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Abstract: Alkali was used to adjust the pH and neutralize the excess acids of dough in the processing
of Chinese northern steamed bread (CNSB). However, extra alkali addition generally resulted in
alkalic flavor and poor appearance. The aim of this work was to investigate the role of proofed
dough pH on the texture of CNSB. Correlation analysis demonstrated that the pH value of proofed
dough has a significant effect on the textural properties of CNSB. The mechanism studies found
that gradual acidification of dough by lactic acid bacteria is a critical factor affecting the process.
Conversely, chemical acidification weakened the texture property of products and reduced the dough
rheology. Scanning electron microscope (SEM) analysis showed that fermentation with starter for
12 h produced a continuous and extensional protein network in the proofed dough. Furthermore,
the decreasing pH of proofed dough increased the extractability of protein in a sodium dodecyl sulfate
(SDS)-containing medium and the content of free sulfhydryl (SH). The structure and content of gluten,
especially influenced by gradual acidification level, change the quality of the final product. It is a
novel approach to obtain an alkali-free CNSB with excellent quality by moderate gluten adjustment.
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1. Introduction

Sourdough steamed bread is a traditional Chinese fermented food, which is usually produced
either at home or in factories [1]. The texture of products differ significantly depending on consumer
demand in different areas of China [2]. Therefore, steamed bread is divided into northern and southern
steamed bread. Chinese northern steamed bread (CNSB) is firmer and more chewy than that in
southern areas, and it is usually proofed with sourdough to improve the product quality [3]. However,
in China, consumers are not used to eating steamed bread with a sour taste, which is significantly
different from Western sourdough bread. During the preparation process, the appropriate dietary
alkali (main ingredient Na2CO3) is usually added to neutralize the excess acidic components in the
dough [4], but the amount of addition is mainly based on the subjective experience of bakers, which is
difficult to control. Less addition led to unacceptably sour taste, but excessive addition resulted in
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products with a yellow appearance due to the combination of alkali and the isoflavone pigment in
flour. Furthermore, the addition of alkali also seriously damages the nutrients in the dough, such as B
vitamins, which greatly affect the product quality [5].

Acidification, the acids produced by microbial metabolism, is an important characteristic of
sourdough fermentation [6]. The acidic environment plays an critical role in the formation of polymer
structures, such as proteins, starch, and arabinoxylan, that are the major determinants of texture
properties [7]. The optimum pH for sourdough is between 3.5 and 4.0 [8], which is suitable for
activating the enzymatic activity of cereal protease. Previous studies proved that the pH-dependent
cereal proteases and lactic acid bacteria-liberated proteases contribute to the depolymerization of
gluten protein, which is an important aspect in the dough rheology and product quality [9].

Protein is degraded by both enzyme and acid during fermentation. This is consistent with the
findings of Clarke [10] and Thiele [11], in which the activity of cereal protease is the main determinant
of dough rheology under appropriately acidic conditions, and that differences in the acidification rates
of strains result in significant differences in product quality.

The physical properties of wheat-based products are significantly related to the formation of gluten
structure [12,13]. The effect of acids on the protein is mainly reflected in its swelling and solubility,
which are related to the protein’s more positive net charge in an acidic environment [14]. An increase in
intramolecular electrostatic repulsion causes the glutelin to unfold, exposing more hydrophobic groups.
Strong electrostatic repulsion between molecules prevents the formation of new bonds, resulting
in softer dough and a shorter mixing time [15]. The softness of gluten also promotes swelling and
increases water absorption. Meanwhile, changes in acidification and fermentation time positively affect
cereal enzyme activity. The best pH for flour proteases is in the acidic range, and protein hydrolysis
increases in dough at a pH of 4 relative to non-acidified dough [16]. The prolongation of fermentation
time can also increase the activity of cereal protease. The rheological consequence of gluten degradation
appears to be a reduction in the elasticity and firmness of sourdough and steamed bread. Whether
product size increases or decreases depends on the acidity of the dough and the morphology of the
gluten network. The gluten network produced by sourdough fermentation increases gas retention due
to physicochemical reactions, and softer and more ductile dough allows for greater expansion [17].
However, acidification and enzymatic hydrolysis may result in the complete degradation of high
molecular weight gluten, leading to strong gluten softening. Although weaker gluten allows for greater
expansion, it also reduces the dough’s gas retention. Therefore, the acidity levels of sourdough and
proofed dough should be carefully controlled to ensure that the final product has the desired texture.

