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Ischemic stroke is one of the main central nervous system diseases and is associated
with high disability and mortality rates. Recombinant tissue plasminogen activator (rt-
PA) and mechanical thrombectomy are the optimal therapies available currently to
restore blood flow in patients with stroke; however, their limitations are well recognized.
Therefore, new treatments are urgently required to overcome these shortcomings.
Recently, stem cell transplantation technology, involving the transplantation of induced
pluripotent stem cells (iPSCs), has drawn the interest of neuroscientists and is
considered to be a promising alternative for ischemic stroke treatment. iPSCs are a
class of cells produced by introducing specific transcription factors into somatic cells,
and are similar to embryonic stem cells in biological function. Here, we have reviewed
the current applications of stem cells with a focus on iPSC therapy in ischemic stroke,
including the neuroprotective mechanisms, development constraints, major challenges
to overcome, and clinical prospects. Based on the current state of research, we believe
that stem cells, especially iPSCs, will pave the way for future stroke treatment.

Keywords: stem cells, ischemic stroke, cell therapy, treatment, mechanism

INTRODUCTION

Stroke is one of the major central nervous system diseases associated with high disability and
mortality rates, approximately 80% of the cases being ischemic stroke (Phipps and Cronin,
2020). Although there are many clinical treatment methods available currently for patients with
ischemic stroke, including antiplatelet aggregation, anticoagulation, improving microcirculation,
and improving brain metabolism, these do not have efficient regeneration and repair effects on
the necrotic nerve cells in the ischemic area. The standard treatment method is to either use
recombinant tissue plasminogen activator (rt-PA) or perform mechanical thrombectomy to restore
blood flow. However, these treatments have certain limitations. The effective treatment time
window of rt-PA is 4.5 h, and patients with large artery occlusion can be treated with thrombectomy
within 6 h or even beyond 24 h of symptom onset. However, nearly 60% of patients did not
achieve functional independence at 3 months after treatment in recent mechanical thrombectomy
trials (Rabinstein, 2020; Shafie and Yu, 2021). When ischemic stroke occurs, apoptosis or necrosis
of various cells is seen in the infarct areas. Therefore, the ideal treatment method would be
to implant a certain type of cell that can replace the damaged cells. In recent years, stem cell
transplantation technology has been successfully applied in heart disease modeling (Musunuru
et al., 2018), diabetes mellitus (Kalra et al., 2018), macular degeneration (Bracha et al., 2017),
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spinal cord injury (Csobonyeiova et al., 2019), cartilage
regeneration (Castro-Viñuelas et al., 2018), and graft-vs.-host
disease (Bloor et al., 2020). Stem cell transplantation is also
being gradually considered for the treatment of some nervous
system diseases, such as Alzheimer’s disease (Robbins and Price,
2017), Parkinson’s disease (Cobb et al., 2018), amyotrophic
lateral sclerosis (Csobonyeiova et al., 2017), Huntington’s disease
(Tousley and Kegel-Gleason, 2016; Yoon et al., 2020), and
ischemic stroke. In this review, we have summarized the progress
that has been made in the development of cell therapy for
ischemic stroke. We have particularly focused on the mechanism,
current status, clinical application, development constraints, and
future prospects of the application of induced pluripotent stem
cells (iPSCs) in treating ischemic stroke.

CURRENT APPLICATIONS OF STEM
CELLS

Stem cell transplantation technology is attractive as a novel
option for the treatment of ischemic stroke, and utilizes different
cell sources, including embryonic stem cells (ESCs), neural stem
cells (NSCs), mesenchymal stem cells (MSCs), umbilical cord-
derived blood cells, adipose-derived MSCs, dental stem cells,
iPSCs, and some immortalized cell lines; the most recent studies
in this field have primarily focused on the first three stem
cell types. Here, we have discussed the current applications
of different stem cell types in ischemic stroke, especially
the iPSC therapy.

