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Abstract

Applicability of intravoxel incoherent motion (IVIM) imaging in the clinical setting is ham-

pered by the limited reliability in particular of the perfusion-related parameter estimates. To

alleviate this problem, various advanced postprocessing methods have been introduced.

However, the underlying algorithms are not readily available and generally suffer from an

increased computational burden. Contrary, several computationally fast image denoising

methods have recently been proposed which are accessible online and may improve reli-

ability of IVIM parameter estimates. The objective of the present work is to investigate the

impact of image denoising on accuracy and precision of IVIM parameter estimates using

comprehensive in-silico and in-vivo experiments. Image denoising is performed with four

different algorithms that work on magnitude data: two algorithms which are based on non-

local means (NLM) filtering, one algorithm that relies on local principal component analy-

sis (LPCA) of the diffusion-weighted images, and another algorithms that exploits joint

rank and edge constraints (JREC). Accuracy and precision of IVIM parameter estimates

is investigated in an in-silico brain phantom and an in-vivo ground truth as a function of

the signal-to-noise ratio for spatially homogenous and inhomogenous levels of Rician

noise. Moreover, precision is evaluated using bootstrap analysis of in-vivo measure-

ments. In the experiments, IVIM parameters are computed a) by using a segmented fit

method and b) by performing a biexponential fit of the entire attenuation curve based on

nonlinear least squares estimates. Irrespective of the fit method, the results demonstrate

that reliability of IVIM parameter estimates is substantially improved by image denoising.

The experiments show that the LPCA and the JREC algorithms perform in a similar man-

ner and outperform the NLM-related methods. Relative to noisy data, accuracy of the

IVIM parameters in the in-silico phantom improves after image denoising by 76–79%, 79–

81%, 84–99% and precision by 74–80%, 80–83%, 84–95% for the perfusion fraction, the

diffusion coefficient, and the pseudodiffusion coefficient, respectively, when the seg-

mented fit method is used. Beyond that, the simulations reveal that denoising perfor-

mance is not impeded by spatially inhomogeneous levels of Rician noise in the image.

Since all investigated algorithms are freely available and work on magnitude data they
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can be readily applied in the clinical setting which may foster transition of IVIM imaging

into clinical practice.

Introduction

Using diffusion-weighted imaging (DWI), the apparent diffusion coefficient (ADC) can be cal-

culated which is a measure of tissue diffusivity and has been shown to be a viable biomarker

for various pathological conditions. For instance, the ADC shows great promise for character-

izing tumor masses and evaluating response to therapy at an early stage in head and neck

tumors [1, 2] and brain cancers [3]. However, it has long been recognized that the ADC inte-

grates the effects of diffusion and perfusion due to the pseudorandom organization of the cap-

illary network at the voxel level [4, 5]. For this reason, Le Bihan et al. proposed the concept of

intravoxel incoherent motion (IVIM) imaging. Signal attenuation due to diffusion weighting

is thereby modelled as [4, 5]:

SðbÞ ¼ S0ðð1 � fÞ � expð� b � DÞ þ f � expð� b � D�ÞÞ; ð1Þ

where S0 relates to the signal without diffusion weighting, f denotes the perfusion fraction, D is

the diffusion coefficient, and D� corresponds to the pseudodiffusion coefficient. The first term

describes signal decay due to diffusion in the intra- and extracellular tissue compartments and

the second term relates to the so-called pseudodiffusion phenomenon. Due to the pseudodiffu-

sion coefficient D� typically being an order of magnitude greater than the diffusion coefficient

D, both compartments can be separated. Le Bihan and Turner established a link between the

product of the perfusion fraction and the pseudodiffusion coefficient and the relative perfusion

or blood flow [6]. In this manner, IVIM imaging permits separating the effects of diffusion

and perfusion and may lead to a more comprehensive and differentiated understanding of the

underlying tissue pathology and of alterations that occur in response to treatment.

However, clinical applicability of IVIM imaging is hampered by the limited reliability in

particular of the perfusion-related parameter estimates if the biexponential fit is performed

using iterative nonlinear least squares methods [7, 8]. One possibility to increase robustness

of the results is to compute averaged values over regions of interest rather than individual voxels

[7, 8]. Another approach that preserves spatial resolution is to use a segmented fit method as

proposed by Pekar et al. [7]. It is likely the most frequently used algorithm in IVIM analysis. It

relies on the fact that the decay rate resulting from pseudodiffusion is usually an order of magni-

tude greater than that stemming from tissue diffusion. For this reason, pseudodiffusion domi-

nantly affects signal attenuation at lower b-values while it accounts for only a small proportion

of the measured signal at higher b-values. Thus, the diffusion coefficient can be derived from a

monoexponential fit of the high b-value images (typically > 200 s/mm2). Thereafter, the perfu-

sion fraction is determined using the intercept obtained in the fit and the actual measurement

without diffusion weighting. Finally, the pseudodiffusion coefficient is derived from a biexpo-

nential fit using the previously calculated values of the diffusion coefficient and the perfusion

fraction.

