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Abstract
Around 0.75 million babies worldwide suffer from moderate or severe hypoxic-ischemic encephalopathy (HIE) each year resulting
in around 400,000 babies with neurodevelopmental impairment. In 2010, neonatal HIE was associated with 2.4% of the total Global
Burden of Disease. Therapeutic hypothermia (TH), a treatment that is now standard of care in high-income countries, provides proof
of concept that strategies that aim to improve neurodevelopment are not only possible but can also be implemented to clinical prac-
tice. While TH is beneficial, neonates with moderate or severe HIE treated with TH still experience devastating complications: 48%
(range: 44-53) combined death or moderate/severe disability. There is a concern that TH may not be effective in low- and middle-
income countries. Therapies that further improve outcomes are desperately needed, and in high-income countries, they must be tested
in conjunction with TH. We have in this review focussed on pharmacological treatment options (e.g. erythropoietin, allopurinol,
melatonin, cannabidiol, exendin-4/exenatide). Erythropoietin and allopurinol show promise and are progressing towards the clinic
with ongoing definitive phase 3 randomised placebo-controlled trials. However, there remain global challenges for the next decade.
Conclusion: There is a need for more optimal animal models, greater industry support/sponsorship, increased use of juvenile toxi-
cology, dose-ranging studies with pharmacokinetic-pharmacodynamic modelling, and well-designed clinical trials to avoid
exposure to harmful medications or abandoning putative treatments.

What is Known:

o Therapeutic hypothermia is beneficial in neonatal hypoxic-ischemic encephalopathy.

e Neonates with moderate or severe hypoxic-ischemic encephalopathy treated with therapeutic hypothermia still experience severe sequelae.

What is New:

e Erythropoietin, allopurinol, melatonin, cannabidiol, and exendin-4/exenatide show promise in conjunction with therapeutic hypothermia.

o There is a need for more optimal animal models, greater industry support/sponsorship, increased use of juvenile toxicology, dose-ranging
studies with pharmacokinetic-pharmacodynamic modelling, and well-designed clinical trials.
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CI Confidence interval

Crax Maximum concentrations

GLP-1 Glucagon-like peptide-1

HIE Hypoxic-ischemic encephalopathy

Lac/NAA Lactate/N-acetyl aspartate ratio

MRI Magnetic resonance imaging

MRS Magnetic resonance spectroscopy

NNT Numbers needed to treat

NOAEL  No adverse observed adverse event level

PPAR Peroxisome proliferator-activated receptor

RR Risk ratio

SD Standard deviation

TH Therapeutic hypothermia

TUNEL  Terminal deoxynucleotidyl transferase dUTP
nick end labelling

Introduction

Hypoxic-ischemic encephalopathy (HIE) is the neurological
syndrome that occurs in the newborn infant subject to different
degrees of a hypoxic-ischemia event. It is associated with loss
of consciousness; decrease of spontaneous movements, tone,
and reflexes; and appearance of convulsions in the more severe
cases. HIE is a global problem with an estimated incidence of
1.5-2.0 per 1000 live births [1, 2]. Around 0.75 million babies
worldwide suffer from moderate or severe HIE each year result-
ing in around 400,000 babies with neurodevelopmental impair-
ment. HIE was associated with 2.4% of the total Global Burden
of Disease (2010) [3]

Therapeutic hypothermia (TH), a treatment strategy that is
now standard of care in high-income countries, provides proof
of concept that treatment strategies that aim to improve neu-
rodevelopment are not only possible but can be implemented to
clinical practice [4]. In a meta-analysis of 7 trials, representing
1214 newborn infants, TH reduced the risk of the composite
outcome of death or major neurodevelopmental disability at
age 18 months (risk ratio (RR), 0.76; 95% confidence interval
(CI), 0.69-0.84; and numbers needed to treat (NNT), 7; 95%
CI, 5-10) [5]. While TH is beneficial, neonates with moderate
or severe HIE treated with TH still experience devastating com-
plications: mortality 28% (24—38); cognitive impairment 24%
(21-25); cerebral palsy 22% (13-28); epilepsy 19% (15-24);
cortical visual impairment 6% (1-10), with combined death or
moderate/severe disability 48% (44-53) [5]. Adjunctive thera-
pies to further improve outcomes are desperately needed. In
high-income countries, experimental therapies must be tested
in conjunction with the standard of care: TH.