EMBRYONIC STEM CELLS (ESCS) IN
ISCHEMIC STROKE

ESCs, a type of pluripotent cells, are derived from the inner
mass of preimplantation embryo and have differentiation ability
(Thomson et al., 1998). They are able to form specific nerve
tissues, such as neurons, astrocytes, and oligodendrocytes
(Wichterle et al., 2002). Therefore, ESCs have been regarded
as a potential and ideal source of transplanted cells for neural
disease therapy. Cell therapy based on ESCs has been shown to
not only promote structural repair and functional recovery but
also reduce the infarct size in a mouse model of ischemic stroke.
After transplanting mouse ESCs into a severe focal ischemic
rat cortex, ESC-derived cells expressing cell surface markers of
neurons, astrocytes, oligodendrocytes, and endothelial cells could
be found in the lesion area; moreover, the survival rate, neuronal
differentiation, structural repair, and functional outcome were
further improved by transplantation of ESCs overexpressing Bcl-
2. Additionally, the intracerebral transplantation of mouse ESCs
could have a positive effect on motor and sensory recovery and
infarct size reduction in rats with focal ischemia (Wei et al.,
2005; Nagai et al., 2010; Tae-Hoon and Yoon-Seok, 2012). Some
studies have found nerve cells derived from human ESCs to
be at risk of malignant transformation and teratoma formation,
which is possibly caused by the stimulation of various local
cytokines (Brederlau et al., 2006; Seminatore et al., 2010). From

an ethical point of view, the limited sources and the associated
high incidence of malignant transformation restrict the wide
application of ESCs. Therefore, research on ESC application in
stroke treatment is very limited.

NEURAL STEM CELLS (NSCS) IN
ISCHEMIC STROKE

Neurogenesis was not possible until the discovery of NSCs, which
have the ability to renew themselves and originate neurons,
astrocytes, and oligodendrocytes (Reynolds and Weiss, 1992).
Many studies have identified the existence of multipotent and
self-renewing NSCs in different areas of the brain, including the
subgranular zone in the dentate gyrus of the hippocampus and
subventricular zone of the lateral ventricles, and the occurrence
of endogenous neurogenesis in the adult brain (Gage, 2000; Koh
and Park, 2017). Researchers have found that grafting of fetal
neocortical tissue 1 week after focal brain ischemia improved
the behavioral outcome and reduced secondary thalamic atrophy
(Mattsson et al., 1997). Further research showed that transplanted
human fetal NSCs were able to survive, migrate, and differentiate
in ischemic stroke-damaged rats (Kelly et al., 2004; Darsalia et al.,
2007). Human fetal NSCs were implanted into the ipsilateral
striatum of a middle cerebral artery occlusion (MCAO) rat model
48 h after model establishment, and behavioral assessments
were conducted at 6 and 14 weeks. Results showed that the
grafted human NSCs survived in all rats and successfully
differentiated to neuroblasts or mature neurons; functional
recovery of the rats grafted with NSCs also improved at 6
and 14 weeks, including sensorimotor and spatial learning
functions (Mine et al., 2013). Moreover, long-term survival and
widespread distribution of NSCs were detected following intra-
arterial delivery in an ischemic stroke rodent model, and cell
differentiation was evident at 4 weeks (Zhang et al., 2020).
In a cortical stroke model, stable graft survival and neuronal
differentiation were successfully monitored, and human NSC
transplantation was found to have a profound effect on network
stability (Minassian et al., 2020). In addition, neural progenitor
cells derived from human iPSCs were found to be more effective
than mesenchymal stromal cells obtained from human placenta
in suppressing the progression of experimental ischemic stroke
by improving animal survival in the most acute period and
accelerating the recovery of neurological deficit and body weight
(Cherkashova et al., 2019). Rats that received pretreatment with
human iPSC-NSCs and metformin recovered and had a faster
decrease in infarct volume compared to the controls (Ould-
Brahim et al., 2018). Furthermore, studies have shown that
neuron stem cell extracellular vesicles (NSC EVs) could improve
tissue and functional recovery in both rat and pig models of
ischemic stroke, and possessed therapeutic potential (Webb et al.,
2018a,b; Spellicy et al., 2020). However, NSC death or cell fate
switch may happen in the case of hypoxia and ischemia, caused
by a change in cell metabolism and irreversible switch from
neurogenesis to gliosis via enhanced Notch signaling (Santopolo
et al., 2020). Additionally, other obstacles also hinder NSC use
in ischemic stroke treatment, including the limited resources
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FIGURE 1 | Mechanisms of iPSCs in treating ischemic stroke, including cell replacement, neuroprotection, stimulation of angiogenesis, synaptogenesis and
endogenous neurogenesis, and modulation of inflammatory and immune responses.