Alternatively, it was shown that estimation uncertainty may be reduced relative to nonlin-

ear least squares methods when a Bayesian probability approach is used for model fitting [9–

12]. Furthermore, Freiman et al. have shown that combining a spatially-constrained incoher-

ent motion model with an iterative fusion bootstrap solver results in more precise estimates of

IVIM parameters [13]. However, the underlying algorithms are not readily available and suffer

from an increased computational burden. Contrary, several computationally fast image
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denoising methods have recently been proposed which are accessible online (see Materials and

Methods section) and may improve reliability of IVIM parameter estimates [14–19]. Up to

now, image denoising as a means to increase accuracy and precision of IVIM modeling has

not been evaluated and will be investigated in the current work.

Image denoising can be applied to either complex or magnitude diffusion-weighted (DW)

images. Even though denoising of complex images allows for an easier modeling of the noise

characteristics, it is preferable from a practical point of view to denoise magnitude images since

they are widely available and require less storage. In many cases, noise in DW magnitude images

follows a Rician distribution such as in images from a single coil [20–22] and in multiple-coil

images reconstructed with sensitivity encoding (SENSE) [23]. Based on this assumption several

algorithms have been proposed [24–26]. To improve denoising performance, a variety of con-

straints that exploit prior information can be incorporated. A well-known approach uses nonlo-

cal similarities within the image [27]. The high computational burden that is associated with the

method can be diminished by an optimized blockwise implementation of the algorithm [14].

The original version of this algorithm relied on the assumption of a Gaussian distribution of the

noise in the image. To facilitate applicability to DW images, Wiest-Dasslé et al. proposed an

adapted version which incorporates a Rician distribution of the noise [15]. In the following, this

algorithm will be referred to as the nonlocal means (NLM) algorithm. The NLM algorithm

assumes spatially homogenous levels of Rician noise. In practice, however, DWI acquisition is

typically combined with parallel imaging to diminish susceptibility-induced image artifacts and

T2
� blurring [28, 29] which leads to varying levels of Rician noise across the image. For this rea-

son, Manjón et al. proposed the adaptive nonlocal means (ANLM) algorithm [16]. As part of the

denoising procedure, the ANLM algorithm inherently determines estimates of the noise variance

on a voxelwise basis.

Alternative approaches exploit the multidirectional nature of DW images for image denois-

ing. For instance, Manjón et al. demonstrated that magnitude DW images can be effectively

denoised using local principal component analysis (LPCA) [17]. The LPCA algorithm assumes

a Rician distribution of the noise in the image and accounts for spatially varying noise patterns.

Beyond that, Lam et al. showed that the signal-to-noise ratio (SNR) of DW images can be effec-

tively improved using joint rank and edge constraints (JREC) [18, 19]. Contrary to the afore-

mentioned algorithms, the noisy magnitude images are modeled by a noncentral χ distribution

of which the Rician distribution is a special case.

The aim of the present study is to evaluate the impact of image denoising on accuracy and

precision of IVIM parameter estimates using comprehensive in-silico and in-vivo experi-

ments. Image denoising is performed using the NLM, the ANLM, the JREC, and the LPCA

algorithms. All investigated algorithms are freely available and work on magnitude data. Thus,

they can be readily applied in the clinical setting which may foster transition of IVIM imaging

into clinical practice.

Materials and methods

Denoising performance of the NLM, the ANLM, the LPCA (available for download at: https://

sites.google.com/site/pierrickcoupe/softwares/denoising-for-medical-imaging/mri-denoising/

mri-denoising-software, accessed 23 May 2016), and the JREC (available for download at:

http://mri.beckman.uiuc.edu/software.html, accessed 23 May 2016) algorithms was assessed

with regard to accuracy and precision of the IVIM parameter estimates. IVIM parameters

were computed twofold a) by using the segmented fit method and b) by performing a biexpo-

nential fit of the entire attenuation curve based on nonlinear least squares estimates. The latter

will hereafter be referred to as a full biexponential fit.