TH requires a high level of intensive care support, and this
cannot always be provided in low- and middle-income countries.
Furthermore, TH has been shown to be ineffective and possibly
even harmful in the presence of infection/inflammation [6, 7].

@ Springer

There remains a need to develop newer neuroprotective treat-
ment strategies. This review will compare emerging treatments
in terms of efficacy in preclinical experiments, safety profile in
humans, and toxicology experiments and anticipated effect size.

Erythropoietin

Erythropoietin is a cytokine with multiple roles in addition to
haemopoietic growth factor. Erythropoietin receptors are in
neurons, glia, and endothelial cells [8, 9]; they participate in
proliferation and differentiation of these cells both during nor-
mal brain development and following hypoxia [10-14]. Hypoxia
and pro-inflammatory cytokines activate hypoxia-inducible fac-
tor to induce expression of erythropoietin and receptors [15].
Erythropoietin provides neuroprotection by promoting anti-
apoptotic, anti-oxidative, and anti-inflammatory responses [16,
17]. Additionally, erythropoietin increases neuronal and glial
migration around the injured area via the secretion of matrix
metalloproteinases [18].

Preclinical evidence

Much of the evidence supporting the use of erythropoietin as a
neuroprotective agent in neonatal HIE was determined in rodent
models with no added hypothermia [12, 17, 19-23]. In a nonhu-
man primate model of HIE (15-18-min occlusion of umbilical
artery in Macaca nemestrina), intravenous erythropoietin (3500
U/kgx 1 dose followed by 3 doses of 2500 U/kg, or 1000 U/
kg/day x4 doses) was administered on days 1, 2, 3, and 7 and
combined with 72 h hypothermia [24]. Erythropoietin improved
motor and cognitive responses, cerebellar growth, and diffusion
imaging measures and produced a death/disability (cerebral
palsy at 9 months of age) relative risk reduction of 0.911 (95%
CI-0.429 to 0.994), an absolute risk reduction of 0.395 (95%
CI 0.072-0.635), and a NNT of 2 (95% CI 2-14) when com-
pared with no treatment [24]. Neuropathology was significantly
decreased at 9 months of age [25].

In a piglet model of HIE (bilateral carotid artery
ligation with exposure to 8—10% oxygen), erythropoietin
(3000 U/kg) was administered as an intravenous bolus at
1 h, 24 h, and 48 h in conjunction with 12 h hypothermia
[26]. The area under curve (AUC) target therapeutic
concentrations of 117,677-140,331 U * h/L was achieved.
Erythropoietin and hypothermia double therapy had no
effect on brain lactate/N-acetyl aspartate (Lac/NAA)
ratio on Magnetic Resonance Spectroscopy (MRS) or
Terminal deoxynucleotidyl transferase dUTP nick end
labelling-positive (TUNEL-positive) cells (a measure of
apoptosis), but there was more rapid amplitude-integrated
electroencephalography (aEEG) recovery from 25 to 30 h
and increased oligodendrocyte survival [26].
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Pharmaceutics and licenced preparation (Table 1)

Recombinant human erythropoietin was used in most animal
experiments and clinical trials [27].

Dosing and pharmacokinetics

In a dose-escalating, safety, and tolerance study, the AUC target
therapeutic concentrations of 131,054 U * h/L were achieved
using intravenous erythropoietin 1000 U/kg [28, 29]. The half-
life at this dose was 15.7 h [29]. Clinical trials with dose < 1000
Ul/kg [30-33], single dosing [34], and repeat dosing with >24-h
intervals [30] may have not achieved maximum therapeutic
benefit. Although efficacy has been demonstrated in animal
models using subcutaneous dosing regimens, an intravenous
dosing regimen where peak concentrations are rapidly achieved
is more likely to achieve maximum therapeutic benefit [33-36].
In animal experiments, both immediate and delayed treatments
are effective [27].