with ethical significance, insufficient biological understanding,
minimal clinical exploration, and risk of tumorigenesis when
derived from iPSCs (Alessandrini et al., 2019).

MESENCHYMAL STEM CELLS (MSCS)
IN ISCHEMIC STROKE

MSCs are non-hematopoietic stem cells, which widely exist
in various organs and tissues, and have a high degree of
proliferation, along with self-renewal and multi-directional
differentiation properties. MSCs can be obtained from several
tissues, including the bone marrow, placenta, amniotic fluid,
adipose tissue, umbilical cord, and dental pulp (Yalvac et al., 2009;
Yang et al., 2011; Pittenger et al., 2019). At the preclinical level,
transplantation of MSCs, especially BMSCs, improved functional
recovery in MCAO model rats. MSC transplantation was shown
to reduce the lesion volume (Koh et al., 2008; Li et al., 2010;
Shen et al., 2011), enhance sensorimotor (Huang et al., 2013) and
cognitive functions (Lowrance et al., 2015), promote angiogenesis
and neurogenesis (Bao et al., 2011), modulate inflammatory

and immune responses (Ohtaki et al., 2008), and improve
synaptic recovery (Asgari Taei et al., 2021). Although some
studies have shown no significant reduction of ischemic lesion
volumes, the functional outcome nevertheless improved after the
administration of MSCs; these discrepancies were suggested to
be due to not recanalizing the middle cerebral artery (Zacharek
et al., 2010; Gutiérrez-Fernández et al., 2013). Several clinical
trials seem to have confirmed MSCs to be a potential option
for the treatment of ischemic stroke; moreover, MSC therapy
was demonstrated to be safe for subacute stroke patients in the
long-term and may improve recovery after stroke according to
a randomized controlled trial using an intravenously applied
MSC culture expanded with fetal bovine serum (Lee et al., 2010;
Díez-Tejedor et al., 2014; Steinberg et al., 2016; Levy et al.,
2019; Lalu et al., 2020). Furthermore, MSC-derived extracellular
vesicles (MSC EVs) played an important role in ischemic stroke
as a treatment and potential biomarker (Otero-Ortega et al.,
2019). However, no efficacy of MSC therapy was observed in
the only randomized Phase II study until now (Hess et al.,
2017). Hence, the efficacy of MSCs for stroke treatment remains
to be determined.
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INDUCED PLURIPOTENT STEM CELLS
(IPSCS) IN ISCHEMIC STROKE

iPSCs form a class of cloned cells with characteristics similar
to those of ESCs, and were first discovered by Takahashi
and Yamanaka using retroviruses to integrate four factors
(Sox2, Oct3/4, Klf4, and cMyc) into both mouse and adult
human fibroblasts through corresponding vectors (Takahashi and
Yamanaka, 2006; Takahashi et al., 2007). Till date, iPSCs have
mainly been applied in three aspects, namely disease modeling,
drug discovery, and regenerative therapy (Wilson and Wu,
2015). In recent years, iPSC-based cell therapy has developed
rapidly and its potential has been studied for the treatment of
many diseases. Retinal pigment epithelial cells differentiated from
iPSCs have proven to be safe and effective in both preclinical
models and clinical studies of macular degeneration (Li et al.,
2012; Kamao et al., 2014; Yoshida et al., 2014; Sharma et al.,
2019). As a novel alternative method, iPSC technology has
attracted increasing attention in various other diseases, including
ischemic stroke, heart failure, hematopoietic disorders, spinal
cord injury, and liver disease (Lachmann et al., 2015; Hansel et al.,
2016; Miyagawa and Sawa, 2018; Fernández-Susavila et al., 2019;
Trawczynski et al., 2019). Since a detailed description of all these
applications is beyond the scope of this review, we have focused
specifically on the key issues related to ischemic stroke.

