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Abstract

Keywords:

Introduction: Alzheimer’s and Parkinson’s disease (AD and PD) are distinct disorders but share
similar biomarker profiles. The regions of the default mode network are implicated in these diseases
and are associated with amnestic symptoms. The role of apolipoprotein-e4 (APOE-g4), which is asso-
ciated with cognitive function, is unclear in PD.

Methods: In this work, we evaluated cortical thickness of default mode network regions that are
likely affected in both early AD and PD individuals, that is, with amnestic mild cognitive impairment.
We identified the prevalence of APOE-e4 and evaluated its association with cortical atrophy.
Results: We observed significant parahippocampal atrophy and hippocampal atrophy rates in amnes-
tic mild cognitive impairment subjects, regardless of disease origins (AD or PD). Similarly, mild
cognitive impairment €4 carriers showed significant precuneal atrophy compared with noncarriers.
Discussion: This work supports that converging changes to default mode network regions, especially
the temporal lobe and precuneus, are shared in AD and PD.

© 2018 The Authors. Published by Elsevier Inc. on behalf of the Alzheimer’s Association. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/
4.0/).
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1. Introduction

Despite the clinical distinctions between Alzheimer’s dis-
ease (AD) and Parkinson’s disease (PD), these disorders
share similar clinicopathologic features [1-4]. In both,
cognitive symptoms worsen over time, where -early
symptoms of mild cognitive impairment (MCI) can
progress to dementia. Amnestic mild cognitive impairment
(aMCI) is considered an early clinical symptom in AD
pathology, and in PD, early executive dysfunction is
followed by deficits to visual spatial and memory domains
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[5]. However, there exists substantial individual variation
in the type of cognitive presentation and rate and extent of
progression.

The apolipoprotein-e4 (APOE-g4) allele is a genetic risk
factor that may contribute to the manifestation of amnestic
symptoms in both disorders. Individuals with a heterozy-
gous-e4 allele have a 47% increased risk of developing
AD, whereas those with a homozygous-e4 allele have a
91% increased risk [60,7]. Healthy older adults with an
APOE-¢4 allele require an increased area of cortical
activity during cognitive tasks, suggesting a genetic link to
neuropathological changes that precede cognitive
symptoms [8]. More so, APOE-e4 appears to account for
memory-related cognitive dysfunction in PD [9,10],
similar to that seen in aMCI attributed to AD pathology.
Patients with PD with an €4 allele have higher odds of
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developing dementia, lower scores on the Clinical Dementia
Rating scale, and reduced episodic memory performance
[6,11,12]. However, the causative role of APOE-g4 on the
development of PD-related dementia is still unknown, as
some studies report a lack of association between the
APOE-¢4 allele and PD-related dementia [13,14].

Advancing AD is accompanied by progressive neuro-
pathological accumulation of -amyloid and tau protein ag-
gregates, whereas increased o-synuclein deposition, or
Lewy bodies, accumulates in PD. In vivo cerebral spinal
fluid (CSF) measures of B-amyloid (A4;), tau, and a-synu-
clein can inform concomitant neuropathologic accumulation
in brain parenchyma, where reduced CSF levels of B-amy-
loid (AB4,) appear quite reliable in assessing concomitant
brain amyloid aggregation [15]. Indeed, B-amyloid (AB4>)
is a well-described contributor to disease pathologic pro-
gression of AD and reduced levels inform the risk of pro-
gression from aMCI to AD [16,17].

Brain regions of the default mode network appear vulner-
able to B-amyloid accumulation, especially in APOE-¢g4 car-
riers [18,19], and symptoms of aMCI localize to this
network. These regions include the posterior cingulate,
medial frontal, and lateral parietal cortices, and disease-
relevant changes to this network are evident in both AD
and PD [20-22]. In AD, reduced connectivity between the
hippocampus and the posterior cingulate accounts for
aMCI presentation [21,23,24]. Likewise, patients with PD
have reduced connectivity between the posterior cingulate
and medial prefrontal regions [22], and this appears respon-
sive to dopamine therapy [25,26]. A limited number of
studies have investigated the association between APOE-
€4 and the default mode network region in PD either with
respective to functional or structural integrity.