Safety and toxicology

Common side effects in adults and children are shown in
Table 1. Sufficiently, high dose range has not been studied
in toxicology experiments. Repeat dose toxicity (13 weeks)
was noted at lower dose than anticipated neonatal dose
(Table 2).

Clinical trials

Safety and tolerance was established in early phase clinical tri-
als [37, 38]. In a phase 2 randomised placebo-controlled trial
on 50 infants [39], intravenous erythropoietin (1000 U/kg)
on postnatal days 1 (<24 h after birth), 2, 3, and 5 showed a
lower global brain injury score in erythropoietin-treated infants
(median, 2 vs. 11, P=0.01) on brain magnetic resonance imag-
ing (MRI) done at mean 5.1 days (SD, 2.3). Moderate/severe
brain injury (4% vs. 44%, P=0.002), subcortical (30% vs. 68%,
P=0.02), and cerebellar injury (0% vs. 20%, P=0.05) were less
frequent in the erythropoietin group than in the placebo group.

Two ongoing phase 3 randomised placebo-controlled trials
(NCT01732146; NCT02811263) aim to determine the effect of
intravenous erythropoietin on death and disability at 24 months
in infants with moderate or severe HIE [40]. The HEAL trial
(NCT02811263; study completion September 2022) is evaluat-
ing the efficacy of intravenous erythropoietin (1000 U/kg) on
postnatal days 1 (<24 h after birth), 2, 3, 4, and 7 on 500 par-
ticipants. The sample size is based on an anticipated 15-20%
reduction in the combined outcome of death and disability [40].
The NUREPO trial (NCT01732146) is evaluating the efficacy of
intravenous erythropoietin (1000—1500 U/kg) on postnatal days
1 (<12 h after birth), 2, and 3 on 120 participants (completed
2017; not reported).

Melatonin

Melatonin (5-methoxy-N-acetyltryptamine) is produced
by the pineal gland according to a circadian cycle [41]. It
acts through three receptors (MT1, MT2, and MT3), highly
expressed in the foetal brain and leptomeninges, where it
plays a role in brain growth and development [42—44].

Melatonin acts as a direct and indirect antioxidant, being
a potent scavenger of superoxide anion and stimulator of the
synthesis of antioxidant enzymes [45]. Melatonin achieves
neuroprotective effect via antioxidant, anti-apoptotic, and
anti-inflammatory processes and by promoting neuronal and
glial development [46, 47].

Preclinical evidence

The neuroprotective effect of intravenous melatonin
(15-30 mg/kg) on postnatal days 1 (1-6 h after birth) and 2
has been assessed in a piglet model of HIE (bilateral carotid
artery ligation with exposure to hypoxia) in conjunction with
12-24 h hypothermia [26, 48-50]. The target concentrations
(maximum concentrations (C,,,,): 16.8+8.3 mg/L and AUC:
5554266 mg+h/L) were achieved at 15-mg/kg dose. However,
reduction in brain Lac/NAA ratios was achieved at 18-mg/kg
and 30-mg/kg doses. Reduction in TUNEL-positive cell death
was achieved in the hippocampus, caudate nucleus, internal cap-
sule, and putamen at 30 mg/kg dose (with ethanol) and only in
sensory cortex at the 20 mg/kg (without ethanol).

In a lamb model of HIE (umbilical cord occlusion for
9-10 min), intravenous melatonin (with ethanol) was admin-
istered at 15 mg/kg/day in 12 divided doses every 2 h; a steady
plasma concentration of melatonin and cortical concentration of
0.46+0.16 ng/mL were achieved [51]. Melatonin improved all
neurodevelopmental assessments and reduced seizure burden.
Significant reduction in brain Lac/NAA ratio and apoptosis was
also achieved suggesting that alternative dosing approaches such
as continuous infusion may also be effective [51].

Pharmaceutics and licenced preparation (Table 1)

Melatonin is photosensitive and degrades rapidly within
hours of UV-A and UV-B exposure, necessitating specific
storage and administration requirements [49].