Image denoising substantially improves accuracy and precision of IVIM parameters
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In-silico simulations

Denoising performance of the algorithms was investigated in a three-dimensional brain phan-

tom (matrix = 144 x 144 x 10) based on the discrete version of the digital brain phantom cre-

ated by Collins et al. (available for download at: http://brainweb.bic.mni.mcgill.ca/brainweb/

anatomic_normal.html, accessed 23 May 2016) [30]. The IVIM parameters in the phantom

were set to recent literature values (Table 1) [31]. Based on Eq 1, DW images of the brain

phantom were computed with b-values of 0, 15, 30, 45, 60, 100, 250, 400, 550, 700, 850, 1000 s/

mm2. Different levels of spatially homogeneous and inhomogeneous Rician noise were simu-

lated by adding white Gaussian noise to the real and imaginary parts of the DW images result-

ing in a SNR range of = 20–100 in the non-DW images. Spatially varying noise distributions

were generated similar to those described by Tabelow et al. [32]. In the simulations, the noise

standard deviation was set relative to the joint average of the signals of gray and white matter

in the non-DW images of the brain phantom. In clinical practice, DW images are usually

acquired along three orthogonal directions to compensate for the possible influence of the rela-

tive orientation between tissue and imaging system [33]. For this reason, three noisy DW

images were computed at each b-value and subsequently combined into a trace image.

An estimate of the noise variance of each DW image series was determined using the median

absolute deviation estimator adapted for Rician noise [34] and used as input parameter for the

NLM and the JREC algorithms. The rank model order and the regularization parameter in the

JREC algorithm were optimized at each SNR such that accuracy of the IVIM parameter esti-

mates was maximized compared to the gold standard. The other image denoising algorithms

were run with their default parameters.

Each noisy DW image series was denoised using all investigated algorithms and the IVIM

parameters calculated. For comparison with previously published data, using the segmented fit

method, the diffusion coefficients D were computed from the DW images with b> 250 s/mm2

[31]. In addition, IVIM parameters were computed from the noisy and noise-free DW image

series, respectively. The latter were treated as gold standard for determining accuracy of param-

eter estimation. For each SNR, the simulation was repeated 50 times. Thereafter, accuracy and

precision were computed jointly over gray and white matter.

The simulations were implemented and run in MATLAB (MathWorks, Natick, MA, USA,

Release 2015a). To decrease computation time, the code was parallelized and distributed using

MATLAB’s Parallel Computing Toolbox and Distributed Computing Server for Amazon EC2

(MathWorks, Natick, MA, USA, Release 2015a). Nonlinear least squares fitting for parameter

estimation was implemented using the levmar package (Version 2.5) which comprises a C/C++

implementation of the Levenberg-Marquardt algorithm [35].

In-vivo experiments

DWI measurements. For in-vivo comparison of the image denoising algorithms, DWI

data of the brain of a healthy volunteer were acquired on a 3 T MR scanner (Achieva, Release

3.2.1, Philips Healthcare, Best, the Netherlands) using a 32-channel receive-only head coil

array (Philips Healthcare, Best, the Netherlands). Data acquisition was approved by the

Table 1. IVIM Parameters in the In-Silico Brain Phantom.

f D D*

[no units] [x10-3 mm2/s] [x10-3 mm2/s]

Gray matter 0.14 0.84 8.2

White matter 0.07 0.77 7.9

https://doi.org/10.1371/journal.pone.0175106.t001
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Cantonal Research Ethics Committee and written informed consent was obtained from the

volunteer. A standard DW spin-echo echo planar imaging (EPI) sequence with 12 b-values (b-

values of 0, 15, 30, 45, 60, 100, 250, 400, 550, 700, 850, 1000 s/mm2) separately applied along

three orthogonal directions was used. The scan parameters were as follows: field of view = 220

x 220 mm2, image matrix = 140 x 140, slices = 16, slice thickness = 5 mm, no slice gap, partial

Fourier encoding = 75%, SENSE factor = 2, TR = 2000 ms, TE = 64 ms, number of signal aver-

ages (NSA) = 1, scan duration = 72 s. The scan was repeated 50 times to permit evaluating pre-

cision of IVIM parameter estimation using the bootstrap method [36]. Eddy current-induced

image warping and motion were corrected and all data sets coregistered using a correlation-

based affine registration algorithm [37]. The SNRs in a single measurement were determined

according to the National Electrical Manufacturers Association [38]. Thereby, the SNR was

calculated on a voxelwise basis using the ratio of the mean signal intensity of a given voxel over

all scan repetitions divided by the standard deviation around that mean.

Bootstrap analysis of in-vivo data. The non-DW images were averaged and calculated

for the probability of belonging to either gray matter, white matter or cerebrospinal fluid on a

voxelwise basis using SPM (Statistical Parametric Mapping, SPM8, Wellcome Department of

Cognitive Neurology, London, UK). The white matter probability mask was smoothed using a

three-dimensional Gaussian kernel with a full width at half maximum of 3 mm to mitigate par-

tial volume effects [31, 39]. A joint gray and white matter mask was thereafter created at a

threshold of 0.9.