In this study, we compare morphometric measurements in
the default mode network regions (no cerebellar regions were
included) between cognitively normal older adults and aMCI
subjects at risk of AD, as well as aMCI subjects at risk of PD.
Our objective was to identify default mode network regions
that show significant atrophy in the aMCI subjects (irrespec-
tive of disease origins, i.e., AD or PD) compared with cogni-
tively normal older adults. This goal will identify common
mechanisms that can be targeted for relief of similar amnestic
symptoms in the future. A supplementary objective was to
evaluate neuropathologic vulnerabilities associated with
APOE-¢4 carrier status in individuals with aMCI.

Recently, we investigated the differences in morphometric
measurements due to variations in T1 imaging protocols in
Alzheimer’s Disease Neuroimaging Initiative (ADNI) and
Progressive Parkinson’s Markers Initiative (PPMI) [27-30].
These are public databases with imaging data for AD and
PD. They provide an excellent opportunity to test
hypotheses of pathological and systemic overlap in the two
diseases. One challenge is the different imaging parameters
in the two databases that may introduce a systematic bias
and increased variability, thus negatively impacting the
comparisons. We have identified data from the same

scanner manufacturer with identical imaging parameters in
the two databases that will be leveraged for this study.

2. Methods
2.1. ADNI and PPMI databases

The ADNI (adni.loni.usc.edu) database was launched in
2003 as a public-private partnership, led by Principal Inves-
tigator Michael W. Weiner, MD. The primary goal of ADNI
has been to test whether serial magnetic resonance imaging,
positron emission tomography, other biological markers,
and clinical and neuropsychological assessment can be com-
bined to measure the progression of MCI and early AD
(www.adni-info.org).

The PPMI database (www.ppmi-info.org) was used to
assess patients with PD. Only those subjects who were ac-
quired with the following identical parameters in both
ADNI and PPMI were selected: Siemens (Erlangen, Ger-
many) scanner, 3T, TR/TE = 2300/2.98 ms, TI = 900 ms,
resolution = 1 X 1 mm? and slice thickness =
1-1.2 mm. Morphometric measurements especially with
FreeSurfer [31] are known to be unaffected when slice
thickness = 1-1.3 mm.

2.2. Subject selection and clinical phenotyping

All scans were baseline scans. ADNI comprises older
adults at risk of AD, who are further subdivided into early
MCI (EMCI), MCI, and late MCI (LMCI). Although the
MCI classification is an older classification scheme, LMCI
subjects have more severe cognitive deficits, less likely
evident in early PD subjects from PPMI. Therefore, we
restricted our sample to EMCI participants from ADNI but
included all PD subjects from PPMI.

Despite the large number of neuropsychological assess-
ments in ADNI and PPMI, there is very little overlap [32—
39]. Memory proficiency is assessed using delayed recall
verbal learning tests: the Auditory Verbal Learning Test in
ADNI and the Hopkins Verbal Learning Test in PPMI
[40.41]. Both tests provide similar outcomes [42.43]. We
classified patients as aMCI based on delayed recall scores
of the Auditory Verbal Learning Test in ADNI and of the
Hopkins Verbal Learning Test in PPMI. To accomplish this,
the scores from the two assessments were z-transformed to
account for differences in the scoring systems. Within
ADNI, the mean result was subtracted from the individual
score and then divided by the standard deviation of the
scores in the cognitively normal controls. Identical
transformation was performed in PPMI. Subjects with
z < —0.5, that is, half a standard deviation below normative
sample, were considered to be aMCI. ADNI uses a similar
definition based on delayed recall to define EMCI subjects.