Dosing and pharmacokinetics

Pharmacokinetic modelling in piglets indicates that a
dose of 20-30 mg/kg intravenous for 2 h repeated 24 h
later is required to maintain a therapeutic concentration
of 15-30 mg/L [52]. Detailed pharmacokinetic studies are
required in neonates with moderate and severe HIE before a
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dosing regimen is determined. Target therapeutic concentra-
tions need to be achieved within 3 h after birth.

Safety and toxicology

Oral melatonin has been safely administered to children [53],
pregnant women [54-56], and preterm newborn infants [57]
at much lower doses with no safety concerns (Table 1). The
intravenous lethal dose (LDs;) in rodents without anaesthe-
sia is not much higher than the anticipated treatment dose
(Table 2). Intensive care may be required for treatment.

Clinical trials

Small trials have been conducted with enteral melatonin
with [58] or without hypothermia [59-61]. A clinical
trial using low-dose enteral melatonin (0.5-5 mg/kg) is
currently recruiting (NCT02621944; study completion:
March 2022). In a randomised placebo-controlled trial on
infants with moderate-severe HIE (n =25), intravenous
melatonin (5 mg/kg as 2 h infusion) on postnatal days
1 (<6 h after birth), 2, and 3 only improved the cogni-
tive composite score (101 =22 vs. 86 +17; p <0.05) on
Bayley Scales of Infant Development IIT at 18 months of
age [62]. There were no differences between the groups
according to the Gross Motor Function Classification
System.

A well-designed early-phase escalating dose clinical trial
is required to determine the pharmacokinetics, safety, and
tolerance of intravenous melatonin.

Cannabidiol

Cannabidiol is one of the naturally occurring cannabinoids
found in cannabis plants. It is a 21-carbon terpenophenolic
compound which is formed following decarboxylation from a
cannabidiolic acid precursor, although it can also be produced
synthetically. It has a complex pharmacological profile, acting
not only on endocannabinoid receptors, CB1 and CB2, but
also on G protein—coupled receptors, ion channel, and nuclear
receptors [63, 64]. While some of the neuroprotective effects of
cannabidiol are mediated through CB1 and CB2, it is also partly
due to activation of 5-hydroxytryptamine-1A, adenosine, and
peroxisome proliferator-activated receptor-gamma (PPARY)
receptors [65-68]. It reduces apoptosis and mitochondrial
dysfunction and acts as an antioxidant by reducing the activity
of the antioxidant system and increasing the activity of
mitochondrial complexes [65, 69, 70]. It reduces inflammation
by decreasing pro-inflammatory cytokine production and
increasing anti-inflammatory cytokine production and
stimulation of PPARYy [65, 71].

@ Springer

Preclinical evidence

Cannabidiol was administered to piglets as an intravenous bolus
(1 mg/kg) on postnatal days 1 (30 min after hypoxic-ischemic
insult), 2, and 3 in conjunction with 48 h hypothermia [72].
The hypoxic-ischemic insult (bilateral carotid artery ligation
with exposure to 10% oxygen) induced increases in brain Lac/
NAA ratio, and TUNEL-positive cells in the cerebral cortex
were reversed by combined hypothermia and cannabidiol but
not by either alone. No treatment modified the effects of hypoxic
ischemia on oxidative stress, astroglial activation, background
electroencephalography, or seizures [72].

The neuroprotective effect of combined intravenous
cannabidiol (1 mg/kg, 30 min after hypoxic-ischemic insult)
and hypothermia (6 h) was studied using a piglet HIE model
(bilateral carotid artery occlusion with exposure to < 10%
oxygen). Individually, hypothermia and the cannabidiol
treatments reduced the number of necrotic neurons and
prevented an increase in Lac/NAA ratio [73]. The combined
effect of hypothermia and cannabidiol on excitotoxicity, on
inflammation and oxidative stress, and on cell damage was
greater than either hypothermia or cannabidiol alone [73]. In
contrast, no neuroprotective effect was demonstrated when
intravenous cannabidiol (1 mg/kg) and hypothermia (9 h) were
administered to a global hypoxia—ischemia piglet model [74].