In recent years, researchers have focused on exogenous additives to improve the characteristics of
CNSB [18–20]. Worthy of attention is the previous research by Wu [2] on adding different types of
starter in CNSB. In this study, sourdough was fermented using Lactobacillus plantarum (L.plantarum),
which is often found in samples of sourdough used to make CNSB, and the lactic acid bacteria proves
to have excellent properties in CNSB, according to previous studies [2]. The purpose of this study is to
investigate the optimum acidification of sourdough starter on the quality of CNSB to establish the
relationship between the gluten of proofed dough and the texture property of steamed bread. The
knowledge of gluten adjusting responsible for the quality of products will facilitate the industrial
development of alkali-free steamed bread.

2. Results and Discussion

2.1. Effects of Acidification Level on Textural Properties and Sensory Evaluation of Northern Steamed Bread

To explore the effect of sourdough acidification on the quality of CNSB, pH changes of dough
during CNSB processing were investigated. Dough proofed with sourdough starter was performed
every 4 h, and the pH values of sourdough starter, mixed dough, and proofed dough were analyzed,
as shown in Figure 1. A significant reduction in pH was observed from 4 h to 16 h of fermentation in
the mixed dough and proofed dough. It can be determined that the addition of sourdough starter with
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different fermentation times contributed to the pH changes during CNSB processing, and the trend of
change was consistent, which had a direct impact on the pH of the final product.
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Figure 1. Final pH of sourdough, mixed dough, and proofed dough. The mixed dough and proofed
dough were prepared by corresponding sourdough with different fermentation times: 4–24 h. All data
are the means ± standard deviation.

Texture is important for evaluating the quality of steamed bread, as the previously reported
hardness, chewiness, and adhesiveness were generally detected as the key indicators for texture
evaluation [21]. From the results in Table 1, the addition of sourdough reduced the hardness, chewiness,
and adhesiveness of the steamed bread, which resulted in a softer texture. In addition, the correlation
analysis between the pH value of proofed dough and the texture of steamed bread revealed that pH
value is positively correlated with the major texture indicators of steamed bread (R2 = 0.9330–0.9635)
(Figure 2). However, the level of texture indicators cannot directly explain the consumer acceptability
of steamed breads, and no previous study has determined an optimal value for steamed breads so far.
Therefore, more effective evaluation methods must be used to further explore. Sensory evaluation was
performed by a consumer panel to further verify the effect of final pH levels on the quality of steamed
bread. The consumer panel was asked to score the samples according to the degree of preference.
The results showed that the relationship between pH value and sensory score was not linear, which
indicated that the adjustment of sourdough acidity is related to the taste of steamed bread. Sensory
scores increased and then dropped significantly in value when the pH level decreased (Figure 3).
Previous studies reported that the pH value of sourdough fermentation has an optimal range under
the influence of many factors [8], and the results of sensory evaluation confirmed a similar effect
in the production of steamed breads. The results were in line with our previous hypothesis that a
high-scoring region may correspond to moderate texture characteristics, which existed at a moderate
acidification level for the quality of CNSB. In addition, based on the results of sensory evaluation,
the data obtained by the texture experiment correspond to the sensory score for concluding the range
of texture parameters with high consumer acceptance, which is not only conducive to the quality
evaluation, but also facilitates the industrial development of alkali-free steamed bread.
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Table 1. Effect of sourdough fermented time on the texture of Chinese northern steamed bread.