A total of 231 subjects were identified that completed
Hopkins Verbal Learning Test/Auditory Verbal Learning
Test assessments, had documented APOE-e4 gene status,
and completed a similar imaging protocol. All patients had
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CSF biomarkers analyzed in the same run (to minimize
batch effects). We repeated the above comparisons in
amyloid-negative controls (n = 49, 9 APOE-e4), amyloid-
positive MCI (n = 25, 14 APOE-¢4 carriers), and PD sub-
jects (n = 28, 4 APOE-¢4 carriers), to obtain phenotypically
similar but pathologically distinct groups. The prevalence of
APOE-¢4 in PD is much lower than in AD in this study.

2.3. Image analysis and statistical considerations

For the default mode network, we included the middle tem-
poral cortex, parahippocampal gyrus, precuneus, posterior
cingulate, inferior parietal regions, medial orbitofrontal re-
gions, and hippocampus (Fig. 1A). We applied the standard
FreeSurfer (v5.1.0) pipeline comprising intensity normaliza-
tion, skull tissue removal, tissue segmentation, resampling to
al X 1 X 1 mm? resolution, and registration to the standard
FreeSurfer brain (fsaverage) [31]. Briefly, this pipeline includes
removal of nonbrain tissue using a hybrid watershed/surface
deformation procedure, automated Talairach transformation,
segmentation of the subcortical white matter and deep gray
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matter volumetric structures, intensity normalization [44.,45],
tessellation of the gray/white matter boundary, automated
topology correction, and surface deformation following
intensity gradients to optimally place the gray/white and
gray/cerebrospinal fluid borders at the location where the
greatest shift in intensity defines the transition to the other
tissue class [46,47]. No manual editing was performed.
However, 10% of the data were randomly sampled and
visually inspected to ensure accurate segmentation.

We applied two linear regression models. The first evalu-
ated association of regional atrophy in the default mode
network regions and aMCI status. This association was
adjusted for age and gender. Comparisons were made be-
tween cognitively normal controls and the aMCI group
comprising both ADNI and PPMI together, irrespective of
disease pathology. Post hoc, two separate comparisons be-
tween cognitively normal controls and the aMCI group
with reduced CSF amyloid, and PD, were performed. The
second regression model was used to assess regional atrophy
as function of APOE-¢4 allele status while adjusting for age
and gender within each group.
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Fig. 1. Cortical atrophy in aMCI. (A) Regions of the default mode network tested in this study. Right and left side thickness and volumes were combined. The
green area near the temporal lobe is representative of the hippocampus. (B) The middle temporal lobe and the parahippocampal gyrus showed significant thin-
ning in the aMCI phenotype compared with the cognitively normal individuals. (C) The thickness reductions in the aMCI subjects were observed regardless of
disease origins. Amnestic MCI subjects from ADNI and PPMI both show decreased cortical thickness in the middle temporal gyrus and parahippocampal gyrus.
(D) Although hippocampal atrophy was not significant, the slope of the relationship between hippocampal volume and age was significantly steeper in the aMCI
individuals (golden <) compared with the cognitively normal group (black e). (E) This relationship in (D) was maintained even when the cohort was refined to
include only amyloid-negative controls, and amyloid-positive AD-MCI subject and amyloid-negative PD-MCI subjects. * Denotes mean values for each group,
Normal, AD, and PD. Abbreviations: AD, Alzheimer’s disease; ADNI, Alzheimer’s Disease Neuroimaging Initiative; aMCI, amnestic mild cognitive impair-
ment; MCI, mild cognitive impairment; PD, Parkinson’s disease; PPMI, Progressive Parkinson’s Markers Initiative.
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For the above seven regions and two evaluations (group
difference and interaction with age while adjusting for age
and gender), a correction for multiple comparisons was
applied separately for each regression model at a false dis-
covery rate (FDR) of 0.1. Significance was evaluated using
the Benjamini Hochberg procedure. All P values reported
in the text are original uncorrected P values for regions
that satisfied the FDR criteria for significance. FDR-based
significance is indicated for these region by an “*” in the ta-
bles with statistical results. Effect sizes are also reported
(0.2 = small, 0.5 = medium, 0.8 = large [48]). Hippocam-
pal volume comparisons were adjusted for brain size using
intracranial volume (eTIV in FreeSurfer). To confirm that
the differences were not only due to a large AD-aMCI sam-
ple size, we show the morphometric measurements with the
aMCI groups separated by disease designation.

