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Machine learning algorithms have been demonstrated to pre-

dict atomistic properties approaching the accuracy of quan-

tum chemical calculations at significantly less computational

cost. Difficulties arise, however, when attempting to apply

these techniques to large systems, or systems possessing

excessive conformational freedom. In this article, the machine

learning method kriging is applied to predict both the intra-

atomic and interatomic energies, as well as the electrostatic

multipole moments, of the atoms of a water molecule at the

center of a 10 water molecule (decamer) cluster. Unlike previ-

ous work, where the properties of small water clusters were

predicted using a molecular local frame, and where training

set inputs (features) were based on atomic index, a variety of

feature definitions and coordinate frames are considered here

to increase prediction accuracy. It is shown that, for a water

molecule at the center of a decamer, no single method of

defining features or coordinate schemes is optimal for every

property. However, explicitly accounting for the structure of

the first solvation shell in the definition of the features of the

kriging training set, and centring the coordinate frame on the

atom-of-interest will, in general, return better predictions than

models that apply the standard methods of feature definition,

or a molecular coordinate frame. VC 2016 The Authors. Journal

of Computational Chemistry Published by Wiley Periodicals,

Inc.

DOI: 10.1002/jcc.24465

Introduction

Molecular dynamics (MD) simulations are an important tool in

understanding the dynamical evolution of condensed matter

systems. However, as many important properties of condensed

matter occur over long time scales, the development of both

accurate and efficient means to calculate atomic interactions is

essential. In contrast to computationally expensive ab initio

MD techniques,[1,2] most condensed phase simulations current-

ly rely on one of a number of parameterizable force fields,

including CHARMM[3] and AMBER,[4] among others. Such force

fields commonly treat electrostatics as pairwise interactions

between point charges, and may describe the energy variation

of a molecular bond under compression or elongation through

a simple Hooke potential. While many-body effects, and/or

polarization, can be effectively included, such potentials are

still some way off being able to reproduce the bulk properties

of many systems (including liquid water[5,6]) and suffer an

extensive parameterization challenge in reactions that involve

the breaking or formation of covalent bonds.

Difficulties in force field parameterization are particularly evi-

dent in the case of water. Water, despite being the subject of

extensive research due to its fundamental role in life on earth,

has peculiar characteristics not yet fully understood. The struc-

ture of water was included among the 125 most important

questions in modern science according to Science.[7] Lack of

replication of water’s structure and properties in simulation

has led to the development of multiple water specific force

fields over the last 30 years.[8] Most commonly, force fields for

water are normally optimized against water’s bulk properties,

by fine-tuning parameters used to define pairwise interactions.

Unfortunately, such simple models usually lack polarization,

and nonpolarizable force fields designed for water through

parameter optimization are only able to accurately predict a

subset of water’s properties.[9] Furthermore, the necessity of

including the underlying quantum mechanical effects in the

description of simulated water molecules has been acknowl-

edged by several authors.[10,11]

An alternative approach to force field design, known as the

quantum chemical topology force field (QCTFF),[12] sees indi-

vidual atoms as malleable boxes of electron density as defined

by the quantum theory of atoms in molecules (QTAIM),[13,14]

which interact at long range through multipolar electrostatics,

and at short range through interatomic Coulomb, exchange

and correlation energies as defined through the interacting

quantum atoms (IQA) energy partitioning scheme.[15] The

properties of these malleable boxes, including the IQA ener-

gies, are efficiently predicted on the fly through the use of the

machine learning method kriging.[16–18] At its limit, kriging
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returns near quantum mechanical accuracy, and includes polar-

ization (as an end effect rather than the polarizability[19] itself )

and many-body effects. There is no need for additional ab ini-

tio calculations once each kriging model is trained. In our

work, kriging achieves this by successfully mapping the out-

puts (atomic energies and multipole moments) directly to the

inputs, also called features (geometrical parameters based on

the nuclear coordinates of the surrounding atoms).

Although the application of machine learning to computa-

tional chemical calculations is rapidly gaining popularity, there

are still many problems yet to be resolved. For example, until

now, many machine learning models have either focused on

predicting the properties of a collection of small molecules in

vacuo[20,21]; the properties of a larger molecule undergoing

some form of perturbation (for example, through the distor-

tion of the molecule’s normal modes of vibration)[22–24]; or a

combination of both.[25,26] Unfortunately, such approaches do

not adequately sample the extensive conformational freedom

of a cluster of MD sampled water molecules—a challenge that

must be met if the QCTFF is to be able to simulate solvated

systems. Previous work by Handley et al.[27,28] has applied krig-

ing models to predict the electrostatic energies of MD sam-

pled water clusters up to the hexamer, while Mills et al.

applied kriging to predict the electrostatic energy of a hydrated

sodium ion.[29] Even within the regime of small clusters (� 6

water molecules) difficulties were experienced, with Hawe and

Popelier[30] recommending seven distinct models be used to

cover conformational space of an MD sampled water dimer, in

order to reduce maximum electrostatic errors.

It is important that the properties of larger water clusters

begin to be addressed, for the future goal of using machine

learning to predict bulk fluid. Consideration of clusters larger

than the first solvation shell can be justified by two factors: (i)

the long range cooperative effects of water’s hydrogen bond-

ing networks,[31] and (ii) the non-negligible influence that the

addition of water molecules, beyond the first solvation shell,

has on a central molecule’s charge distribution.[32] In this work,

kriging is applied to predict the IQA energies, and the QTAIM

obtained multipole moments, of a central water molecule in

an MD sampled decamer. Unlike previous QCTFF work, the MD

sampled decamers possess excessive conformational freedom,

rendering standard methods of training set (i.e., the list of fea-

tures used as the model input) construction ineffective.

Accordingly, 12 different training sets per property were con-

structed using different feature-defining methods or different

coordinate frames, in an attempt to accommodate the local

structure of the cluster’s hydrogen bonding network, and were

contrasted with the prediction statistics obtained from apply-

ing the standard method. The effect of applying multiple, indi-

vidual, atom-centered coordinate frames, as opposed to using

a single coordinate frame for the properties of both the oxy-

gen and hydrogen atoms (in effect, a molecule centered coor-

dinate frame, as per Refs. [25,26,28]), was also investigated.