Sourdough
Fermented

Time

Final pH of
Proofed
Dough

Hardness (g) Adhesiveness Springiness Chewiness Stickiness

4 h 5.42 ± 0.05 a 1840.3 ± 27.8 a 34.3 ± 4.3 a 0.93 ± 0.01 a 1759.3 ± 16.0 a 2000.5 ± 29.0 a
8 h 5.01 ± 0.07 b 1780.8 ± 12.4 b 27.5 ± 0.9 b 0.92 ± 0.01 a 1728.1 ± 25.6 b 1891.8 ± 16.6 b

12 h 4.78 ± 0.04 c 1660.8 ± 15.8 c 26.0 ± 0.7 bc 0.93 ± 0.02 a 1642.5 ± 31.8 c 1799.3 ± 27.1 c
16 h 4.54 ± 0.08 d 1595.0 ± 1.5 d 22.5 ± 0.7 cd 0.93 ± 0.01 a 1552.4 ± 19.0 d 1680.6 ± 23.5 d
20 h 4.46 ± 0.04 e 1558.0 ± 26.9 e 23.3 ± 1.0 cd 0.94 ± 0.03 a 1538.6 ± 15.0 e 1642.8 ± 5.4 e
24 h 4.41 ± 0.05 f 1520.0 ± 11.0 f 22.2 ± 0.6 d 0.93 ± 0.02 a 1510.0 ± 21.1 f 1620.8 ± 30.1 f

a–f: represents the significant difference within the columns.
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To further explore whether there was a tendency for clustering of steamed breads prepared by
culture starters fermented with different times, the textural and sensory parameters were subjected to
principal component analysis (Figure 4). The steamed bread was divided into three clusters according
to the final pH value of the proofed dough: approximately 5.42 ± 0.05, 4.78 ± 0.04 to 5.01 ± 0.07, and
4.54 ± 0.08 to 4.41 ± 0.05. The proofed dough with a pH of 4.78 ± 0.04 scored higher for sensory quality
than the other products. The results suggest that the moderate acidification level of proofed dough
has positive effects on the textural properties and sensory quality of CNSB. Based on the findings
of the principal component analysis, the proofed dough with starters for 4 h, 12 h, and 20 h, which
showed significant differences and represented different clusters of steamed bread, were selected for
further experiments.
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2.2. Effects of Chemical and Biological Acidification on Textural Properties and Rheological Characteristics

Chemical and biological acidification methods were compared to determine the effect of changes
in pH on the texture of the steamed bread. Steamed bread produced by chemical acidification resulted
in weakened hardness, chewiness, and adhesiveness as compared to those proofed with sourdough
(Figure 5); this indicates that the final pH value of proofed dough is not the key factor for textural
improvement. Chemical acidification damaged the gluten network structure of the dough due to
the rapid reduction in pH level during proofing. As previously reported by Kopec’ [22], sourdough
fermentation involves gradual acidification through microbial metabolism. The decreasing pH level
affects the physicochemical properties of gluten by activating the protease in cereal flour and changing
the rheological properties and microstructure of the dough. However, the exogenous addition of
organic acids leads to instant acidification, which has a negative effect on the structure of dough.
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To further investigate the effect of acidification on the elasticity and viscosity of proofed dough,
the rheological properties were analyzed (Figure 6). The decreasing pH reduced the elastic and
viscous modulus, which indicated that the low pH degraded the gluten protein and weakened the
structure of dough. Compared to the proofed dough with sourdough starter, the chemical acidified
samples exhibited less elasticity and viscosity because the rapid degradation of gluten protein damaged
the network structure of the dough. The results related to the weakening of intermolecular or
intramolecular disulfide bonds [19]. Clarke [10] proved that acidification resulted in a more positive
net charge in the dough system, it may be the main reason for the stickiness and softness of dough.
However, the increased electrostatic repulsion contributed to protein solubility, which led to the
expansion of gluten molecules and the exposure of hydrophobic groups. These changes limited the
formation of new chemical bonds and weakened the structure of the gluten. Ketabi et al. [23] also found
that Lactobacillus can metabolize fructan, which as a polymer positively affects dough rheological
properties during fermentation.
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Figure 6. Effect of acidification methods on dough elastic modulus (G’) and viscous modulus (G”):
(BL) blank group; (BA1) bio-acidification for 4 h; (BA2) bio-acidification for 12 h; (BA3) bio-acidification
for 20 h; (CA1) chemical acidification to BA1 pH level; (CA2) chemical acidification to BA2 pH level;
(CA3) chemical acidification to BA3 pH level.