3. Results
3.1. Demographics

We identified 109 controls (76 men, age = 75 = 5 years)
from ADNI and 28 controls from PPMI (18 men,
age = 70 *= 4 years). Also, 61 AD-MCI (47 men,
age = 75 = 6 years) and 33 PD-MCI (22 men,
age = 70 * 4 years) subjects were identified. AD-MCI
PPMI subjects were significantly younger (P <.01). All out-
comes were adjusted for age and gender. The incidence of
APOE-¢4 in the cognitively normal older adults is similar
in ADNI (25%, n = 27) and PPMI (28%, n = 8) but higher
in the AD-MCI group (26%.,n = 24) compared with the PD-
MCI group (12%, n = 4).

Table 1

3.2. Anatomical differences in cognitively normal older
adults and aMCI

Individuals with aMCI from both ADNI and PPMI had
reduced cortical thickness in default mode network regions,
with steeper negative correlation of age and hippocampal vol-
ume. Fig. 1B illustrates the regions of the default mode
network that were significantly different between controls
and aMCI groups. Table | outlines statistical differences,
where reductions in the parahippocampal gyrus and the mid-
dle temporal region are greatest in the aMCI phenotype
(P =.007, P = .005, and P = .009, respectively). Amnestic
MCI individuals with presumed AD and PD showed a
decrease in cortical thickness (Fig. 1C) in the middle temporal
and parahippocampal gyrus. Middle temporal gyral thickness
values in the cognitively normal, aMCI-ADNI, and aMCI-
PPMI participants were 2.71 * 0.12 mm, 2.66 = 0.16 mm,
2.68 = 0.10 mm, respectively. Values for the parahippocam-
pal gyrus were 2.62 = 0.24 mm, 2.53 = 0.27 mm, and
2.50 = 0.29 mm, respectively, consistent with the reduced
cortical thickness in aMCI not being driven simply by disease
classification (e.g., AD or PD). No significant relationship
was observed between gender and cortical thickness.

Compared with the cognitively normal older adults, the
trajectory of hippocampal volume decline with age was
significantly faster (P = .007) in the aMCI group
(Fig. 1D). Pearson’s correlation value, r, for hippocampal
volume and age was —0.49 in the aMCI group compared
with —0.27 in the cognitively normal individuals.

When amyloid-positive control subjects and amyloid-
negative aMCI subjects were excluded, no group differences
in subcortical volumes were observed. However, the

Temporal regions are significantly smaller in the amnestic phenotype compared with cognitively normal controls

Regions Effect size P value FDR significance
Cognitively normal older adults versus

mildly amnestic phenotype individuals

Medial orbitofrontal 0.23 13

Middle temporal 0.31 009 *

Parahippocampal 0.38 005 *

Hippocampus 0.08 .05

Inferior parietal 0.16 21

Posterior cingulate 0.16 42

Precuneus 0.27 .01

r (cognitively normal) r (amnestic MCI phenotype) P value FDR significance

Age interactions

Medial orbitofrontal 0.07 0.07 99

Middle temporal —0.19 —0.16 99

Parahippocampal —0.09 —0.16 52

Hippocampus —0.27 —0.49 007 *

Inferior parietal -0.3 -0.3 75

Posterior cingulate —0.01 —0.13 .37

Precuneus —0.37 —0.5 13

Abbreviations: FDR, false discovery rate; MCI, mild cognitive impairment.

NOTE. Bold values denote significance at P = .05 value that is uncorrected using FDR. * Indicates values that are significant after correcting for multiple

comparisons using FDR.
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estimated rate of hippocampus atrophy was significantly
steeper (P = .007) in the amyloid-positive aMCI group
(Fig. 1E). This finding is similar to Fig. 1D, where amyloid
positivity was not considered. Pearson’s correlation value, t,
for hippocampal volume and age was —0.53 in the aMCI
group compared with —0.11 in the cognitively normal indi-
viduals.