This article is organized as follows. After a brief introduction

of the QTAIM and IQA model, we describe the machine learn-

ing technique we are using, called kriging. We then describe

how the decamer system is sampled and how predictions are

obtained. Results from the application of the kriging method

to the prediction of the multipole moments and IQA energies

are then shown. Finally, major conclusions of the present work

are summarized in the last section.

Method

QTAIM and IQA

The QTAIM is an atomic partitioning scheme, that divides a mole-

cule into a collection of space-filling, nonoverlapping topological

atoms based on the gradient of the system’s electron density.[13,14]

With each atom assigned an atomic basin of electron density, var-

ious atomic and interatomic properties can be derived. For exam-

ple, the electron density of each atomic basin can be accurately

modeled using atom-centered multipole moments.

Using the atomic basins of the partitioned molecule, IQA par-

titions the total wave function energy of the system into a sum

of atomic self-energies, ESelf , (which is also called the intra-

atomic energy) and interatomic interaction energies, EInter,
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where T A is the kinetic energy of atom A; V AA
ne is the energy

due to nuclear–electron interactions within the atomic basin

of A; V AB
ne is the nuclear–electron interaction energy between

the nucleus A and the electrons in the basin of B, and VBA
ne

the opposite; VAA
ee and V AB

ee are the energy due to electron-

electron interactions within the atomic basin of A, and

between basins A and B, respectively; and VAB
nn is the energy

due to nuclear–nuclear interaction between A and B. As the

electron density of a molecular system is a function of the sys-

tem’s atomic configuration,[33] such multipole moments are

well suited to machine learning techniques.

Kriging

Kriging is a machine learning technique capable of interpolation,

mapping an output’s response to a given set of inputs. Predic-

tions at an unknown position can then be obtained by using cor-

relations among the property-of-interest in known locations.

Intuitively, kriging assumes the smoothness of physical phenome-

na in space by considering that the value of a property in a given

location is more likely to be close in value to the neighborhood’s

points, rather than far away ones. The predicted output, ŷ , for a

given set of inputs x�, is given through the equation[16–18]:

ŷ x�ð Þ5l̂1
Xn

i51

ai � / x�2x i
� �

(2)

where l̂ models the global mean of the training data, a is a

vector of constant weights, and / x�2xi
� �

is a basis function

relating the input x� to the i51) n training point xi . In this

work, we use the following basis function:
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where d is the number of features describing the system (i.e.,

the dimensionality of the problem), and where hh and ph are

hyper-parameters corresponding to feature h, and are

obtained through maximizing the log-likelihood function:

L h; p;r;lð Þ52
Nt

2
ln r2
� �

2
1

2
ln jRjð Þ2 y21lð ÞT R21 y21lð Þ

2r2
(4)

where y is the column vector of the modeled property evalu-

ated at each of the Nt training points; 1 is a column vector of

ones; �ð ÞT is the transpose of its argument, r2 is the variance;

l is the mean; R is the correlation matrix, where element

ij5/ xi2xj
� �

, and jRj its determinant.

Conceptually, eq. (2) can be thought of as predicting prop-

erty y from a combination of the global mean of the property,

plus an error term that is correlated to the surrounding points

used to train the model. As the point to be predicted

approaches a training point (i.e., x� ) xi), it can be seen from

eq. (3) that the correlation between the test point and training

point will increase to one. This gives simple kriging the attrac-

tive property of being able to perfectly predict any test point

that has the exact same input coordinates as one of the mod-

el’s training points. Obtaining kriging weights requires the

optimization of eq. (4), a formidable problem that scales quick-

ly with the dimension of the system and the number of train-

ing points considered. In fact, calculation of the log-likelihood

requires the computation, and inversion, of the R matrix,

which can render iterative algorithms computationally

infeasible. Recent work[34] has demonstrated the reliability of

both particle swarm optimization and differential evolution

regards maximizing eq. (4) for systems as large as a water

hexamer. The optimization parameters recommended in Ref.

[32] were used in this work, but ph was fixed to 2 (making

eq. (3) the “Gaussian basis function”) for all h to increase

efficiency.

Sampling

A set of 5000 water clusters, composed of ten molecules (from

now on known as ’decamers’), was sampled by selecting the

nine nearest neighbors of a water molecule at intermittent

snapshots from a previous MD simulation completed at room

temperature and with multipole moments.[35] The simulations

were completed using the MD package DL_POLY_2.0,[36] with

the water molecules constrained to approximate rigid-bodies.

Slight fluctuations in the intramolecular bond lengths still

occurred, due to a relatively low quaternion tolerance. These

fluctuations, as well as the statistical properties of the distance

from the central water molecule to the furthest water mole-

cule are displayed in Table 1. The wave function for each clus-

ter was calculated using the GAUSSIAN09[37] package at the

B3LYP/6-31111G(d,p) level of theory. Although the water mol-

ecules were constrained to approximate rigid bodies in the

MD simulation, the slight fluctuations in bond lengths and

angles were enough to result in a range of 0.5 kJ/mol in wave

function energies for the water molecules if considered as iso-

lated monomers. The program AIMAll[38] was then used to

obtain the atomic multipole moments, as well as the IQA ener-

gies,[39] using default settings and integration error control. In

Ref. [39] IQA energy contributions were explicitly reconciled

with the B3LYP functional, thereby recovering for the first time

the total energy when using B3LYP. This approach chose to

use the explicit B3LYP functional only within a single atom,

that is, for the total atomic energy only. Conversely, the

Hartree–Fock-like expression was adopted for interatomic

exchange energy but then using Kohn–Sham orbitals. In other

words, this approach calculates the interatomic exchange–cor-

relation contribution (VAB
XC ) via the pure Hartree–Fock exchange

equation only, but by inserting KS orbitals instead of HF orbi-

tals (see eq. (14) in Ref. [39]).

