0.12199
- - - - - - - - - 0.4 0.14962 0.12199
- - - - - - - - - 0.5 0.15679 0.12199

Table 3. Values of skin friction coefficients for involved parameters.

λ M K −(Re
2 )

1/2Cfx
−(Re

2 )
1/2Cfy

0.1 - - 1.6768 0.2237
0.2 - - 1.7698 0.4089
0.5 - - 2.0571 1.0804
- 0.3 - 1.6768 0.2237
- 0.5 - 1.7422 0.2325
- 1.0 - 2.0212 0.2697
- - 0.02 1.6768 0.2237
- - 0.03 1.9607 0.2675
- - 0.04 1.8168 0.3138
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Table 4. Comparison of present values to Liu et al. [52] in the limiting case when
K = Nb = Nt = Rd = Q = M = 0 (also, values of the convective boundary were neglected).

β Pr A Liu et al. [52] Present Study

0.0 0.7
0.0 −0.42583804 −0.4258120
2.0 −1.02143617 −1.0214514
5.0 −1.64165922 −1.6416620

0.25 0.7
0.0 −0.47609996 −0.4761032
2.0 −1.14199997 −1.1420014
5.0 −1.83543073 −1.8354210

0.50 0.7
0.0 −0.52154103 −0.5215267
2.0 −1.25099820 −1.2509991
5.0 −2.01061361 −2.0106021

0.75 0.7
0.0 −0.56332861 −0.5633148
2.0 −1.35123246 −1.3512221
5.0 −2.17171091 −2.1717006

1.0 0.7
0.0 −0.60222359 −0.6022167
2.0 −1.44452826 −1.4445214
5.0 −2.32165661 −2.3216340

6. Concluding Remarks

Entropy generation of 3D viscoelastic nanofluid fluid flow past an exponential stretched surface
with nonlinear thermal radiation, chemical reaction, and magnetohydrodynamics was discussed
analytically with the homotopy analysis method. The whole analysis was completed with the effect of
heat generation and absorption supported by convective heat and mass boundary conditions. The
main findings of the analysis are:

1. The velocity components were declining functions of the viscoelastic parameter.
2. The temperature field improved with an increase in radiation parameter.
3. Thermophoresis and Brownian motion parameters had an opposite effect on

concentration distribution.
4. With growing values of the magnetic parameter, both velocity components declined.
5. The Bejan number is an increasing function of the thermal radiation parameter.
6. Entropy generation decreased for escalating values of the temperature difference parameter.
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Nomenclature

a, b, c, d, e Dimensional constants
η Similarity variable
A Temperature exponent
B Concentration exponent
Be Bejan number
β0 Magnetic field strength
C Concentration of fluid
Cf Skin friction
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cp Specific heat
Cw Concentration on wall
C∞ Ambient concentration
C0 Reference concentration
Br Brinkman number
DB Brownian diffusion coefficient
DT Thermophoretic diffusion coefficient
f, g Dimensionless velocities
ρc f Effective heat capacity of nanoparticles
k Thermal conductivity
K Viscoelastic parameter
ko Elastic parameter
K* Mean absorption coefficient
α Effective heat capacity of fluid
Le Lewis number
Nb Brownian motion parameter
Nt Thermophoresis parameter
Nux Nusselt number
M Magnetic parameter
Pr Prandtl number
Q Heat absorption
Rd Thermal radiation parameter
Re Reynolds number
SG Volumetric entropy generation
Nux Local Nusselt number
NS Entropy generation rate
Cfx, Cfy Skin friction coefficients
Shx Sherwood number
T Temperature of fluid
Tw Wall temperature
U0, V0, T0, C0 Constants
T∞ Ambient temperature
Ue Stretching velocity
Uw Linear stretching velocity
(u, v, w) Velocity components
(x, y, z) Coordinate axes
M Hartmann number
ν Kinematic viscosity
λ1 Relaxation time
Λ2 Ratio of relaxation to retardation time
ρ Density of fluid
σ Electrical conductivity
σ* Stefan–Boltzmann constant
µ Dynamic viscosity
τ Ratio of nanoparticle
τw Skin friction coefficient
Ω Dimensionless temperature difference
ε Dimensionless nanoparticle volume difference
Σ Nanoparticle mass transfer parameter
θ Dimensionless temperature
φ Dimensionless concentration
α1 Normal stress moduli
Kc Chemical reaction coefficient
L Reference length
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