3.3. Anatomical differences in APOE-e4 carriers

Cognitively normal APOE-g4 carriers (n = 35) showed
significantly reduced thickness in the parahippocampal gy-
rus with increasing age, and this survived FDR correction
(Table 2 and depicted in Fig. 2A; r = —0.51, P = .0004).
No relationship between parahippocampal gyrus thickness
and age of noncarriers of APOE-g4 was evident.

Table 2

In the amyloid-negative controls (CSF-AB4, >192 pg/
mL), the APOE-¢e4 carriers had significantly greater cortical
thickness in the inferior parietal, middle temporal gyrus, and
precuneus regions (Fig. 2B, inferior parietal, P =.002, effect
size 1.18; middle temporal gyrus, P = .005, effect size 0.88;
and precuneus, P = .01, effect size 1.08).

In the aMCI subjects, the middle temporal gyrus, inferior
parietal region, and the precuneus had significantly reduced
thickness in the 28 APOE-¢e4 carriers compared with the
noncarriers (Fig. 3A). Thickness values in the middle tem-
poral, inferior parietal, and the precuneal regions in the
APOE-¢4 carriers were 2.19 = 0.12 mm, 2.61 = 0.14,
and 2.12 = 0.13 mm, and 231 = 0.10 mm,
2.69 * 0.13 mm and 2.23 * 0.12 mm in noncarriers
(Table 2), respectively. A post hoc analysis (Fig. 3B) found
that cortical thickness differences in the aMCI APOE-e4

No significant difference between APOE-e4 carriers and noncarriers within the cognitively normal individuals, and APOE-e4 carriers within the aMCI
phenotype showed cortical thinning in multiple default mode regions compared with noncarriers

Regions Effect size P value FDR significance
Controls, APOE-¢4 carriers versus noncarriers
Medial orbitofrontal 0.08 71
Middle temporal 0.20 .16
Parahippocampal 0.00 .83
Hippocampus 0.11 .69
Inferior parietal 0.50 01
Posterior cingulate 0.23 .26
Precuneus 0.23 .08
r (noncarriers) r (carriers) P value FDR significance
Age interactions
Medial orbitofrontal 0.13 —0.02 .35
Middle temporal —0.06 —0.38 .03
Parahippocampal 0.14 —0.51 0004 *
Hippocampus —0.18 —0.48 18
Inferior parietal —0.21 —0.46 75
Posterior cingulate 0.05 —0.16 28
Precuneus —-0.29 —0.53 17
Effect size P value FDR significance
aMCI, APOE-g4 carriers versus noncarriers
Medial orbitofrontal 0.28 3
Middle temporal 0.57 009 *
Parahippocampal 0.00 .87
Hippocampus 0.03 79
Inferior parietal 1.00 .0001 *
Posterior cingulate 0.60 .03
Precuneus 0.84 .0002 *
r (noncarriers) r (carriers) P value FDR significance
Age interactions
Medial orbitofrontal —0.02 0.31 .16
Middle temporal —0.09 —0.23 33
Parahippocampal —0.09 —0.34 34
Hippocampus —0.47 —0.56 .53
Inferior parietal —0.26 -0.3 54
Posterior cingulate —0.06 —0.25 .54
Precuneus —0.45 —0.59 32

Abbreviations: aMCI, amnestic mild cognitive impairment; APOE, apolipoprotein; FDR, false discovery rate.
NOTE. Bold values denote significance at P = .05 value that is uncorrected using FDR. * Indicates values that are significant after correcting for multiple

comparisons using FDR.
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Fig. 2. Effect of APOE allele status in cognitively normal controls. (A) Within the cognitively normal individuals, carriers of APOE-e4 had a faster rate of
decline (Blue <, high slope = —0.53) in the parahippocampal regions compared with the noncarriers (Pink e, slope = 0.14). (B) Amyloid-negative €4 carrier
controls had higher cortical thickness in the inferior parietal, middle temporal, and precuneal regions compared with €4 noncarriers. * Denotes mean values for

each group. Abbreviation: APOE, apolipoprotein E.