Bootstrapping was used to assess in-vivo precision of IVIM parameter estimates as a func-

tion of the NSA (NSA = 2–25). For each NSA, the corresponding number of scan repetitions

was randomly selected out of the 50 repetitions and averaged to create a bootstrap estimate of

the DW image series. The procedure was repeated to generate a total of 50 bootstrap estimates

with replacement at each NSA. It should be noted that scan repetitions rather than individual

b-values were randomly picked and averaged to account for signal drifts as a results of tempo-

ral scanner instability [40]. Each bootstrap estimate was denoised using all evaluated algo-

rithms and the IVIM parameters calculated. In addition, IVIM parameter estimates were also

derived directly from the noisy bootstrap estimates of the DW image series. In the analysis, the

rank model order in the JREC algorithm was set to 4 and the regularization parameter was

chosen by visual inspection of the IVIM parameter maps to avoid oversmoothing [18, 19].

Surrogate in-vivo ground truth. Due to the absence of a gold standard, accuracy of IVIM

estimation cannot be determined in vivo. For comparison with the in-silico simulations, a

ground truth was generated from the in-vivo data using a similar approach as proposed by

Zhou et al. [41]. In the process, a) the DW image series were eddy-current corrected, motion

compensated and coregistered, b) the DW image series were denoised using the JREC algo-

rithm and subsequently averaged, and c) the IVIM parameter maps were calculated. The JREC

algorithm was chosen for post processing since it allows a tradeoff between denoising perfor-

mance and image smoothing. For computation of this ground truth, a relatively large regulari-

zation parameter was chosen to maximize noise removal while accepting some loss of image

detail. Based on the thus generated in-vivo ground truth, the same simulations as in the in-sil-

ico phantom were run, i.e. the same b-values were assumed and different levels of spatially

homogeneous and inhomogeneous Rician noise were added resulting in a SNR range of = 20–

100 in the non-DW images. It should be noted that smaller regularization parameters were

used when the JREC algorithm was used for image denoising in the simulations than when the

ground truth was created.

Image denoising substantially improves accuracy and precision of IVIM parameters
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Measures of algorithm performance

In addition to a visual comparison of noisy and denoised IVIM parameter maps, two error

metrics were computed to assess accuracy and precision of IVIM parameter estimation. To

quantify parameter estimation accuracy, the root-mean-square error (RMSE) of the IVIM

parameter estimates was computed:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PM

m¼1
ðpm� p̂mÞ

2

M

s

; ð2Þ

where pm and p̂m correspond to the IVIM parameter estimates in voxel m computed from the

gold standard and the noisy/denoised DW images, respectively. M corresponds to the total

number of gray and white matter voxels in the data set. For each SNR/NSA, the RMSE was cal-

culated jointly over gray and white matter and subsequently averaged across all simulations

(n = 50).

At each SNR/NSA, precision was assessed by computation of the coefficient of variation

(CV):

CV ¼ 100% �

PM
m¼1

sm=mm

M
; ð3Þ

where μm denotes the average value and σm the corresponding standard deviation of the IVIM

parameter estimate in voxel m across all simulations (n = 50) and M relates to the total number

of gray and white matter voxels in the data set.

Results

Visual comparison of IVIM parameter maps

For visual comparison, Fig 1 depicts IVIM parameter maps computed from noisy and denoised

DW image series when the segmented fit method is used. Quality of the IVIM parameter maps

notably improves after image denoising. With regard to the pseudodiffusion coefficient, quality

of the parameter map is highest when the JREC algorithm is utilized. However, it should be

noted that relative to the gold standard the pseudodiffusion coefficient appears to be systemati-

cally underestimated in brain white matter (Fig 1, third row).

By way of example, Fig 2 shows IVIM parameter maps computed from noisy and denoised

DW image series when a full biexponential fit is performed. Visual inspection reveals that the

highest image quality is achieved when using the LPCA algorithm for image denoising. How-

ever, even then image quality of the pseudodiffusion coefficient is relatively poor. Further-

more, it can be observed that both NLM-related algorithms lead to errors in the parameter

estimates at transitions between different types of tissue.

Accuracy of IVIM parameters after image denoising

In-silico brain phantom simulations. Fig 3 depicts the RMSEs of the IVIM parameter

estimates in the in-silico brain phantom as a function of the SNR. It can be appreciated that

independent of the fit method, accuracy of IVIM parameter estimation considerably improves

after image denoising, in particular at low and moderate SNRs. The JREC and the LPCA algo-

rithms result in similar RMSEs and generally perform better than the NLM-related methods.