2.3. Microstructure of Proofed Dough

The above results reveal that changes in pH levels led to significant differences in product texture
and dough rheological properties. The microstructure of proofed dough was also observed by SEM.
The starch granules were round or oval and the gluten proteins were flaky or silky. The results indicate
that proofed dough with starter for 4 h showed conspicuous starch granules and a firm and dense
gluten network (Figure 7(a1,a2)). However, dough proofed with starter for 12 h had an improved the
gluten network structure, enabling its continuous structure to be clearly observed. The starch granules
were embedded in the gluten and combined rigidly (Figure 7(b1,b2)). Consistent with previous results,
the best sensory evaluation of product was obtained by adding 12 h starter owing to the acidification
adjustment which results in the depolymerization of macromolecule proteins and the formation of
gluten proteins with a fibrous structure and greater continuity [23]. However, after fermentation with
sourdough for 20 h, the gluten structure was broken and discontinuous (Figure 7(c1,c2)). The extremely
low pH level and long fermentation time led to the excessive degradation of large complex polymers;
previous studies show that it leads to the destruction of intermolecular disulfide bonds between
glutenin and gliadin and that starch grains are exposed [24]. The pH level was too low to improve the
ability of the dough to hold gas, resulting in products with low hardness and poor elasticity. Therefore,
it was extremely important for adjusting sourdough acidification levels to obtain the desired gluten
protein of proofed dough.
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(a1,a2) added 4 h fermented sourdough; (b1,b2) added 12 h fermented sourdough; (c1,c2) added 20 h
fermented sourdough.

2.4. Extractability of Gluten Protein

Wheat gluten quality was an important determinant of dough rheological properties and the
suitability of products for processing, and it was dependent on the degree of cross-linking of proteins [25].
The extractability of proteins in a sodium dodecyl sulfate (SDS)-containing medium was found to be a
good indicator of the degree of cross-linking of wheat gluten [26]. The extraction rates of dough at
different stages of processing were compared by adding sourdough starters for 4 h, 12 h, and 20 h.

A slight change was observed in the extractable protein during mixing (Table 2). The results suggest
that depolymerization decreased during the mixing process. Lower pH value of dough increased the
solubility of the protein in the proofed dough (Table 2). The pH level was lower than gluten’s isoelectric
point, and the net positive charge helped to produce electrostatic repulsion between the protein
molecules, which increased the rate of extraction of the gluten protein [27]. The acidic environment
induced the degradation of the macromolecule SDS-insoluble protein to small soluble molecules.
The lower pH which resulted from microbial fermentation also activated wheat endogenous proteases
and strain-specific proteolytic enzymes, further dissociating the proteins in the dough [28]. Attention
should be paid to the changes in disulfide bond content during cross-linking, which determines the
morphology of the protein [29]. The improvement in the rheological properties of the steamed bread
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and the reduction in its hardness were mainly due to the depolymerization of glutenin macromolecules,
which made the cross-linking structure uniform and regular [30]. During proofing, hydrogen peroxide
produced by L. plantarum promoted the oxidation of free sulfhydryl groups to form disulfide bonds
and linked the hydrophobic amino acids in the molecule. The generation of an α-helice and β-sheet
structure improved the elasticity of the dough [31]. The increasing of gliadin content contributed to the
ductility of dough (Table 2) and gave it more resilience during stretching. Excessive stickiness made
dough difficult to process. Similarly, the excessive degradation of glutenin macropolymer destroyed
the gluten network and weakened the texture of the products.

Table 2. Protein extractability in a sodium dodecyl sulfate (SDS)-containing buffer.

Stage Sourdough
Fermented Time (h) pH

SDS
Rxtractable

Glutenin (%)

SDS
Extractable
Gliadin (%)

SDS
Extractable
Protein (%)

Mixed
4 5.68 ± 0.08 a 23.03 ± 0.36 b 46.76 ± 0.25 e 69.78 ± 0.61 d

12 5.08 ± 0.08 c 20.38 ± 0.44 c 47.84 ± 1.03 de 68.22 ± 1.47 e
20 4.92 ± 0.02 d 18.65 ± 0.95 d 51.24 ± 0.78 b 69.89 ± 1.83 d

Proofed
4 5.42 ± 0.05 b 23.45 ± 0.47 b 48.30 ± 0.56 d 71.75 ± 0.71 c

12 4.78 ± 0.04 e 25.52 ± 0.76 a 49.61 ± 0.47 c 75.13 ± 1.23 b
20 4.46 ± 0.04 f 22.61 ± 0.4 b 53.68 ± 0.62 a 76.29 ± 1.02 a