carriers were apparent in both ADNI and PPMI cohorts.
ADNI aMCI participants with APOE-e4 had reduced
cortical thickness values in the middle temporal gyrus, infe-
rior parietal region, and the precuneus: 2.59 * 0.16 mm,
218 = 0.16 mm, and 2.11 = 0.14 mm, versus
2.70 = 0.15 mm, 2.28 = 0.10 mm, and 2.20 = 0.11 mm
in APOE-¢e4 noncarriers, respectively. PPMI aMCI partici-
pants with APOE-e4 also had reduced cortical thickness
values in these same regions: 2.68 = 0.10 mm,
235 = 0.09 mm, and 2.27 0.12 mm, versus
2.68 £ 0.15 mm, 2.29 £ 0.05 mm, and 2.21 £ 0.07 mm
in noncarriers. Note that there were only four APOE-e4-
positive patients with PD, but they had markedly lower
cortical thickness in the inferior parietal regions. In the
amyloid-positive MCI subjects in ADNI and PD subjects
from PPMI, precuneus region was significantly thinner
(P = .001, effect size = 0.92) compared with healthy
amyloid-negative control subjects. Again, this difference

—+

was observed in both AD-MCI and PD-MCI subjects as
shown in Fig. 3C.

4. Discussion

We show that across two distinct neurodegenerative dis-
orders, patients with clinical symptoms of aMCI localize
to common regions involved in the default mode network.
Furthermore, the APOE-g4 carriers from both AD and PD
populations showed similar atrophy patterns when compared
with cognitively normal controls. These findings are consis-
tent, even when accounting for amyloid status and lend sup-
port to the hypothesis that clinical symptoms of memory
dysfunction converge on default mode network-related re-
gions. That is, significantly reduced thickness of the middle
temporal and parahippocampal cortices are evident in aMCI
and aMCI-PD patients with lower verbal memory scores.
Together, the estimated rate of hippocampal volume decline

AD and PD MCI subjects AD and PD MCI subjects
combined separated
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Fig. 3. Effect of APOE allele status in aMCI. (A) Cortical regions showing significant thinning in the APOE-¢4 carriers vs. noncarriers within the aMCI pheno-
type. (B) Thinning cortex in the APOE-¢4 carriers (blue) compared with the noncarriers (pink) was consistent across disease pathologies. Note that there were
only four APOE-¢4 carriers in the PD amnestic phenotypes. The differences in cortical thickness in the middle temporal gyrus are minimal in the PD group. (C)
In the refined cohort with amyloid-negative controls, amyloid-positive AD-aMCI individuals, and amyloid-negative PD-aMClI individuals, the 4 carriers show
lower cortical thickness in the precuneal region compared with the noncarriers. This effect is observed in both AD and PD-MCI groups, that is, precuneal thin-
ning in €4 carriers is independent of pathologic disease origins. * Denotes mean values for each group. Abbreviations: AD, Alzheimer’s disease; APOE, apoli-
poprotein E; aMCI, amnestic mild cognitive impairment; MCI, mild cognitive impairment; PD, Parkinson’s disease.
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is faster than that of cognitively normal controls. Although
these findings are in agreement with multiple studies [49—
51] linking cortical atrophy to MCI status, especially the
middle temporal gyrus, we extend these findings beyond
studies of patients with AD and emphasize that these
findings are consistent in patients with PD. Patients with a
similar aMCI phenotype have reductions in cortical
thickness in the same regions. These results emphasize the
role of network-based changes and memory-related symp-
toms that span clinicopathologic classifications.

Using CSF-AB4, as a marker of aMCI patients with
concomitant AD pathology and comparing this cohort to
PD patients with a motor-confirmed diagnosis, we are able
to emphasize the role of hippocampal volume as a marker
of aMCI status between groups. Very few studies have
shown hippocampal atrophy in PD, but hippocampal atrophy
has been reported in advanced PD patients with dementia
[52,53]. In this analysis, we show that middle temporal
and parahippocampal regions are most different as
compared with healthy controls, where aMCI participants
with presumed AD pathology had an estimated 1.7%
smaller mesial temporal cortical thickness with an effect
size of 3.59, and patients with PD had 2.8% lower
thickness, with effect size = 0.48. In the remaining default
motor network regions, the percent reductions ranged from
0.8% to 1.6% but were not significant. Taken together,
these results emphasize that faster rates of hippocampal
atrophy and thinning in the mesial temporal lobe regions
in PD may be a biomarker of an aMCI subgroup and
should be further validated.