Standard kriging models

The atomic configuration of each cluster was used to provide

the features for the kriging models. In previous QCTFF work, a

variety of coordinate frames have been used to describe the

selected systems of interest.[23,28,29] Although similar systems

have defined coordinate frames that implicitly account for the

rigidity of the surrounding water molecules[28,29] an atomistic

coordinate frame was used here as it both accounts for the

energetic fluctuations caused by the minor intramolecular dis-

tortions present, and being general, allows readily for applica-

tion to fully flexible water molecules.

Standard kriging models were created using a spherical

polar coordinate frame centered on the oxygen of the central

water molecule, with the x-axis of the system defined along

one of the molecule’s OH bonds, and the xy-plane defined to

include the remaining hydrogen. A graphical depiction of the

coordinate frame, and its corresponding features, is displayed

in Figure 1. As per previous work using an atom-centered,

spherical polar coordinate frame,[23,24,26] the first three features

of the kriging training set, ROH1
; ROH2

; hHOH, correspond to the

two central OH bond lengths and the central water molecule’s

HOH angle. External atoms were each described by a set of

three features, RN; hN;/N for atom N, where RN is the distance

from the central oxygen to atom N, hN is the polar angle of

atom N (measured from the z-axis), while /N is the azimuthal

Table 1. Configuration statistics of set of decamer clusters.

Intramolecular OAH distance (Å) Intramolecular HOH angle (degrees) Largest OAO distance (Å)

Mean 0.9583 104.45 4.096

Std Dev. 0.0005 0.06 0.260

Range 0.011 0.86 1.539
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angle of atom N (as measured from the x-axis). Such a scheme

results in a total of 3N26 features. Thus, for the water dimer

displayed in Figure 1, there will be 12 features: ROH1
;f

ROH2
; hHOH; RO4

; hO4
;/O4

; RH5
; hH5

;/H5
; RH6

; hH6
;/H6
g. Accord-

ing to the method used in previous work,[23,24,26] the features

describing the system were defined by order of atomic index

(i.e., the order the atoms were listed in the simulation output).

As per common practice, hydrogen atoms were indexed

immediately after the oxygen atom they were bonded to,

resulting in sets of nine features, adjacent in the training set,

which completely describe the position of a single water

molecule.

Standard results

Kriging models were created using the Standard training set

to predict the IQA energies of the atoms of the central water

molecule, with Table 2 displaying the performance statistics of

the results. Each kriging model was trained on the dataset of

5000 training points using fivefold cross validation, using a 1:4

partitioning of the training set to test set. In other words, krig-

ing models were trained with 1000 randomly selected training

points, with the remaining 4000 points used as a validation

set; and that this process was repeated five times for statistical

significance, while ensuring no training point was used in

more than one model. The kriging models are compared

through the mean absolute errors (MAE) obtained by compar-

ing the predicted property values to the corresponding true

property values, and through the q2 correlation coefficient:

q2512

PNtest

i51 Pi2Tið Þ2PNtest

i51 M2Tið Þ2
(5)

where Ntest is the number of points (i.e., 4000) the model is

tested on; Pi is the predicted value of test point i; Ti is the true

value of test point i; and M is the mean of the entire test set.

Thus, the q2 metric has the intuitive property of being equal

to one when predictions are equal to true values (Pi2Ti50),

and equal to zero when predictions are no better than the

predictions obtained by using the simplest, unbiased estima-

tor—the mean (i.e., when Pi2Ti5M2Ti). In other words, the

5000 training points were evenly split into five 1000-training-

point models, with each model being tested on the set of

points not used for that specific model. This resulted in five

MAE and q2 values per model, for which the average and stan-

dard deviation were calculated, and reported in Table 2.

As seen in Table 2, the models created using the Standard

training perform poorly. In fact, as each model returned a q2

value of 0.0, the kriging models used here predict with no bet-

ter accuracy than what would be predicted by the mean. This

is because the model predicted very close to the mean for

most test points; an expected result for systems trained with

exceedingly few data points.

Note, however that the models do not exactly predict the

mean for every test point. The results presented here are to

two significant figures, and as such the fraction in eq. (5) is

only equal to one to two significant figures. Thus, it can be

concluded that using the standard method of training set con-

struction for QCTFF kriging models does not produce useful

kriging models for a MD sampled water decamer when sam-

pled with 1000 training points.

Distance-defined kriging models

Increasing the number of training points in a kriging model is

a trivial way to improve prediction accuracy.[17,18] Such a meth-

od works because an increased density of training data pro-

vides more information (in the form of higher correlations) to

the kriging predictor, when attempting to predict the value of

a property at a given point. In fact, as simple kriging is an

interpolating predictor, the error on a prediction will approach

zero as the distance between the prediction point of interest

and its closest training point approaches zero.[17,18] The most

common way to increase training density is to increase the

number of training points used to sample the system but this

is not necessarily desirable, as larger models require more data

to train on, data which may be expensive to obtain. Also, larg-

er training sets result in a larger correlation matrix R, such that

more time is required to invert the correlation matrix when

training the model, and the correlation matrix is more likely to

Figure 1. Coordinate frame and first six kriging features of a water mole-

cule of interest and its neighbor. The x-axis of the system is defined by the

O1AH2 bond, and the xy-plane is defined by the H2AO1AH3 angle. The

first three features of the system correspond to ROH1
; ROH2

; hHOH, respective-

ly. The next atom by index (i.e., O4 in this example), is the next atom to be

described in features, and is described by the three features RO4
; hO4

;uO4
.

This convention is continued until every atom in the system is described.

[Color figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]

Table 2. Prediction statistics for ESelf and EInter of the atoms of the central

water molecule of a water decamer, created using the Standard training

set.

Property Mean Value Range MAE q2

Oxygen ESelf 2196708.8 243.9 35.2 6 1.3 0.00 6 0.00

Oxygen EInter 21540.6 407.7 50.2 6 2.1 0.00 6 0.00

Hydrogen ESelf 2736.1 121.6 18.1 6 0.2 0.00 6 0.00

Hydrogen EInter 2525.3 120.8 18.4 6 0.5 0.00 6 0.00

All energies are in kJ/mol, and uncertainties express 6 1 standard devia-

tion. Averages obtained from five 1000-training-point models, tested on

4000 test points each.
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have a high condition number.[40] Fortunately, training density

can be increased for the water decamer described here, at no

additional cost, by exploiting the physical indistinguishability of

the water molecules within the cluster to redefine the sets of fea-

tures in the training set.