Steamed
4 - 0.87 ± 0.07 e 9.84 ± 0.15 g 10.71 ± 0.22 h

12 - 1.19 ± 0.02 e 10.65 ± 0.06 fg 11.84 ± 0.08 g
20 - 1.90 ± 0.11 e 11.63 ± 0.23 f 13.52 ± 0.34 f

Data are expressed as mean ± standard deviation (n = 2). Means in the same column with different small superscript
letters indicate significant difference at p < 0.05. Protein extractability (%) in SDS is always calculated from the
corresponding peak area and expressed as a percentage of peak area of wheat flour under reducing conditions, which
represents the total SDS-extractable protein in the flour since reduced gluten proteins are completely extractable.
a–f: represents the significant difference within the columns.

The extractability of protein was significantly reduced (p < 0.05) after steaming, relative to the
previous two stages (Table 2), which indicates that the protein aggregated. When fully hydrated gluten
was heated above 75 ◦C, both gliadin and glutenin could be incorporated into the protein network
structure [32]. The protein was susceptible to cross-linking through the formation of disulfide bonds
under high temperature conditions, forming complex macromolecular proteins through the random
interleaving of space and interior, and thereby substantially reducing extractable SDS-soluble protein.
However, we found that the extractability of the gluten increased slightly with acidification time
(Table 2). The acidification degraded the SDS-insoluble protein during sourdough fermentation, but
the decreasing pH value was not conducive to the formation of disulphide (SS) cross-linking, which
was most likely to occur under alkaline conditions (cysteine’s pKa ≈ 8.5) [33].

2.5. Free sulfhydryl (-SH) Changes Induced by Processing

Free sulfhydryl content reflected the changes of disulfide bonds. A strong link was found
between disulfide bond content and gluten protein structure [34]. The level of free SH decreased
significantly after fermentation and steaming (Figure 8), which indicates that heating led to the
formation of disulfide bonds and contributed to the structure of the steamed bread. pH level had
little effect on the free SH content during the mixing stage, corresponding to slight changes in protein
extractability. However, the free SH level increased as pH value decreased during fermentation
and steaming (Figure 8). Acidification may have weakened the oxidation of the free SH and SH–SS
exchange reactions [35]. The structure of the complex gluten network formed by SS cross-linking
was weakened, which possibly manifested in the depolymerization of glutenin and simplification
of complex network structures. These processes formed more SDS-soluble protein and provided
more free SH for the system, which corresponded to increased protein extractability and a higher free
SH level [26]. In addition, the decreasing pH value also reduced the occurrence of SS cross-linking.
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During the production of CNSB, sufficient protein aggregates were required to form a gluten scaffold,
but excessive polymerization leads to unsatisfactory hardness and chewiness [36]. Briefly, gluten
levels should maintain within an appropriate range during processing. Remarkably, the metabolites
produced by L. plantarum during fermentation included hydrogen peroxide and glutathione. The
oxidation of hydrogen peroxide and the free SH in the reduced glutathione may have interfered
with our results, but their effects are ignored due to their low content and decomposability under
heat treatment.
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3. Materials and Methods

3.1. Materials

Wheat flour (Wudeli Flour Group Co., Ltd., Wuxi, China) and baker’s yeast (Angel Yeast Co.,
Ltd., Yichang, China) were purchased from the local supermarket in Wuxi. The moisture, protein
(N × 5.7), and ash contents of wheat flour were 11.57 ± 0.02%, 13.19 ± 0.04%, and 0.37 ± 0.01%,
respectively, and they were determined according to AACC Approved Methods 44-15A, 46-12, and
08-01, respectively [37]. The freeze-dried powder of Lactobacillus plantarum CCFM8610 (L.plantarum)
was obtained from Jiangnan University (Wuxi, China).