A variety of animal experiments have shown that the
application of iPSCs plays an important role in ischemic stroke
treatment, including improving sensorimotor function (Chen
et al., 2010; Jiang et al., 2011; Gomi et al., 2012; Oki et al.,
2012; Tatarishvili et al., 2014; Eckert et al., 2015; Lau et al.,
2018; Oh et al., 2020), reducing lesion volume (Chen et al., 2010;
Baker et al., 2017; Oh et al., 2020; Xia et al., 2020), promoting
neurogenesis and angiogenesis (Oki et al., 2012; Oh et al., 2020),
and exerting immunomodulatory and anti-inflammatory effects
in the brains of rodents affected by ischemic stroke (Eckert et al.,
2015). However, some animal experiments did not achieve the
desired results, such as a significant reduction in infarct volume
and improvement in behavior (Jensen et al., 2013; Kawai et al.,
2010). Here, a summary of iPSC transplantation experiments in
ischemic stroke models is shown in Table 1, and summarized
the animal models of ischemic stroke, follow-up period and
experimental results.

Mechanism of Action of iPSCs in
Ischemic Stroke
Neurological deficit caused by ischemic stroke mainly occurs
due to the loss of various nerve cells, including neurons and
different types of glial cells. Implantation of iPSCs in animal
models of ischemic stroke can effectively promote the recovery
of nerve function. Multiple mechanisms have been proposed
to account for these beneficial effects of iPSCs in treating
ischemic stroke, including cell replacement, neuroprotection,
modulation of inflammatory and immune responses, and
stimulation of angiogenesis, synaptogenesis and endogenous
neurogenesis (Figure 1).

TABLE 1 | Summary of iPSC transplantation experiments in
ischemic stroke models.

Model
(reference)

Follow-up
period

Results

MCAO rat (Xia
et al., 2020)

2–28 days iMSC-sEVs migrate to the brain, infarct size ↓,
mNSS↓, error step number in the foot-fault test
↓, overall blood vessel density↑

MCAO rats
(Jiang et al.,
2011)

4–16 days iPSCs migrate to the ischemic brain and
differentiate into neural cells, no seizure or
convulsive activity,%HLV↓, sensorimotor
function↑

MCAO rats
(Chen et al.,
2010)

1–4 weeks iPSCs-FG differentiate into astroglial-like and
neuron-like cells, infarct size↓, motor function↑,
anti-inflammatory cytokines ↑, pro-inflammatory
cytokines ↓ but form teratoma in 4 weeks

Pig (Baker
et al., 2017)

24 h to12
weeks

CBV, white matter integrity, neurometabolite
abundance (NAA, Cr, Cho) ↑

Mouse (Gomi
et al., 2012)

1–6 weeks iPSCs differentiate into neuronal progenitors,
axonal elongation, mNSS ↓ but immune
rejection still exists after 6 weeks

MCAO pig (Lau
et al., 2018)

1–12 weeks Recovery of postural reactions, posture, mental
status, and appetite

MCAO rats (Oki
et al., 2012)

1–10 weeks Extend axons to the GP, VEGF and recovery of
fine forelimb movements ↑

MCAO rats
(Tatarishvili
et al., 2014)

1–8 weeks Behavioral recovery ↑

MCAO rats
(Eckert et al.,
2015)

1–30 days Behavioral recovery ↑, BBB leakage ↓,
pro-inflammatory cytokine ↓, microglial
activation ↓, adhesion molecules ↓, MCP-1 and
MIP-1α ↓