An example of this concept is as follows. Consider a system

of three water molecules, where one water molecule, Water O,

is a hydrogen bond donor to the other two (Water A and

Water B, as depicted in Fig. 2). A kriging model is centered on

the oxygen of Water O, through the coordinate scheme out-

lined in Standard kriging models section, and trained to pre-

dict some property of the system based on the precise

coordinates of the molecules Water A and Water B. The system

is sampled via intermittent snapshots from a larger MD simula-

tion but only snapshots that involve the molecule Water O act-

ing as a hydrogen bond donor to two other water molecules

are retained for this example system. This leads to a set of

configurations that are similar to the molecular configuration

displayed in Figure 2. Assume that Water A is defined to be

the first molecule, as listed by the MD simulation’s account

keeping scheme and compared to Water B. Then the Water A

molecule is equally likely to appear on the left-hand side of

Figure 2, as it is to appear on the right-hand side. This is

Figure 2. Example of a three-molecule water system where the “central”

molecule, Water O, is a hydrogen bond donor to the other two molecules,

Water A and Water B. [Color figure can be viewed in the online issue, which

is available at wileyonlinelibrary.com.]

Figure 3. Spatial distribution of the first-four, noncentral oxygens in the a) Standard, b) Distance, c) Structured 1a, and d) Structured 2a training sets. Each

row of pictures represents the front, side, rear, and top view of the same distribution, respectively. Large black spheres are centered on the position of

nodes. Colors blue, green, red, and orange represent the first, second, third, and fourth noncentral oxygens, as defined in the training set, respectively. In

the Standard training sets, the features corresponding to these oxygens are defined by atomic index; in the Distance training sets, the features correspond-

ing to the displayed oxygens are defined by distance from the central oxygen; in the Structured training sets, the features corresponding to the oxygens

are defined by their respective node-based structure scheme described in the text. [Color figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]

FULL PAPERWWW.C-CHEM.ORG

Journal of Computational Chemistry 2016, 37, 2409–2422 2413

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
http://onlinelibrary.wiley.com/


because the molecules in liquid water are free to move around

the simulation box, and are therefore equally likely to exist in

a given position with respect to the central molecule. Thus, a

kriging model that requires the positions of Water A and Water

B as inputs will have approximately one half of its training

points representing the configuration where Water A is on the

left and Water B is on the right of Figure 2, and approximately

one half of its training points representing the opposite config-

uration. An alternative way of defining Water A and Water B

would be to define the molecule on the left in Figure 2 as

Water A, and the molecule on the right as Water B. Thus,

under the new scheme, a kriging model that requires the posi-

tions of Water A and Water B as inputs will have all of its train-

ing points representing the configuration where Water A is on

the left, and Water B is on the right, doubling the density of

the sampling at no extra computational cost.

One such intuitive way to accomplish this idea for a system

as complex as a water decamer is to define the features

describing the system by distance to the water molecule at

the center of the cluster. As the oxygen–oxygen radial distribu-

tion of liquid water has a multimodal oxygen probability den-

sity,[35] defining the training set features by oxygen–oxygen

distance will incorporate some of liquid water’s local structure

into the model, and result in features with less conformational

freedom. In other words, by defining the features that repre-

sent the coordinates of the nine, noncentral water molecules

by atomic index, as per the Standard definition scheme, nine

sets of features that each span the entire radius of the cluster

are obtained. Alternatively, by defining the features that repre-

sent the coordinates of the respective water molecules to be

based on their molecular distance to the central water mole-

cule, nine sets of features with different mean radii and ranges

are obtained. Such a result reduces the conformational free-

dom within the description, and incorporates some of liquid

water’s local structure into the model (e.g., only sets of fea-

tures within a certain mean radius are likely to represent water

molecules of the first solvation shell), thereby increasing train-

ing point density at no additional computational cost. Defining

features by radial distribution in this manner has been shown

to significantly improve machine learning prediction errors in

crystal structures,[41] and to be comparable to the Coulomb

matrix representation for large datasets of organic molecules.[21]

Distance-Defined (from here on referred to as Distance) krig-

ing models were created using the same oxygen- centered

coordinate system as used for the Standard training set but the

sets of features corresponding to each water molecule were

defined by the OO distance between them and the oxygen of

the central molecule. Figure 3a shows the spatial distribution

of the first-four, noncentral oxygens as defined by the Standard

training set, and Figure 3b shows the spatial distribution of the

first-four, noncentral oxygens as defined by the Distance train-

ing set. Thus, the blue dots in Figure 3a display the spatial dis-

tribution of the decamer oxygens that have the lowest atomic

index (as obtained from the MD simulation from which the

clusters were sampled). Conversely, the blue dots in Figure 3b

display the spatial distribution of the decamer oxygens that are

nearest to the oxygen of the central water molecule. Similarly,

the green, red, and orange dots in Figures 3a and 3b display

the spatial distribution of the second, third, and forth oxygens

of each feature definition scheme, respectively. Thus, as 5000

clusters were sampled, this means Figures 3a and 3b each dis-

play the spatial distribution of a total of 20,000 oxygens.

It is seen that defining the training set features by distance

(instead of atomic index) produces a much narrower spatial

distribution of the first-four, noncentral oxygen atoms, with a

Figure 4. Projection of h/-space for the first-four noncentral oxygens in

the a) Standard, b) Distance, c) Structured 1a, and d) Structured 2a training

sets. Numbered diamonds represent position of nodes. Colors blue, green,

red, and orange represent the first, second, third, and fourth noncentral

oxygens, as defined in the training set, respectively. In the Standard train-

ing sets, the features corresponding to these oxygens are defined by atom-

ic index; in the Distance training sets, the features corresponding to the

displayed oxygens are defined by distance from the central oxygen; in the

Structured training sets, the features corresponding to the oxygens are

defined by their respective node-based structure scheme described in the

text. [Color figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]

Table 3. Position of nodes in structured training sets.