3.2. Preparation of Chinese Northern Steamed Bread (CNSB)

Batches, 100 g of wheat flour, 50 g of sterile distilled water, and 0.14 g of L. plantarum freeze-dried
powder (3 × 1010 cfu/g) were weighed and mixed to prepare the sourdough, then proofed at 30 ◦C
and 85% relative humidity for 4 h, 8 h, 12 h, 16 h, 20 h, and 24 h, respectively. CNSB was prepared
as the method reported by Huang [38] with minor modification. The basic recipe of CNSB involves
400 g of wheat flour, 180 g of sterile distilled water, 1.2 g of baker’s yeast, and 80 g of sourdough,
which were processed by using a mixer (KM080, Kenwood, London, UK). After mixing, the dough
was divided into 100 g/piece for rounding and proofing at 35 ◦C and 80% relative humidity for 60 min.
The proofed buns were steamed for 20 min. Samples of dough at every stage (mixed, proofed, and
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steamed) were immediately frozen in liquid nitrogen and freeze-dried. Samples of each group were
processed in duplicate.

Chemically acidified steamed bread: after dividing the dough into 100 g/piece, different amounts
of organic acids (lactic acid (88%):acetic acid (99.5%) = 4:1, v/v) were added and kneaded by hand
20 times to make the pH value of the steamed bread the same as the biologically acidified steamed bread.

3.3. Determination of pH Value

The pH value of dough at different process stages was measured as previously reported by Yan
Bowen et al. [39]. Sample aliquots (10 g) were homogenized with 90 mL of sterile distilled water for
10 min with a magnetic stirrer (IKA basic 2 RH, Staufen, Germany). All of the tests were performed
in triplicate.

3.4. Sensory Evaluation

The sensory evaluation of the samples was performed following the previously described method
by Fu [40] with minor modification. The sensory studies were reviewed for their adherence to ethical
guidelines and approved by the Research Ethics Board at Jiangnan University. All panelists were
selected and trained by GB/T 16291.1-2012, “Sensory analysis–General guidance for the selection,
training and monitoring of assessors–Part 1: Selected assessors,” which is a national standard approved
by the Standardization Administration of the People’s Republic of China. The steamed bread prepared
with sourdough was steamed for 20 min and then cooled at room temperature for 45 min before being
subjected to sensory evaluation. All of the samples were evaluated within 60 min of preparation.

Overall, 80 sensory consumer panelists were recruited randomly at the Department of Food
Science and Technology, Jiangnan University. The number of male and female panelists was about
equal. Most of the panelists (76 panelists) were 18–30 years old. A majority of panelists came from
northern China and consumed steamed bread more than 2–3 times per week, and they were all
consumers of traditional Chinese steamed bread. The panelists received six encoded samples (added
sourdough with fermentation time of 4 h, 8 h, 12 h, 16 h, 20 h, and 24 h, respectively) and a questionnaire
as well as instructions for the evaluation of samples. Samples were randomly assigned to each panelist.
The samples were presented to the assessors blind so that the panelists did not know which sample
they were evaluating. Water was provided to cleanse the palate to prevent the influence between
samples. The appearance, viscosity, elasticity, and taste of the samples were evaluated on a 7-point
hedonic scale, which corresponds to 1–7 points: 1: very unacceptable; 2: unacceptable; 3: mildly
unacceptable; 4: neither unacceptable nor acceptable; 5: mildly acceptable; 6: acceptable; and 7: very
acceptable. The final sensory score is the average of all indicators.

3.5. Textural Profile Analysis (TPA) of CNSB

The steamed bread samples were subjected to TPA using a textural analyzer equipped with a
P35 pressure plate probe. The specific test conditions were as follows: pre-test speed: 1 mm/s; test
speed: 1.7 mm/s; post-test speed: 10 mm/s; and compression rate: 40%. Hardness, chewiness, and
adhesiveness were measured using a TPA curve.

3.6. Rheological Properties of Dough

To maintain the stability of the dough samples, yeast was not added during preparation,
and antibiotics were added to inhibit the growth of lactic acid bacteria in the dough after mixing.
The chemical acidification group comprised 0.02% erythromycin, 0.02% cycloheximide, and 0.004%
chloromycetin. The parameters were set as described by Huang [41]. Rheometer frequency was set to
1.0 Hz, with a frequency range of 0.1–100 Hz; 0.4 cm parallel plates were positioned at 1 mm intervals;
and the temperature was 30 ◦C.
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3.7. Size-Exclusion Chromatography (SEC) High-Performance Liquid Chromatography (HPLC) Analysis
of Proteins