MCAO rats (Oh
et al., 2020)

1–12 weeks Ep-iPSC-NPCs differentiated into neuronal and
glial cells, sensorimotor and behavioral
functional recovery ↑, MEP ↑, proliferating and
migrating neural precursors ↑, astroglial scar
formation ↓, microglial ↓, mNSS ↓, final infarct
size ↓

MCAO rats
(Jensen et al.,
2013)

1–5 weeks NSCs derived from human iPSCs survive and
differentiate into neural cells, but without
behavioral recovery or reduction of infarct size

MCAO rat
(Kawai et al.,
2010)

1–28 days No significant difference in behavioral recovery
and form larger tumors than the sham-operated
group

MCAO rat
(Tornero et al.,
2017)

48 h to
6 months

iPSCs promoted synapse formation between
neurons, and the grafted neurons received
direct synaptic inputs from neurons

BBB, blood-brain barrier; CBV, cerebral blood volume; Cr, creatine; Cho, choline;
GP, globus pallidus; iPSC, induced pluripotent stem cell; MSC, mesenchymal stem
cell; MCAO, middle cerebral artery occlusion; iMSC-sEV, small extracellular vesicles
secreted by MSCs derived from human iPSCs; mNSS, modified neurological
severity score;%HLV, percentage hemisphere lesion volume; iPSC-FG, iPSCs with
fibrin glue; MEP, motor-evoked potential; MCP-1, monocyte chemotactic protein
1; MIP-1α, macrophage inflammatory protein 1α; NAA, N-acetylaspartate; ep-
iPSC-NPCs, neural precursor cells derived from human-iPSCs through episomal
plasmid-based reprogramming; VEGF, vascular endothelial growth factor.

Cell Replacement and Neuroprotection
iPSC-derived NSCs (iNSCs), including iPSCs generated by
an episomal plasmid-based reprogramming technique, can
differentiate into the three major neural lineages, namely
neurons, astrocytes, and oligodendrocytes (Baker et al., 2017;
Oh et al., 2020). The microenvironment may be a potential
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factor contributing to the differentiation potential of iPSCs
(Jiang et al., 2011). Baker et al. (2017) had found no significant
difference in the number of neurons at the margin of the
lesion between the iNSC-treated group and normal control
animals 12 weeks after transplantation, whereas the number
of neurons in the non-treated group was lower than that in
normal control animals. Moreover, the expression levels of
genes related to angiogenesis, neurotrophism, and inflammation
were significantly altered in the brain tissues of the iNSC-
treated group. Non-invasive longitudinal magnetic resonance
imaging of stroke model animals provided evidence of brain
metabolism recovery, white matter integrity, and cerebral blood
perfusion after iNSC therapy at the tissue level. Another study
found the transplantation of human iPSC-derived long-term
expandable neuroepithelial-like stem cells (It-NESCs) into the
striatum of stroke-injured rats to improve behavioral recovery,
which could be observed in the early stages after transplantation
(Oki et al., 2012). Importantly, hiPSC-lt-NESCs were shown to
survive and differentiate to neurons in aged rats with ischemic
stroke and further improve functional recovery (Tatarishvili
et al., 2014). Together, these data suggested that iNSC treatment
may have a neuroprotective effect, leading to reduced neuronal
cell death in the cerebral cortex and inhibition of microglial
activation, resulting in changes in gene expression that diminish
inflammation and improve tissue recovery.