Node r (Å) Theta (degrees) Phi (degrees)

1 2.65 90 0

2 2.65 90 105

3 2.65 17 2128

4 2.65 163 2128

5 3.18 90 172

6 3.18 90 268

7 3.18 30 53

8 3.18 150 53

Nodes 1–4 were placed on the vertices of a tetrahedron centered on

the oxygen of the central water molecule, at a distance from the center

that approximately corresponds to the first peak in the water radial dis-

tribution function (see Fig. 3c to see how nodes 1–4 are positioned rel-

ative to the nearest four oxygens to the oxygen of the central water

molecule). Nodes 5–8 were positioned similarly, at a slightly greater dis-

tance, as the structure they are positioned to account for occurs at a

slightly greater distance (see Fig. 5c to see how nodes 5–8 are posi-

tioned relative to the fifth to eighth nearest oxygens to the oxygen of

the central water molecule). Nodes 1–4 were used in the creation of

Structured 1a and Structured 2a training sets (and their hydrogen- cen-

tered equivalents), whereas all eight nodes were used in the construc-

tion of Structured 1b and Structured 2b training sets (and their

hydrogen- centered equivalents).
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greater density of oxygen atoms around areas associated with

the central molecule’s hydrogen bonding. In fact, while there

is only one combination of molecules that will result in the

first four features being defined as the first solvation shell (i.e.,

the first four features are defined by the four atoms closest to

the central oxygen), there are 9C45 9!
4!5! 5126 possible combi-

nations of molecules that the first four features might be

defined by in the Standard method of defining the training set

(e.g., first, third, eighth, and ninth closest, second, third, fourth,

and seventh closest etc.). Thus, the Distance training set is

expected to sample at a density 126 times higher than the

Standard training set overall, when considering the features of

the first solvation shell as equivalent (based on OAO distance).

For clarity, Figures 4a and 4b display the overlapping projec-

tions of the first-four, noncentral oxygens (as defined in the

Standard and Distance training sets, respectively) onto a 2-

dimensional h/2space. Kriging results for the Distance model

are presented the Results section.

Structured kriging models

While Distance kriging models are intuitive, they still possess a

large degree of conformational freedom. For condensed phase

water, which is well known to possess local structure,[35]

improvements in prediction accuracy are possible by consider-

ing such structure in the design of the kriging models them-

selves. Hawe and Popelier reported significant prediction

improvements by dividing the conformational space of a water

dimer into seven overlapping regions, each endowed with an

individual kriging model.[30] Although effective for small sys-

tems, such a division of conformational space presents difficul-

ties in higher dimension systems.

In both Figures 3b and 4b, increased oxygen density occurs

near the central molecule’s hydrogen atoms, as well as along a

ridge at the rear of the central molecule, associated with the

central oxygen’s lone pairs. Thus, just as the Distance training

set used the radial distribution of liquid water to guide the

Figure 5. Spatial distribution of the fifth to eighth noncentral oxygens as listed in the a) Standard, b) Distance, c) Structured 1b, and d) Structured 2b train-

ing sets. Each row of pictures represents the front, side, rear, and top view of the same distribution, respectively. Large black spheres are centered on posi-

tion of nodes. Colors blue, green, red, and orange represent the fifth, sixth, seventh, and eighth noncentral oxygens, as defined in the training set,

respectively. In the Standard training sets, the features corresponding to these oxygens are defined by atomic index; in the Distance training sets, the fea-

tures corresponding to the displayed oxygens are defined by distance from the central oxygen; in the Structured training sets, the features corresponding

to the oxygens are defined by their respective node-based structure scheme described in the text. [Color figure can be viewed in the online issue, which

is available at wileyonlinelibrary.com.]

FULL PAPERWWW.C-CHEM.ORG

Journal of Computational Chemistry 2016, 37, 2409–2422 2415

http://wileyonlinelibrary.com
http://onlinelibrary.wiley.com/


definition of features in the training set, it is possible to use

the spatial distribution of liquid water in a similar manner. To

do this, four nodes were placed on the vertices of a tetrahe-

dron centered on the oxygen of the central water molecule, at

a distance from the center that approximately corresponds to

the first peak in the water radial distribution function. The

coordinates of the nodes are given in Table 3, and the nodes

are displayed in Figures 3c and 4c. Then, of the nearest four

molecules to the center, that with the closest oxygen to the

Node 1 was assigned as the first noncenter molecule to be

listed in the training set. Of the remaining three molecules

nearest to the center water molecule, that with the closest

oxygen to Node 2 was assigned to be the next described in

the training set and so on. The remaining five water molecules

of the cluster were left defined by distance as per the Distance

training sets. The resultant training set is named Structured 1a.

Figure 3c displays the spatial distribution of the first four non-

center oxygens, as listed in the Structured 1a training set, and

Figure 4c displays the overlapping projections onto the h/-

space of said oxygens.

Structured 2a training sets were created as per the Structured

1a training sets, after removing the “nearest four molecules”

restriction placed on the node allocation. Thus, the Structured

2a training set results in a larger variance of distance features

RNð Þ, but lower variance of angular features hN;/Nð Þ. Features

corresponding to the remaining five oxygens were defined by

distance to the center. Figures 3d and 4d display spatial distri-

butions and h/-space projections for the first four noncentral

oxygens for the Structured 2a training set, respectively. Note

that this means that figures representing the Distance and

Structured 1a training sets contain the exact same points,

defined differently. In contrast, figures representing the Struc-

tured 2a training set may contain different points (i.e., oxygens

that were closer to nodes than any of the nearest four oxy-

gens to the center were).