Protein extraction and SEC-HPLC were conducted as described by Thiele [11], with some
modifications. The lyophilized samples were subjected to 1:10 extraction with buffers (50 mM sodium
phosphate, 1.5% sodium dodecyl sulfate (SDS), pH 6.9) and shaken for 30 min. The protein in the
first extraction residue was dissolved in a buffer (4% dithiothreitol (DTT), 50 mM sodium phosphate,
1.5% SDS, pH 6.9). The SDS extracts and the SDS-DTT extracts were applied to a Superdex 200
column coupled with a Superdex Peptide column and a Superdex 200 column (both from Amersham
Bioscienes, Uppsala, Sweden), respectively, with fractionation molecular weight ranges of 100 to
5 × 106 and 104 to 5 × 106, respectively. The samples were eluted at room temperature with a buffer
containing 0.1% SDS and 20% acetonitrile in 50 mM sodium phosphate buffer (pH 7.7) at a flow rate
of 0.4 mL/min. Ultraviolet detectors were set to 210 nm and 280 nm. The 280 nm trace was used to
identify low molecular weight components to prevent the interference of lactic acid or other non-protein
carboxyl compounds. The results were divided into three fractions by the lowest point between peaks,
corresponding to the level of extractable glutenin in the SDS buffer, the level of SDS-extractable gliadin,
and the level of SDS-extractable albumin and globulin from front to back.

3.8. Determination of Free Sulfhydryl (SH) Group Content

The total content of free SH was determined using the method specified by Wang [34].
The following solvents were used: Tris-glycine-Ethylene Diamine Tetraacetic Acid (EDTA) buffer
(10.4 g Tris, 6.9 g glycine, and 1.2 g EDTA per liter, pH 8.0, denoted as TGE), Ellman’s reagent
(5,5′-dithiobis-2-nitrobenzoic acid) in TGE (4 mg/mL), and 2.5% SDS in TGE (SDS-TGE). Then, 40 mg
samples were added to 4 mL of SDS-TGE reagent, respectively, and mixed thoroughly for 30 min
with vortexing every 10 min. Next, 0.04 mL of Ellman’s reagent was added, followed by thorough
mixing for 30 min. The absorbance of the supernatant was measured at 412 nm. The blank lacked
Ellman’s reagent and the samples. The absorbance values were converted to amounts of free SH using
a calibration curve with reduced glutathione.

3.9. Scanning Electron Microscopy (SEM)

The dough microstructure was observed by SEM. The dough samples were fixed with a 2.5%
glutaraldehyde solution (v/v) for 4 h, and the dough was rinsed three times with 0.1 mol/L phosphate
buffer and eluted once with 20%, 40%, 60%, 70%, and 80% ethanol solution (v/v), respectively. Next, the
dough was eluted three times with 100% ethanol for an average of 20 min per elution. The acceleration
voltage was set to 1.0 kV, an ion sputtering gold spray was applied for 4 min, and the samples were
freeze-dried and placed under SEM for observation.

3.10. Statistical Analysis

Analysis of variance (ANOVA) was performed using the software package SPSS 19.0 (SPSS Inc.,
Chicago, IL, USA). One-way ANOVA, principal component analysis, and Duncan’s multiple-range test
were conducted. A significance level of p < 0.05 was used to determine the significance of the differences
between the samples. Principal component analysis (PCA) was performed on MetaboAnalyst to
analyze dissimilarities among the samples in terms of their textural profile and sensory scores [6].

4. Conclusions

The results show that pH value is positively correlated with the hardness, chewiness, and
adhesiveness of CNSB, with a moderate range for product sensory properties. This phenomenon not
only relates to the slow rate of acidification by L. plantarum during fermentation, but also to the gluten
level of proofed dough. Reducing the pH of the proofed dough increased both the extractability of
protein in an SDS-containing medium and the content of free SH, resulting in changes to the rheological
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properties and microstructure of the proofed dough, which in turn affected the texture of the product.
In conclusion, moderate gluten adjustment of proofed dough plays an important role in developing the
alkali-free CNSB with desired textural and sensory properties. The mechanisms exploration from this
study can be referenced by food technologists for standardizing the production methods for alkali-free
CNSB in the future.
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