Relative to the noisy DW image series, accuracy improves by 76–79%, 79–81%, and 84–99%

for the perfusion fraction f, the diffusion coefficient D, and the pseudodiffusion coefficient D�,

respectively, across the simulated SNR range, if the DW image series is denoised with the

Image denoising substantially improves accuracy and precision of IVIM parameters
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LPCA algorithm prior to IVIM parameter estimationusing the segmented fit method (Fig 3A).

Thereby, denoising performance is not impeded by spatially varying levels of Rician noise (Fig

3B). Despite image denoising, accuracy of IVIM parameter estimation based on a full biexpo-

nential fit is much lower than when the segmented fit method is used. Both fit methods achieve

comparable results only at high SNRs (Fig 3A and 3C). When the JREC algorithm is used for

image denoising it should be noted with regard to the pseudodiffusion coefficient that a con-

stant RMSE is observed that persists at high SNRs (Fig 3, third row). This finding is a conse-

quence of the systematic error in the parameter estimates in brain white matter, as discussed

Fig 1. Parameter maps of the perfusion fraction f (first row), the diffusion coefficient D (second row),

and the pseudodiffusion coefficient D* (third row) in the in-silico brain phantom computed from

noisy (first column) and denoised DW images using the NLM (second column), the ANLM (third

column), the JREC (fourth column), and the LPCA algorithms (fifth column). Stationary homogeneous

Rician noise was added to obtain a SNR of 40 and the IVIM parameters were computed using the segmented

fit method. The gold standard is depicted for reference.

https://doi.org/10.1371/journal.pone.0175106.g001

Image denoising substantially improves accuracy and precision of IVIM parameters
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further up. For the pseudodiffusion coefficient D�, a critical SNR can be observed below which

the RMSE increases strongly (Fig 3, third row), this is likely caused by the Levenberg-Mar-

quardt algorithm converging towards a local instead of the global minimum.

In-vivo ground truth simulations. Due to the lack of a gold standard, accuracy of IVIM

parameter estimation cannot be determined in vivo. As noted above, a surrogate in-vivo

ground truth was generated from the in-vivo measurements to assess transferability of the

results of the in-silico simulations to the in-vivo situation. Table 2 summarizes the IVIM

parameters in the in-vivo ground.

Fig 2. Parameter maps of the perfusion fraction f (first row), the diffusion coefficient D (second row),

and the pseudodiffusion coefficient D* (third row) in the in-silico brain phantom computed from

noisy (first column) and denoised DW images using the NLM (second column), the ANLM (third

column), the JREC (fourth column), and the LPCA algorithms (fifth column). Stationary homogeneous

Rician noise was added to obtain a SNR of 60 and the IVIM parameters were computed using a full

biexponential fit. The gold standard is depicted for reference.

https://doi.org/10.1371/journal.pone.0175106.g002
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Fig 3. RMSEs of the perfusion fraction f (first column), the diffusion coefficient D (second column), and the pseudodiffusion

coefficient D* (third column) in the in-silico brain phantom as a function of the SNR. Results of the simulations when (a) stationary and (b)

spatially varying Rician noise is added and the segmented fit method is utilized, and (c) when stationary Rician noise is added and a full

biexponential fit is performed. Please note that the RMSEs of the pseudodiffusion coefficient (third column) are displayed on a logarithmic scale

for clarity. At each SNR, the RMSEs were calculated as the average across all simulations (n = 50).

https://doi.org/10.1371/journal.pone.0175106.g003

Image denoising substantially improves accuracy and precision of IVIM parameters
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With regard to accuracy, the results of the in-silico experiments are corroborated in the in-

vivo ground truth. By way of example, Fig 4 depicts the RMSEs of the IVIM parameter esti-

mates in the in-vivo ground truth when spatially homogeneous Rician noise is added and the

segmented fit method is utilized. The results agree well with those of the in-silico brain phan-

tom (Figs 3A and 4). However, it should be noted that the RMSEs in the in-vivo ground truth

were generally somewhat higher than in the in-silico brain phantom.

Precision of IVIM parameters after image denoising

In-silico brain phantom simulations. Fig 5 depicts the CVs of the IVIM parameter esti-

mates in the in-silico brain phantom as a function of the SNR. As can be seen, image denoising

considerably improves precision of the estimates. In agreement with the observations made

with regard to accuracy, the JREC and the LPCA algorithms outperform the NLM-related

methods. Relative to the noisy DW image series, precision is improved by 74–80%, 80–83%,

and 84–95% for the perfusion fraction f, the diffusion coefficient D, and the pseudodiffusion

coefficient D�, respectively, across the simulated SNR range, if the DW image series is denoised

with the LPCA algorithm prior to IVIM parameter estimation using the segmented fit method

(Fig 5A). Furthermore, denoising performance is not impeded when spatially varying levels of

Rician noise are added (Fig 5B). Similar to before, precision of IVIM parameter estimation

based on a full biexponential fit is much lower than when the segmented fit method is applied.