Beyond the first hydration shell, the spatial density of the

surrounding water molecules is markedly different. Although

regions of high density are not as well defined when com-

pared to the spatial density of the nearest four molecules,

they are still visible and tetrahedrally distributed about the

central molecule (Fig. 5b). To account for this structure, four

more nodes were added at the positions listed in rows 5–8 of

Table 3. The new nodes were positioned at a distance close to

the peak in the radial distribution of the next water molecule

nearest to the center (i.e., the fifth closest water molecule to

the center). In other words, where the first four nodes were

positioned to account for the four water molecules closest to

the central molecule, the next set of nodes were positioned at

a distance that approximately corresponds to the expected

distance of the fifth closest water molecule to the center. This

choice was made because the decamer system is not large

Figure 6. Projection of h/-space for the fifth to eighth noncentral oxygens

in the a) Standard, b) Distance, c) Structured 1b, and d) Structured 2b train-

ing sets. Numbered diamonds represent position of nodes. Colors blue,

green, red, and orange represent the fifth, sixth, seventh, and eighth non-

central oxygens, as defined in the training set, respectively. In the Standard

training sets, the features corresponding to these oxygens are defined by

atomic index; in the Distance training sets, the features corresponding to

the displayed oxygens are defined by distance from the central oxygen; in

the Structured training sets, the features corresponding to the oxygens are

defined by their respective node-based structure scheme described in the

text. [Color figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]

Table 4. Overview of design differences between the 12 investigated models.

Model Structuring method Coordinate frame Center Node allocation method

Standard Defined by atom index Oxygen N/A

Standard H Defined by atom index Hydrogen N/A

Distance Defined by distance to central oxygen Oxygen N/A

Distance H Defined by distance to central oxygen Hydrogen N/A

Structured 1a 4 nodes used. Then by distance to central oxygen Oxygen Restricted

(first-four)

Structured 1b 8 nodes used. Then by distance to central oxygen Oxygen Restricted

(first-four)

Structured 1aH 4 nodes used. Then by distance to central oxygen Hydrogen Restricted

(first-four)

Structured 1bH 8 nodes used. Then by distance to central oxygen Hydrogen Restricted

(first-four)

Structured 2a 4 nodes used. Then by distance to central oxygen Oxygen No restriction

Structured 2b 8 nodes used. Then by distance to central oxygen Oxygen No restriction

Structured 2aH 4 nodes used. Then by distance to central oxygen Hydrogen No restriction

Structured 2bH 8 nodes used. Then by distance to central oxygen Hydrogen No restriction
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enough to incorporate the entire second solvation shell of a

central water molecule. Using these nodes, a Structured 1b

training set was constructed by applying the same feature

defining method as used in Structured 1a, to the next four

closest-to-center molecules in Structured 1a. Similarly, a Struc-

tured 2b training set was constructed by applying the same

feature defining method as used in Structured 2a, but by

extending the method to the full set of eight nodes. In both

the Structured 1b and Structured 2b training sets, the remaining

molecule was left as the last molecule in the training set. Fig-

ures 5c and 5d display the spatial distribution of the fifth

through to eighth noncentral oxygens as listed in the Struc-

tured 1b and Structured 2b training sets, respectively, colored

by node allocation, as well as the spatial distribution of the

node positions. Similarly, Figures 6c and 6d display h/2space

projections of the fifth through to eighth noncentral oxygens

as listed in the Structured 1b and Structured 2b training sets,

respectively, as well as the h/-space projections of the fifth to

eighth nodes.

Hydrogen-centered coordinate frame

In previous work, where kriging was applied to the prediction

of atomic properties of amino acids, individual kriging models

were created for each property of each atom, using an atom-

centered coordinate frame centered on the atom of interest,

similar to the procedure outlined in the standard kriging mod-

els section above.[23,24,26] When kriging has been used for the

prediction of properties of water, however, each water mole-

cule has been described as a whole, through a molecular coor-

dinate frame.[27,28,30] To investigate whether using an oxygen-

centered coordinate frame is as effective as a hydrogen- cen-

tered coordinate frame when kriging atomic properties, each

of the training sets listed above were also created using a

coordinate frame centered on the x-axis hydrogen (see Fig. 1).

These training sets used the same feature definitions as the

training sets that they were based on, but were centered on

the x-axis hydrogen, and defined their x-axis to pass through

the position of the central oxygen atom. Hydrogen- centered

training sets were named as per the model they were based

on, but with an added H (e.g., Distance H). A summary of all

12 feature definition methods is displayed in Table 4. Note,

however, as the results obtained from the Standard H model

were equivalent to the Standard model, only the results

obtained from the Standard model will be displayed through-

out the rest of this work.

Results

The performance statistics of the IQA kriging models are dis-

played in Table 5. As per the Standard Results section, each

kriging model was trained and tested using fivefold cross vali-

dation with a 1:4 partitioning of the training set to the test

set.

For all properties considered, kriging models that incorpo-

rated local structure outperformed the Standard models. The

best performing model for the oxygen ESelf , oxygen EInter,

hydrogen ESelf , and hydrogen EInter, returned MAE values 70%,

70%, 43%, and 64% lower than the Standard model of each

property, respectively. In fact, even the worst performing mod-

els that incorporate local structure returned MAE values 38%,

31%, 28%, and 26% lower than the Standard model of the

oxygen ESelf , oxygen EInter, hydrogen ESelf , and hydrogen EInter,

respectively. Furthermore, Table 5 shows the importance of

centring the coordinate frame on the atom of interest, with

MAE values obtained from such training sets being on average

Table 5. Prediction statistics for the ESelf and EInter of the atoms of the

central water molecule of a water decamer.