Our results emphasize that the effect of APOE-e4 on
thickness of the precuneus is consistent across AD and PD
groups. The precise role of APOE-¢4 in precuneal pathology
is still not known, but it is clear that functional connectivity
in APOE-e4—positive patients is reduced and may emphasize
the larger role of APOE-g4 on memory-based networks, with
convergence on the precuneus. Functional magnetic reso-
nance imaging studies emphasize that default mode network
deactivation, during memory tasks, does not occur in APOE-
ed—positive patients with AD. Similarly, blood flow changes
in aMCI patients with AD localize to this region, the poste-
rior cingulate, and the default mode network. What predis-
poses APOE-eg4—positive individuals to AD-related
pathology is not known, but our results emphasize that there
are differences between individuals with low CSF-Af,4,
versus normal levels. Those with normal CSF-AB,, levels
actually have greater cortical thickness, a finding that repli-
cates previous studies of higher IQ and educational achieve-
ment in APOE-e4—positive patients [54,55].

Of course, despite our best attempts at comparing patients
with similar pathologic process, that is, accounting for CSF-
AB4; levels, it is clear that systematic changes to CSF amy-
loid differ between PD and AD. Although patients with PD
may have amyloid plaques at autopsy, the frequency of these
is low, and higher CSF amyloid levels reflect this difference.

Previous studies emphasize that using conventional cutoff
criteria for amyloid positivity does not provide informative
assessments of amyloid status in PD. It is likely that the
neuropathological cascade that results in amyloid accumula-
tion differs between PD and AD. Our study used the delayed
recall scores from verbal learning tests to define aMCI indi-
viduals. This definition may not adequately capture the
aMCI phenotype and is limited by the lack of common tests
between the two databases and likely influenced by the vary-
ing degree of vascular pathology as well as medication his-
tory of the individuals. One approach to circumvent the
differences in cognitive batteries would be to select similar
tests and z-scoring them using the control individuals within
each database. In summary, this work supports the hypothe-
sis that converging changes to default mode network re-
gions, especially the mesial temporal lobe and precuneus,
are shared in patients with AD and PD. While the pathologic
basis for changes to this network may differ, amnestic symp-
toms not only localize here but also are impacted by APOE-
€4 and CSF-amyloid levels in patients with AD. Patients
with aMCI have greater rates of hippocampal atrophy.
Future studies on mechanisms of network-level susceptibil-
ity despite diverse disease states may inform common path-
ways of degeneration.
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RESEARCH IN CONTEXT

1. Systematic review: This work was performed for the
Biomarkers Across Neurodegenerative Disease initia-
tive from the Alzheimer’s Association, Fox Foundation,
and Weston Brain Institute to identify overlapping
mechanisms in distinct neurodegenerative diseases.
Search terms include “default mode network,” “Alz-
heimer’s disease,” “Parkinson’s disease,” “cortical
thickness,” “functional MRI,” “aMCI,” etc.

2. Interpretation: We observed common regional
vulnerability in both amnestic Alzheimer’s disease
(AD) and Parkinson’s disease (PD) individuals. The
genetic risk factor for AD (APOE-e4), although
rare in PD, was associated with similar cortical thin-
ning in both diseases. This is the first study to assess
AD and PD individuals together.

3. Future directions: Functional magnetic resonance
imaging of the common regions will determine com-
mon and unique connectivity patterns in amnestic
AD and PD individuals. Further investigation is war-
ranted in PD &4 carriers to confirm our results due to
their low prevalence. This work could lay the ground-
work to identify and manage converging patholog-
ical mechanisms in disparate disorders.
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