Both fit methods achieve comparable results only at high SNRs (Fig 5A and 5C).

In-vivo ground truth simulations. With regard to precision, the results of the in-silico

experiments are corroborated in the in-vivo ground truth. By way of example, Fig 6 depicts

Table 2. IVIM Parameters in the In-Vivo Ground Truth.

f D D*

[no units] [x10-3 mm2/s] [x10-3 mm2/s]

Gray matter 0.11 ± 0.06 0.76 ± 0.20 7.7 ± 4.2

White matter 0.07 ± 0.03 0.72 ± 0.20 7.2 ± 4.5

Please note, values in the in-vivo ground truth are expressed as mean ± standard deviation.

https://doi.org/10.1371/journal.pone.0175106.t002

Fig 4. RMSEs of the perfusion fraction f (first column), the diffusion coefficient D (second column), and the pseudodiffusion

coefficient D* (third column) in the in-vivo ground truth as a function of the SNR when spatially homogeneous Rician noise is added

and a segmented fit is performed. Please note that the RMSEs of the pseudodiffusion coefficient (third column) are displayed on a logarithmic

scale for clarity. At each SNR, the RMSEs were calculated as the average across all simulations (n = 50).

https://doi.org/10.1371/journal.pone.0175106.g004
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the CVs of the IVIM parameter estimates in the in-vivo ground truth when spatially homoge-

neous Rician noise is added and the segmented fit method is utilized. The results are in

Fig 5. CVs of the perfusion fraction f (first column), the diffusion coefficient D (second column), and the pseudodiffusion coefficient

D* (third column) in the in-silico brain phantom as a function of the SNR. Results of the simulations when (a) stationary and (b) spatially

varying Rician noise is added and the segmented fit method is utilized, and (c) when stationary Rician noise is added and a full biexponential fit is

performed. Please note that the CVs of the pseudodiffusion coefficient (third column) are displayed on a logarithmic scale for clarity.

https://doi.org/10.1371/journal.pone.0175106.g005
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agreement with those of the in-silico brain phantom (Figs 5A and 6). However, it should be

noted that precision of the IVIM parameter estimates after image denoising with the JREC

algorithm was generally higher in the in-silico brain phantom than in the in-vivo ground truth

(Figs 5A and 6).

Bootstrap analysis of the in-vivo measurements. For visual comparison, Fig 7 depicts

IVIM parameter maps computed from noisy and denoised in-vivo DW images when the seg-

mented fit method is applied. The parameter maps were computed from a single measurement

(NSA = 1, scan duration = 72s). Quality of the parameters maps clearly improves after image

denoising. As before, visual inspection reveals that the JREC and the LPCA algorithms per-

form better that the NLM-related methods. The artifact that is apparent on the pseudodiffu-

sion coefficient maps corresponds to a residual aliasing artifact after SENSE reconstruction

likely caused by inaccurate estimation of the coil sensitivity maps.

The SNR computed jointly over gray and white matter amounted on average to 22.92 ±
4.12 in the non-DW images (NSA = 1). Please note that when neglecting diffusion, the SNR in

the trace DW images is increased by a factor of square root of three relative to the non-DW

images since diffusion weighting was sequentially applied along three orthogonal directions.

Taking into consideration that the SNR scales with the square root of the NSA, the NSA range

(NSA = 2–25) in the bootstrap analysis of the in-vivo measurements translates into a SNR

range that agrees well with the in-silico simulations. By way of example, S1 Fig of the Support-

ing Information shows in-vivo SNR maps and S1 Table summarizes the results of the in-vivo

SNR measurements.

Finally, Fig 8 depicts the results of the bootstrap analysis. In-vivo precision of the IVIM

parameter estimates is slightly lower but generally agrees well with the in-silico simulations

(Figs 5A, 5B and 8). Precision of the perfusion fraction f considerably increases after image

denoising with either the LPCA or the JREC algorithm (CVs� 20% for NSA� 5). Moreover,

it should be stressed that the CVs of the diffusion coefficient D were smaller than 5% across

the entire NSA range after image denoising using the aforementioned algorithms.