Low-dose cannabidiol alone (0.01 pg/kg intravenous 60 min
after umbilical artery occlusion) significantly reduced TUNEL-
positive cells in all brain regions (cortex, hippocampus, basal
nuclei, cerebellum, brainstem) in foetal lambs at 3 h [75]. Sub-
cutaneous cannabidiol (1 mg/kg) showed a therapeutic window
of 18 h after hypoxia—ischemia in a 9-10-day-old mice using
a Rice-Vanucci model (unilateral carotid artery ligation with
exposure to 10% oxygen) [76].

Pharmaceutics and licenced preparation (Table 1)

Cannabidiol is stable in room temperature and not photosensi-
tive but has poor water solubility.

Dosing and pharmacokinetics

Intravenous cannabidiol is rapidly distributed, followed by
prolonged elimination (terminal half-life: 24 h) [77, 78].
Plasma cannabidiol concentration peaked at the end of the
infusion 15 min after the end of intravenous bolus admin-
istration and rapidly decreased to low concentrations after
1 h in piglets [72]. No cumulative effect was observed after
repeated doses. Hypothermia led to a significant increase in
cannabidiol plasma concentration [72]. In healthy adults,
mean plasma cannabidiol concentrations were reported at
686 ng/mL (3 min postadministration), which dropped to
48 ng/mL at 1 h following intravenous administration of
20 mg of deuterium-labelled cannabidiol [79].
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Safety and toxicology

Cannabidiol has very low toxicity (Table 2). Liver safety
concerns were raised in randomised controlled trials of
cannabidiol in patients with Lennox-Gastaut syndrome
or Dravet syndrome [80, 81]. 17.2% of patients receiv-
ing up to 20 mg/kg oral cannabidiol, all taking valproic
acid, had liver transaminase elevations >3 times the
upper limit of normal [81]. Since the oral bioavailability
of cannabidiol is only 13-19% [77], neonates with HIE
receiving intravenous cannabidiol may be at risk at much
lower doses.

Clinical trials

A phase 1, escalating single dose (0.1-3 mg/kg), randomised
placebo-controlled trial using a new ethanol-free intravenous
formulation of cannabidiol on infants with moderate-severe HIE
is currently recruiting to assess safety, tolerance, and pharma-
cokinetics (EudraCT Number: 2016-000,936-17; Sponsor: GW
Pharmaceuticals).

Exenatide/exendin-4

Exendin-4 is a 39 amino acid agonist of the glucagon-like
peptide-1 (GLP-1) receptor. Exendin-4 is present in the saliva of
the Gila monster, Heloderma suspectum. GLP-1, a gastrointestinal
hormone secreted by the L cells of the intestine, regulates blood
glucose primarily via stimulation of glucose-dependent insulin
release [82]. GLP-1 agonists have neuroprotective properties
when assessed in preclinical models of Alzheimer’s disease [83],
Parkinson’s disease [84], traumatic brain injury [85, 86], and
stroke [87, 88]. In oxygen—glucose deprivation models, GLP-1 and
agonists increase neuronal survival by reducing reactive oxygen
species and apoptotic and necrotic mechanisms partly through the
PI3K/protein kinase B (Akt) pathway [89-91]. Exenatide readily
penetrates the blood-brain barrier where it acts on GLP-1 receptors
known to be present in the newborn brain [92].

Preclinical evidence

Using a Rice-Vanucci mouse model of HIE, the potential
neuroprotective effect of exendin-4 in both postnatal day
7 and 10 mice [92]. An optimal exendin-4 treatment dos-
ing regimen was found, where four high doses (500 pg/kg
intraperitoneal with TH) starting at O or 2 h, then at 12 h,
24 h, and 36 h after postnatal day 7 hypoxic-ischaemic
insult augmented TH resulting in 80% improvement in
infarct volume and cell death. Treatment with liraglutide,
a long acting GLP-1 agonist, also exerted neuroprotec-
tion in a Rice-Vanucci rat model of HIE [89].

Pharmaceutics and licenced preparation (Table 1)

Exenatide is readily soluble in water and photosensi-
tive, necessitating special storage and administration
requirements.