Property Model

Mean

Value Range MAE q2

Oxygen

ESelf

Standard* 2196708.8 243.9 35.2 6 1.3 0.00 6 0.00

Distance 11.4 6 0.2 0.87 6 0.01

Distance H 21.7 6 0.3 0.56 6 0.02

Structured 1a 11.2 6 0.3 0.89 6 0.00

Structured 1b 11.0 6 0.2 0.89 6 0.00

Structured 1aH 15.5 6 0.3 0.77 6 0.01

Structured 1bH 15.8 6 0.2 0.77 6 0.01

Structured 2a 10.6 6 0.2 0.90 6 0.00

Structured 2b 11.7 6 0.2 0.86 6 0.01

Structured 2aH 15.9 6 0.3 0.77 6 0.01

Structured 2bH 19.1 6 0.4 0.66 6 0.02

Oxygen

EInter

Standard* 21540.6 407.7 50.2 6 2.1 0.00 6 0.00

Distance 16.9 6 0.5 0.87 6 0.01

Distance H 34.5 6 0.7 0.48 6 0.01

Structured 1a 16.2 6 0.3 0.88 6 0.00

Structured 1b 16.6 6 0.4 0.88 6 0.01

Structured 1aH 24.7 6 0.3 0.73 6 0.01

Structured 1bH 25.1 6 0.8 0.72 6 0.02

Structured 2a 15.3 6 0.6 0.91 6 0.01

Structured 2b 16.4 6 0.2 0.87 6 0.01

Structured 2aH 24.6 6 1.0 0.73 6 0.03

Structured 2bH 29.3 6 0.5 0.61 6 0.02

Hydrogen

ESelf

Standard* 2736.1 121.6 18.1 6 0.2 0.00 6 0.00

Distance 13.1 6 0.4 0.41 6 0.03

Distance H 12.0 6 0.2 0.55 6 0.01

Structured 1a 11.5 6 0.3 0.56 6 0.02

Structured 1b 11.8 6 0.5 0.52 6 0.03

Structured 1aH 10.5 6 0.1 0.65 6 0.01

Structured 1bH 10.5 6 0.2 0.65 6 0.01

Structured 2a 11.4 6 0.2 0.59 6 0.01

Structured 2b 11.3 6 0.3 0.57 6 0.03

Structured 2aH 10.3 6 0.1 0.66 6 0.01

Structured 2bH 11.1 6 0.1 0.61 6 0.02

Hydrogen

EInter

Standard* 2525.3 120.8 18.4 6 0.5 0.00 6 0.01

Distance 13.6 6 0.5 0.44 6 0.04

Distance H 8.1 6 0.3 0.79 6 0.01

Structured 1a 11.6 6 0.3 0.55 6 0.02

Structured 1b 11.8 6 0.6 0.50 6 0.04

Structured 1aH 6.9 6 0.2 0.84 6 0.01

Structured 1bH 6.8 6 0.1 0.84 6 0.00

Structured 2a 11.5 6 0.2 0.57 6 0.01

Structured 2b 11.6 6 0.4 0.54 6 0.03

Structured 2aH 6.7 6 0.0 0.85 6 0.00

Structured 2bH 7.0 6 0.1 0.84 6 0.01

The worst performing model for each property is indicated by *, while

the best performing model is written bold. All energies are in kJ/mol,

and uncertainties represent 6 1 standard deviation. Averages obtained

from five 1000-training-point models, tested on 4000 test points each.
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31% lower than errors obtained from training sets created

with a coordinate frame centered on an atom other than the

one the properties of interest come from. Finally, all Structured

models, from a particular coordinate frame, for a particular

property, outperformed their equivalent Distance model. On

average, MAE values obtained from Structured models were

22% lower than errors obtained from the equivalent Distance

models. Between Structured models, differences were less sig-

nificant, with all oxygen- centered MAE’s within 62 standard

deviations of each other. Similar was true of the Structured

1aH, Structured 1bH, and Structured 2aH hydrogen- centered

models but the Structured 2bH models performed noticeably

worse (although still better than the Distance models).

Figure 7 displays the MAE of energy predictions for each of

the models, displayed as a percentage of the true range. Here,

it can be seen that the best oxygen models predict with mean

errors within 5% of the total range, and the best hydrogen

models predict within 8%. In particular, the hydrogen ESelf is

predicted poorly relative to the hydrogen EInter, although the

best performing hydrogen ESelf model (Structured 2aH) still

obtains a MAE 43% better than the worst performing hydro-

gen ESelf model (Standard), and approximately 5.5% better

Figure 7. Mean absolute error of IQA energies as a percentage of range. [Color figure can be viewed in the online issue, which is available at wileyonline-

library.com.]

Figure 8. Error distributions of IQA kriging models. a) oxygen ESelf , b) oxygen EInter, c) hydrogen ESelf , d) hydrogen EInter. [Color figure can be viewed in the

online issue, which is available at wileyonlinelibrary.com.]
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when the difference is measured as a percentage of the range

in the property.

Figure 8 displays the full distribution of energy property

errors in S-curve format. The y-axis indicates what percentage

of the test data corresponds to which prediction error given

by the x-axis. Similar to an error distribution histogram, the S-

curve format of error depiction is an intuitive means of quickly

determining the characteristics of a distribution of errors. How-

ever, whereas a distribution histogram generally draws the eye

to the mode (i.e., the value corresponding to the maximum of

the distribution), the S-curve presents the data in a way that

makes ascertaining the various percentile values [such as the

median value (50-percentile), 90-percentile value, 95-percentile

value etc.] convenient. From Figure 8 it can be seen that the

best performing models for each oxygen based property pos-

sesses median and 95-percentile MAE’s that are approximately

one third of the MAE of the worst performing model for that

property, while the best performing models for each hydrogen

based property possesses median and 95-percentile MAE’s that

are approximately half to two-thirds of the MAE of the worst

performing model for that property.

In addition to the IQA energies, kriging models for the

QTAIM obtained electrostatic multipole moments were also

obtained, for the charge (Q00), components of the dipole

moment (Q10, Q11c, Q11s) and components of the quadrupole

moment (Q20, Q21c, Q21s, Q22c, Q22s). Figure 9 displays the MAE,

q2, and MAE as a percentage of the range for the hydrogen

kriging models. Again, the Standard model was uniformly the

Figure 9. Validation results of hydrogen multipole moment kriging models showing a) mean absolute error, b) q2 values, and c) mean absolute errors as a

percentage of the range of predictions. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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worst performing model, and the hydrogen-centered models

generally out-performed their oxygen-centered equivalents.

Unlike the IQA results, the Distance models performed worse

than the Structured models in general, regardless of the atom

the coordinate frame was centered upon. The worst perform-

ing model in terms of MAE was the charge, with only the

hydrogen-centered Structured models returning an error less

than 0.01a.u. Still, the best performing model for the charge,

Structured 1aH, returned a MAE 35% lower than that of the

Standard model. By using Structured kriging models, the Q22c

quadrupole component gained the most in accuracy, reducing

errors by 75% when compared to the predictions of the Stan-

dard model.