Discussion

In the present study, the impact of image denoising on the reliability of IVIM parameter

estimates was investigated using comprehensive in-silico and in-vivo experiments. IVIM

Fig 6. CVs of the perfusion fraction f (first column), the diffusion coefficient D (second column), and the pseudodiffusion

coefficient D* (third column) in the in-vivo ground truth as a function of the SNR when spatially homogeneous Rician noise is

added and a segmented fit is performed. Please note that the CVs of the pseudodiffusion coefficient (third column) are displayed on a

logarithmic scale for clarity.

https://doi.org/10.1371/journal.pone.0175106.g006
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Fig 7. Parameter maps of the perfusion fraction f (first row), the diffusion coefficient D (second row),

and the pseudodiffusion coefficient D� (third row) computed from noisy (first column) and denoised

in-vivo DW images using the NLM (second column), the ANLM (third column), the JREC (fourth

column), and the LPCA algorithms (fifth column). The results were computed from a single measurement

(NSA = 1, scan duration = 72 s).

https://doi.org/10.1371/journal.pone.0175106.g007

Fig 8. Results of the bootstrap analysis of the in-vivo data: CVs of the perfusion fraction f (first column), the diffusion coefficient D

(second column), and the pseudodiffusion coefficient D� (third column) as a function of the NSA when IVIM parameter estimation is

performed using the segmented fit method. Please note that the CVs of the pseudodiffusion coefficient (third column) are displayed on a

logarithmic scale for clarity.

https://doi.org/10.1371/journal.pone.0175106.g008
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parameters were computed by using either the segmented fit method or by performing a biex-

ponential fit of the entire attenuation curve. Irrespective of the fit method, the results demon-

strate that both accuracy and precision are substantially improved after image denoising. It

was shown that the LPCA and the JREC algorithms perform in a similar manner and outper-

form the NLM-related methods. Despite image denoising, reliability of IVIM parameter esti-

mates is generally markedly lower when a full biexponential rather than a segmented fit is

utilized. Both methods achieve similar results only at high SNRs which are unlikely to be

obtained in most clinical applications.

In the present study, precision of IVIM parameter estimates was evaluated in an in-silico

brain phantom. The results of these simulations were verified by bootstrap analysis of in-vivo

measurements. Due to the lack of a gold standard, accuracy of the IVIM parameter estimates

could not be determined in vivo. To investigate transferability of the results of the in-silico

simulations to the in-vivo situation, a ground truth was generated from the in-vivo measure-

ments in a similar manner as proposed by Zhou et al. [41]. The IVIM parameters in the result-

ing in-vivo ground truth agreed well with literature values (see Tables 1 and 2) [31, 42]. The

simulations that were run in the thus generated in-vivo ground truth corroborated the findings

in the in-silico experiments. Finally, the results of the present work with regard to accuracy of

IVIM parameter derived from noisy data agree well with recently published data [31].

In the simulations, accuracy was determined relative to the IVIM parameters computed

from the noise-free images. It should be noted that there is a systematic error relative to the

gold standard when the segmented fit method is used. This inaccuracy stems from a residual

amount of signal due to perfusion even at higher b-values and is inherent to the method [7].

Performance of the image denoising algorithms relies on an accurate estimate of the noise

variance. The NLM and the JREC algorithms require this estimate as an input parameter. For

this purpose, an object-based method was utilized in the present work. While background-

based noise estimation methods are easily applicable they rely on reasonably large background

regions which are representative of the noise level in the object. This assumption might not be

met in DWI since image acquisition is typically performed using EPI which is prone to ghost-

ing artifacts due to the misalignment of even and odd echoes. These artifacts may lead to erro-

neous results if background-based noise estimation methods are used.

As noted above, DWI is usually performed in conjunction with parallel imaging to diminish

susceptibility-induced image artifacts and T2
� blurring [28, 29] which leads to spatially varying

levels of Rician noise in the image. Among the algorithms studied, only the ANLM and the

LPCA algorithms permit estimating the noise variance on a voxelwise basis. However, the

JREC algorithm could be readily adapted to allow for spatially varying levels of noise by intro-

ducing a voxel-dependent noise variance in combination with a noise estimation method that

allows for a voxelwise determination of the noise level [18]. However, the present results indi-

cate that denoising performance is not diminished by spatially inhomogeneous levels of Rician

noise.

In many cases, noise in magnitude MR images follows a Rician distribution such as in

images from a single coil [20–22] and in multiple-coil images reconstructed with SENSE [23].

However, for instance generalized autocalibrating partially parallel acquisition reconstruction

with sum-of-squares combination follows a noncentral χ distribution. In this case, images can

either be directly denoised using the JREC algorithm or image denoising may be performed

prior to coil combination using the other evaluated denoising methods.