Modulation of Inflammatory and Immune Responses
Chen et al. (2010) had detected changes in inflammatory cytokine
levels in the brain homogenate of MCAO model rats, 1 week
after iPSC transplantation, using enzyme-linked immunosorbent
assay. They found the levels of anti-inflammatory cytokines
interleukin (IL)-4 and IL-10 in the brains of rats treated with
subdural iPSCs cultured with fibrin glue (iPSC-FG) to be
significantly higher than those of the simple cerebral ischemia
control group, 1 week after subdural transplantation, whereas
the levels of pro-inflammatory cytokines (IL-1β, TNF-α, IL-2,
and IL-6) were significantly reduced. These results suggested
that subdural-transplanted iPSCs-FG could have a possible
paracrine effect, and may promote neuroprotection by increasing
anti-inflammatory cytokines and decreasing pro-inflammatory
cytokines. Eckert et al. (2015) had also supported the effect of
early transplantation on host immune response, showing that
transplantation of iPSC-derived NSCs into the hippocampus 24 h
after stroke could attenuate the blood-brain barrier damage while
reducing the expression levels of pro-inflammatory markers,
microglial activation, and adhesion molecules, resulting in
significant improvement of motor and sensorimotor functions in
the first week after transplantation.

Stimulation of Angiogenesis
Vascular endothelial growth factor (VEGF) expression was
detected in astrocytes and in the blood vessel wall of the damaged
brain. The immune reactivity of VEGF was upregulated as early
as 1 week after transplantation. Although the reactivity was
relatively weak at 8 weeks after transplantation in aged rats,
the result suggested that VEGF secretion has a certain effect on
plasticity and inflammation in early recovery (Oki et al., 2012;

Tatarishvili et al., 2014). Direct implantation of cells expressing
the VEGF receptor fetal liver kinase-1, derived from iPSCs, into
the ischemic area could effectively promote the formation of
new blood vessels (Suzuki et al., 2010). In addition, the small
extracellular vesicles secreted by MSCs derived from human
iPSCs had the ability to promote angiogenesis and provide
protection against brain injury after ischemic stroke by inhibiting
signal transducer and activator of transcription 3 (STAT3)-
dependent autophagy (Xia et al., 2020).

Stimulation of Synaptogenesis and Endogenous
Neurogenesis
Further, the possibility of neural circuit reconstitution in the
ischemic brain was investigated. Results indicated that iPSCs can
differentiate into human telencephalic progenitors under serum-
free culture of embryoid body-like aggregates, and these cells
not only survived in vivo but also grew axons and extended
to the cerebral ischemic area of the mice. iPSCs promoted
synapse formation between host neurons, as demonstrated by
fluorogold and synaptophysin staining of the host brain, and
regulated the activity of transplanted neurons (Gomi et al.,
2012; Tornero et al., 2017). In studies of human-to-human
transplantation, neurons derived from PSCs were confirmed to
have integrated into the adult host neural network (Grønning
Hansen et al., 2020). Positive co-staining of presynaptic vesicle
markers in some transplanted cells indicated these cells to
participate in synaptic transmission. The transplanted cells also
enhanced endogenous brain repair, including subventricular
zone neurogenesis, reduction of inflammation, and formation of
glial scars (Oh et al., 2020).

However, there was a lack of functional improvement
and infarct area reduction, which were attributed to multiple
potential factors, including the optional transplant timing after
ischemic stroke, optional cell dose, and many variables of
the cells themselves, such as the source, culture protocol, and
differentiation stage, or other unknown reasons, suggesting
that the transplanted cells need more time to mature and
integrate into the neural network (Wechsler et al., 2009;
Jensen et al., 2013).

Development Constraints and Possible
Solutions
iPSCs are derived directly from the connective tissue of patients
through a small biopsy and exhibit the same properties as
ESCs, thereby overcoming the problems related to immune
rejection and bypassing the need for embryos, to avoid ethical
issues. Therefore, iPSCs can be generated in a patient-matched
manner, each individual having his/her own PSC line. First,
somatic cells, such as fibroblasts, are collected from the patient.
Next, somatic cells are reprogrammed into iPSCs by the
introduction of reprogramming factors. Thereafter, genetically
corrected iPSCs are generated by genome editing. The corrected
iPSCs differentiate into neurons or glial cells. Healthy iPSCs
are obtained via quality assessments. Finally, cell therapy can
be achieved by transplanting the cells into a patient with
ischemic stroke (Alessandrini et al., 2019; Farkhondeh et al.,
2019; Yasuhara et al., 2020; Figure 2). However, there are several
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FIGURE 2 | Steps of iPSC-based therapy. First, somatic cells are collected from the patient. Next, somatic cells are reprogrammed into iPSCs by the introduction of
reprogramming factors. Thereafter, genetically corrected iPSCs are generated by genome editing. The corrected iPSCs differentiate into neurons or glial cells.
Healthy iPSCs are obtained via quality assessments. Finally, cell therapy can be achieved by transplanting the cells into a patient with ischemic stroke (Alessandrini
et al., 2019; Farkhondeh et al., 2019; Yasuhara et al., 2020).