Figure 9 also shows that the difference in prediction statis-

tics between the various Structured models is much less than

the difference between the Structured and Distance or Stan-

dard models. This implies that the specific means of account-

ing for the spatial distribution of the atoms surrounding the

center is less important than the fact it is accounted for in the

first place. Consideration of the specific spatial structure of the

system beyond the first solvation shell demonstrated no further

improvement in prediction accuracy. Note that the difficulty of

a kriging problem is a function of the range the model has to

predict over, and as such a property with a slightly larger MAE

but a significantly larger range may appear much better when

judged using q2 or the MAE as a percentage of the range

Figure 10. Validation results of oxygen multipole moment kriging models showing a) mean absolute error, b) q2 values, and c) mean absolute errors as a

percentage of the range of predictions. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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(Figs. 9b and 9c, respectively). This is particularly evident with

the Q11c component of the dipole moment (corresponding to

the approximate OAH���O axis), which has a MAE approximate-

ly twice that of the Q10 and Q11s moments in Figure 9a, but

superior q2 values. Thus, when comparing the prediction

results of different models, from different coordinate frames, it

is important to compare across the complete set of multipole

moments (i.e., consider all three dipole components, or all five

quadrupole components, together), and across the set of three

validation metrics.

Figure 10 displays the MAE, q2, and MAE as a percentage of

the range for the oxygen’s charge, dipole, and quadrupole

kriging models. Again, the Standard kriging model is consis-

tently the worst, although here the oxygen- centered Distance

model outperforms several of the hydrogen-centered models

for a range of moment components. Unlike for the hydrogen,

the charge of the central oxygen was the best predicted

moment in terms of the MAE but it is also seen that there are

other multipole moments that outperform it in terms of q2

and MAE as a percentage of range. Thus, the larger MAE’s

seen in the higher rank moments, and in particular for the

quadrupole moment, are a consequence of their larger proper-

ty ranges and not some fault of the models. Such results high-

light the importance of considering multiple metrics when

validating machine learning models. Again, the Structured 1a

and Structured 1b models produce similar results, as do the

Structured 2a and Structured 2b models, however, unlike the

hydrogen results, the oxygen multipole moments seem to

respond significantly better to a local (i.e., oxygen- centered)

coordinate frame. In fact, for the Q22s component, the Struc-

tured 2bH model is outperformed by both Distance models.

This is possibly due to the extensive range each RN feature

may possess under this feature definition scheme, particularly

when centered on the hydrogen atom, which is off center in

the cluster.

Although machine learning algorithms have been used to

predict the multipole moments of water previously[21,27,28] a

clear comparison between results is difficult due to different

reporting techniques and system specifications. Handley

et al.[28] applied kriging, radial basis function neural networks,

and multilayer perceptrons, as well as a variety of combina-

tions of the three, to the prediction of the multipole moments

of a water at the center of small water clusters, using a molec-

ular local frame. For the water pentamer, the best dipole

moment predictions were obtained through kriging, with a

MAE of 0.066 a.u. This is significantly larger (about 5 times)

than the MAE across all dipole moment components of 0.0137

a.u. for oxygen and 0.00214 a.u. for hydrogen obtained here,

despite the decamer being a larger system. In a separate work,

Handley and Popelier[27] obtained a mean error in the charge

of the central water of a hexamer cluster of 0.0091 a.u., which

is similar to the MAE error obtained for the best performing

decamer model presented here. In addition, an average abso-

lute dipole moment error of 0.077 a.u. was reported (over six

times higher than the best performing models here). For their

validation set, no component of the dipole moment obtained

a correlation coefficient above 0.25 (compared to over 0.9 for

the best performing models here). Moreover, Bereau et al.[21]

investigated the application of machine learning models

trained on a variety of small organic molecules to chemical

problems, including the prediction of multipole moments. As

the water monomer is substantially different in its properties

when compared to the other small molecules considered, pre-

dictions on the water monomer were poor, with an absolute

error of 0.26 a.u. on the charge, a MAE of 0.14 a.u. across the

components of the dipole moment, and a MAE of 0.356 a.u.

across the components of the quadrupole moment (all one

order of magnitude higher than the results obtained here). As

the objective of Bereau et al.’s work was to create a machine

learning model that can predict multipole moments accurately

across a very wide range of different molecules, as opposed to

creating a model specifically for water clusters, a direct com-

parison is not fair. However, it is interesting to note the differ-

ence in results that the two different approaches give.

Conclusion

Various methods of training set construction of the water dec-

amer were considered, with an intention to better incorporate

known local structure into kriging models. By exploiting the

physical indistinguishability of the water molecules within the

cluster to redefine the features of the training set, we show

that training density can be increased, at no additional cost.

Although all training sets contained the same conformational

information, careful definition of training set features to

account for local structure led to improvements in mean abso-

lute prediction error of up to �75% for certain properties. In

addition, it was found that, for the properties investigated,

centring the coordinate frame of a kriging model on the

atom-of-interest also leads to improved prediction accuracy.

Although no single method of accounting for local molecular

structure performed best for every property considered, the

results presented here suggest that, when using machine

learning to model and predict chemical properties, careful

consideration of the spatial distribution of the system around

the atom of interest is an essential requirement for the reduc-

tion of prediction errors, particularly in system which possess

large amounts of conformational freedom. Thus, at the very

least, when considering the atoms at the center of a cluster,

one should attempt to design training sets to account for the

structure of the first solvation shell of the atom or molecule-

of-interest, and center kriging models on the atom-of-interest

where possible. Such a procedure requires no extra ab initio

data, however was shown to reduce prediction errors by up to

�75% for certain properties. Finally, it was shown that the

kriging method employed here appears to perform very well

when compared to a short review of similar, smaller systems—

although different model parameterization and model valida-

tion methods make a true comparison not feasible.

Keywords: force field design � liquid water � interacting quan-

tum atoms � quantum chemical topology � quantum theory of

atoms in molecules � machine learning � kriging
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