Reliability of the IVIM parameter estimates was evaluated assuming a DWI sequence with

12 b-values as described in Wu et al. [31]. While accuracy and precision may be increased by

acquiring more b-values, the maximum number of b-values is in practice limited by time con-

straints in the clinical setting. Nevertheless, it should be noted that the simulations lead to
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comparable results when a large number of b-values (number of b-values = 25, data not

shown) was assumed. For this reason, it is recommended to use image denoising as a postpro-

cessing step independent of the number of acquired b-values.

The present work demonstrates that image denoising based on either the LPCA or the

JREC algorithm results in more robust IVIM parameter estimates than when the NLM-related

methods are used. Both algorithms make use of the multidirectional nature of DW images.

Thus, misregistration among DW images with different b-values will lead to erroneous results.

For this reason, it is important to correct in-vivo data for eddy current-induced image distor-

tions and motion. To this end, a correlation-based affine registration algorithm was utilized in

the present work [37].

In the in-vivo experiment, the parameters of the JREC algorithm were chosen by visual inspec-

tion of the IVIM parameter maps to avoid oversmoothing. In situations where a DW data set fea-

tures particularly low SNRs, a higher regularization parameter may be chosen to increase noise

removal at the expense of image detail. The NLM-related algorithms were run with their default

parameters which were optimized in a previous work [14]. To increase denoising performance of

the NLM-related methods Coupé et al. proposed a multiresolution framework with wavelet sub-

band mixing [42]. However, preliminary simulations (data not shown) indicated only minor

improvements in denoising performance at the cost of double the computational burden. For

this reason, image denoising was performed without subband mixing in the present work.

Finally, it should be noted that image denoising could in principle be easily combined with

parameter estimation using a Bayesian probability approach for model fitting. Previous work

has shown that in this manner reliability of the IVIM parameters estimates may potentially be

increased [9–12]. However, IVIM parameter estimation was in the present work performed by

nonlinear least-squares fitting due to its computational efficiency and its widespread use.

In conclusion, the present work evaluated the impact of image denoising on the reliability

of IVIM parameter estimates. Irrespective of the fit method, it was shown that both accuracy

and precision are substantially improved when DW images are denoised prior to IVIM param-

eter fitting. It was observed that the LPCA and the JREC algorithms in conjunction with the

segmented fit method result in the highest robustness of the IVIM parameter estimates. Both

algorithms work on magnitude data and can thus be readily applied in the clinical setting

which may foster transition of IVIM imaging into clinical practice.

Supporting information

S1 Fig. In-vivo SNR maps of three slices in the brain at b-values of 0, 100, 550, 1000 s/mm2.

Please note that diffusion weighting at each b-value was applied along three orthogonal direc-

tions and the images were subsequently combined into a trace image.

(DOCX)

S1 Table. Mean values and standard deviations of the SNRs in the in-vivo measurements

jointly computed across gray and white matter (NSA = 1).

(DOCX)

S2 Fig. Flow chart depicting the simulation pipeline used in the present work. In addition,

links to the locations of the source code that is used in the simulations are provided.

(PDF)
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42. Coupé P, Hellier P, Prima S, Kervrann C, Barillot C. 3D wavelet subbands mixing for image denoising.

Int J Biomed Imaging. 2008.

Image denoising substantially improves accuracy and precision of IVIM parameters

PLOS ONE | https://doi.org/10.1371/journal.pone.0175106 April 5, 2017 18 / 18

https://doi.org/10.1109/42.712135
https://doi.org/10.1109/42.712135
http://www.ncbi.nlm.nih.gov/pubmed/9735909
https://doi.org/10.1007/s00330-015-3655-x
http://www.ncbi.nlm.nih.gov/pubmed/25693668
https://doi.org/10.1016/j.media.2014.10.008
http://www.ncbi.nlm.nih.gov/pubmed/25465845
http://www.ncbi.nlm.nih.gov/pubmed/19186405
https://doi.org/10.1016/j.media.2010.03.001
http://www.ncbi.nlm.nih.gov/pubmed/20417148
http://www.ics.forth.gr/~lourakis/levmar/
http://www.ics.forth.gr/~lourakis/levmar/
https://doi.org/10.1109/TMI.2004.827479
https://doi.org/10.1109/TMI.2004.827479
http://www.ncbi.nlm.nih.gov/pubmed/15250631
https://doi.org/10.1371/journal.pone.0082679
https://doi.org/10.1371/journal.pone.0082679
http://www.ncbi.nlm.nih.gov/pubmed/24324822
https://doi.org/10.1371/journal.pone.0116986
https://doi.org/10.1371/journal.pone.0116986
http://www.ncbi.nlm.nih.gov/pubmed/25643162
https://doi.org/10.1371/journal.pone.0175106