Dosing and pharmacokinetics

The pharmacokinetic profile of exenatide (60—-600 pg/kg)
following intraperitoneal injection is like a subcutaneous
injection and differs from an intravenous dose in rats.
Subcutaneous bioavailability at high doses is good, but
the absorption rate and clearance of exenatide is nonlinear
meaning attaining rapid therapeutic concentrations may
not be feasible by this route [93]. Effective therapeutic
concentrations can be achieved rapidly and maintained
more precisely using an intravenous bolus followed by
48 h infusion [93]. Exenatide is metabolised throughout
the body, resistant to proteolytic cleavage by dipeptidyl
peptidase IV, eliminated through the kidney, and unaf-
fected by liver impairment [94].

Safety and toxicology

Exenatide has an excellent safety profile in adults. It
increases, on a glucose-dependent basis, the secretion of
insulin and does not impair hormone responses to hypogly-
caemia [95]. No toxicity was noted in human overdose case
reports [96-98], but weight loss is a concern on repeated
dosing (Table 2).

Clinical trials

No studies have been performed in neonates. A phase 3 trial
on Parkinson’s disease is currently recruiting (NCT04232969).

Allopurinol

Allopurinol is a xanthine-oxidase inhibitor that inhibits
the production of uric acid. The mechanism of neuropro-
tection in neonatal HIE is unclear, possibly by inhibiting
the formation of the free radical superoxide production
[99].

Preclinical evidence

Several studies in rodents and piglets have shown neuropro-
tective effects but none have been performed in conjunction
with hypothermia [100-106].
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Table 3 Milestones achieved in translation at the anticipated dose as describedin Table 2

Preclinical Preclinical studies Neonatal Juvenile Phase 1 Phase 2 Phase 3 trial
studies (no (with hypothermia) formulation | toxicology | trial trial
hypothermia) Rodent Non-rodent Recruitment | Follow-up
Erythropoietin - [ — .
Melatonin |
Cannabidiol [ ——
Exenatide [N
Allopurinol [ ]
[ Completed [ Ongoing

Pharmaceutics and licenced preparation (Table 1)

Allokid® (unlicensed, ACE Pharmaceuticals®, Nether-
lands), specially formulated for neonates, is currently under-
going clinical trial (NCT03162653) [107]. An alternative
licenced formulation, Aloprim® (Mylan Institutional®,
USA), is discussed in Tables 1 and 2.

Dosing and pharmacokinetics

Target therapeutic concentrations have not been defined in pre-
clinical studies. Allopurinol 20 mg/kg intravenous within 2 h
after birth, second dose 12 h later, then every 12 h for 3 days
improved neurodevelopment at 1 year [108] and forms the basis
for ongoing phase 3 trial [107]. Pharmacokinetics of 10-20 mg/
kg of intravenous allopurinol was studied in neonates with HIE
(n=46 from 3 studies) [109]. Xanthine-oxidase inhibition was
achieved, and no dose adjustment for TH was proposed [109].

Safety and toxicology

Oral allopurinol has a good safety profile. Intravenous allopu-
rinol has been used in association with cancer chemotherapy.
An independent safety profile is difficult to establish. The intra-
venous lethal dose (LDs) in rodents without anaesthesia is not
much higher than the anticipated treatment dose (Table 2).

Clinical trials

A meta-analysis (n=114 participants) did not reveal a statisti-
cally significant difference in the risk of death (typical risk ratio
0.88; 95% confidence interval (95% CI) 0.56 to 1.38; risk dif-
ference —0.04; 95% CI—0.18 to 0.10) or a composite of death
or severe neurodevelopmental disability (typical risk ratio 0.78;
95% CI1 0.56 to 1.08; risk difference —0.14; 95% CI—0.31 to
0.04) [110]. A phase III randomised placebo-controlled trial
to evaluate the effect of postnatal allopurinol administered in

@ Springer

addition to standard of care (including therapeutic hypother-
mia if indicated) on the incidence of death and disability at
24 months of age in neonatal HIE is ongoing (NCT03162653)
[107].