obstacles and limitations related to iPSC-based therapy that need
to be overcome before clinical application.

Teratoma Formation
Although iPSC-NPCs could survive and migrate toward the
lesion area, and were shown to alleviate the dysfunction induced
by ischemic stroke, without tumor formation, during a 4-month
period after transplantation (Jirak et al., 2019), the risk of
tumorigenesis from iPSCs remains a major constraint for clinical
application. A previous study had shown that direct injection
of iPSCs into the ischemic brain caused teratoma formation in
100% of MCAO model rats 4 weeks after transplantation (Chen
et al., 2010). In addition, the transplanted iPSCs expanded in
the brain of post-ischemic mice and formed tumors that were
larger than those formed in the sham-operated group (Kawai
et al., 2010). The initial induction process of iPSCs required the
use of a retrovirus carrying reprogramming factors, including
Sox2, Oct3/4, Klf4, and cMyc, the latter two being oncogenes
that may cause tumorigenicity in the host (Sun et al., 2010).
Therefore, it is essential to strictly evaluate whether iPSCs and
their derivatives could induce tumor growth in the host and to
protect the same from happening.

Other studies have shown that, out of Oct4 and Klf4 as small-
molecule compounds, Oct4 alone is sufficient to induce iPSCs
(Shi et al., 2008; Kim et al., 2009). Some non-viral methods, such
as plasmid vectors, minicircular DNA carriers, and proteins have
been developed as a safer approach to generate iPSCs successfully
(Cho et al., 2010; Okita et al., 2010; Rhee et al., 2011; Okano
et al., 2013). Purification of cells before transplantation and some
small-molecule inhibitors can effectively reduce the potential
tumorigenicity of iPSCs. Quercetin/YM155-induced selective cell
death (Lee et al., 2013) and pluripotent cell-specific inhibitors
(PluriSIns) (Ben-David et al., 2013) were shown to be sufficient to
completely inhibit teratoma formation by efficiently eliminating
residual undifferentiated cells, which could increase the safety
of iPSC-based treatments. The predifferentiation of iPSCs and
establishment of long-term self-renewing neural cell lines are
other effective strategies proposed to reduce the risk of tumor
formation (Oki et al., 2012).

Low Induction Efficiency
Several solutions have also been put forward to overcome
the problem of low iPSC induction rate. For example, stress-
mediated p38 activation may enhance the low induction rate
of iPSCs, and hyperosmosis has been reported to promote not
only cell reprogramming but also iPSC generation (Xu et al.,
2013). Expression of the mouse miR302/367 cluster could rapidly
and successfully reprogram iPSCs, and the induction rate of
this microRNA-based reprogramming method was shown to be
100 times greater than that of the original method (Anokye-
Danso et al., 2011). As mentioned above, Sox2, Oct3/4, Klf4,
and cMyc are of great importance in the generation of iPSCs.
However, silencing of P53 with small interfering RNA and
addition of undifferentiated embryonic cell transcription factor
1 (UTF1) could increase the production efficiency of iPSCs
by 100 times, even if the oncogene c-Myc was removed from
the combination (Nakagawa et al., 2008; Zhao et al., 2008).
Another study confirmed that some small-molecule compounds
can also effectively improve the induction efficiency. For instance,
both DNA methyltransferase and histone deacetylase (HDAC)
inhibitors play an important role in reprogramming efficiency.
Valproic acid, an HDAC inhibitor, increased the reprogramming
efficiency of iPSCs by more than 100 times, which could
also be achieved without introduction of the oncogene c-Myc
(Huangfu et al., 2008). Collectively, these findings highlighted the
importance of achieving safety of the host after transplantation
while ensuring a high induction rate.