Discussion

Several promising adjuvant treatment strategies for neo-
natal HIE are progressing towards the clinic (Table 3). We
have in this review focussed on pharmacological treat-
ment options. Stem cell therapy is outside the scope of
this review. Serrenho I et al. (2021) provides a systematic
review of preclinical studies done on stem cell therapy
for neonatal HIE [111]. Eighty percent of these studies
reported a significant improvement of cognitive and/or
sensorimotor function, as well as decreased brain dam-
age. There are no completed clinical trials on stem cell
therapy, and several are ongoing [112]. Xenon [113] and
magnesium sulphate [114] have been previously evaluated
and did not demonstrate much benefit.

Pharmacological treatment strategies which have shown
potential benefit in animal and human studies of HIE dem-
onstrate that (1) there is a narrow time window within the
first few hours after birth during which therapy should be
started for best outcomes, (2) high doses are often needed
and the anticipated side effects based on adult tolerabil-
ity have not been noticed in newborn babies, and (3) TH
changes the pharmacokinetics of drugs requiring special
consideration. Key limiting factors are needed for indus-
try support for developing new formulations suitable for
use in neonates and inadequate dose range finding and
pharmacokinetic studies in both animals and neonates.
Allopurinol sodium and cannabidiol have received orphan
designation for the treatment of neonatal HIE and only
one of the ongoing clinical trials has an industry sponsor
(cannabidiol; GW Pharmaceuticals).
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Many treatments have progressed to human trials
without juvenile toxicology. Since the proposed dose
are often much higher than current licenced dose and
animal models of neonatal HIE do not include a recovery
period and multi-organ histopathology, the risk for
serious unexpected adverse reactions remains. Juvenile
toxicity studies with cannabidiol showed that lowest dose
of developmental toxicity was 15 mg/kg. In contrast, the
no adverse observed adverse event level (NOAEL) in
adult rodents was 400-500 mg/kg emphasising the need
for these studies.

Several pharmacological treatments have demonstrated
efficacy in animal models. We have in this review focussed
on nonrodent models of HIE. The use of unilateral/bilat-
eral occlusion of carotid artery are well-accepted in mod-
els of neonatal HIE. However, focal ischemia models are
unsuitable for assessment of pharmacokinetics. Kyng et al.
(2015) describe a global hypoxia—ischemia model in pig-
lets which may allow a more reliable preclinical assess-
ment of target therapeutic concentration [115].

Double therapy in animal models is often tested in com-
bination with <48 h hypothermia. While the feasibility of
maintaining > 48 h hypothermia in animal experiments is
low, anticipated effect sizes are unreliable with shorter
duration hypothermia. Competitive advantage of different
treatments cannot be determined as experiments with vary-
ing duration of hypothermia are not comparable.

Only erythropoietin has been studied in primates with follow-
up included allowing for anticipated effect sizes for death or cer-
ebral palsy as a combined outcome measure to be determined.
Piglet models with no follow-up rely on surrogate biomarkers
like TUNEL-positive count and Lac/NAA ratio. Adverse neu-
rodevelopmental outcomes were correctly identified in 95.65%
of cases (n=62) by Lac/NAA measured using cerebral magnetic
resonance spectroscopy in clinical studies. However, validation
of Lac/NAA ratios as a surrogate biomarker in preclinical stud-
ies is lacking.

None of the ongoing clinical trials identified are recruit-
ing in low- and middle-income countries where therapeutic
hypothermia is not an option although bulk of the burden
of neonatal HIE is in this region. All treatment strate-
gies discussed above except for possibly melatonin can
be administered without intensive care support. Further
preclinical studies in the context of infection-inflammation
are required before such trials are undertaken.

Conclusion

A wide variety of experimental treatment approaches for
neonatal HIE have progressed towards the clinic over
recent years. There is a need for more optimal animal

models, greater industry support/sponsorship, increased
use of juvenile toxicology, dose-ranging studies with
pharmacokinetic-pharmacodynamic modelling, and
well-designed clinical trials to avoid exposure to harm-
ful medications or abandoning putative treatments.
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