Immune Rejection
Immune-like cells, with large nuclei, cluster around the
transplanted cells, indicating immune rejection to continue after
6 weeks of transplantation (Gomi et al., 2012). Abnormal gene
expression in some cells differentiated from iPSCs exhibited
the potential to induce a T cell-dependent immune response
in syngeneic recipients. This immunogenicity may be caused
by the abnormal expression of antigens between ESCs and
iPSCs due to epigenetic differences, leading to the destruction of
peripheral immune tolerance (Zhao et al., 2011). The emergence
of zinc finger nucleases, transcription activator–like effector
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nucleases (TALENs), and the clustered regularly interspaced
short palindromic repeat (CRISPR)-associated protein 9 (Cas9)
system, as powerful gene-editing tools, has now made it possible
to modify genes efficiently and accurately. Genomic correction
of mutant iPSCs may lead to healthy differentiated cells, thus
avoiding the risk of immune rejection (Kim and Kim, 2014;
Hockemeyer and Jaenisch, 2016; Ben Jehuda et al., 2018).
In future, more attention should be paid to the occurrence
of an immune response during iPSC transplantation, and
additional research should be conducted to assess and avoid
immune rejection.

Apart from the above limitations, overexpression of stromal
cell-derived factor 1 alpha (SDF-1α) or optochemogenetic
stimulation of iPSC-NPCs may be an effective strategy to
enhance endogenous neurovascular regeneration and functional
recovery after ischemic stroke (Chau et al., 2017; Yu et al.,
2019). A study conducted in 2010 had found that subdural
iPSCs-FG can significantly reduce the total infarct volume and
improve the behavior of rats with MCAO, indicating subdural
transplantation of iPSCs-FG to be a safer administration route
(Chen et al., 2010). Transplantation of MSCs through the intra-
arterial route increased the risk of cerebral lesions and did not
improve functional recovery in a transient cerebral ischemia
rat model (Argibay et al., 2017), whereas the intra-arterial
transfer of MSCs/neurogenin-1 could block neuronal cell death
and inflammation to ultimately improve functional recovery
(Kim et al., 2020).

CONCLUSION AND FUTURE
PROSPECTS

The explosion of research on stem cell therapy and its
characteristics has ushered in a new era for the treatment of
ischemic stroke. At the same time, iPSC technology has also
become increasingly mature for the treatment of ischemic stroke,
achieving considerable results in preclinical models, thereby
bypassing the ethical and immune rejection concerns related to
the use of ESCs. At present, iPSCs are considered a promising

tool for clinical treatment, and are expected to be practically
applicable in the near future. To realize this therapy, we should
strive to overcome the remaining obstacles, and conduct wider
and more in-depth clinical trials. Importantly, a consensus
is required for optimizing the methods for cultivation and
differentiation of iPSCs. In addition, different iPSC lines may
vary in their ability to differentiate into different cell lines, a
process that warrants further attention. The development and
evaluation of various strategies may offer a promising solution
to overcome the tumorigenicity and low efficiency of iPSC
induction. Appropriate transplantation methods can improve
the survival rate of transplanted cells and further strengthen
the therapeutic effect. When choosing transplantation methods,
in addition to determining the transplantation time and route,
it would be necessary to determine the differentiation state,
transplantation administration, dose, and auxiliary status before
transplantation.

In summary, with rapid progress and improvement in the
technology of iPSCs, and gaining better understanding of the
reprogramming and therapeutic mechanisms, the ultimate goal
of providing iPSCs safely and with relatively high efficiency to
patients with ischemic stroke may become a reality in near future.
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