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Abstract
Background: Antibody genes are diversified by somatic hypermutation (SHM), gene conversion and
class-switch recombination. All three processes are initiated by the activation-induced deaminase (AID).
According to a DNA deamination model of SHM, AID converts cytosine to uracil in DNA sequences. The
initial deamination of cytosine leads to mutation and recombination in pathways involving replication, DNA
mismatch repair and possibly base excision repair. The DNA sequence context of mutation hotspots at
G-C pairs during SHM is DGYW/WRCH (G-C is a hotspot position, R = A/G, Y = T/C, W = A/T, D = A/
G/T).

Results: To investigate the mechanisms of AID-induced mutagenesis in a model system, we studied the
genetic consequences of AID expression in yeast. We constructed a yeast vector with an artificially
synthesized human AID gene insert using codons common to highly expressed yeast genes. We found that
expression of the artificial hAIDSc gene was moderately mutagenic in a wild-type strain and highly
mutagenic in an ung1 uracil-DNA glycosylase-deficient strain. A majority of mutations were at G-C pairs.
In the ung1 strain, C-G to T-A transitions were found almost exclusively, while a mixture of transitions
with 12% transversions was characteristic in the wild-type strain. In the ung1 strain mutations that could
have originated from deamination of the transcribed stand were found more frequently. In the wild-type
strain, the strand bias was reversed. DGYW/WRCH motifs were preferential sites of mutations.

Conclusion: The results are consistent with the hypothesis that AID-mediated deamination of DNA is a
major cause of mutations at G-C base pairs in immunoglobulin genes during SHM. The sequence contexts
of mutations in yeast induced by AID and those of somatic mutations at G-C pairs in immunoglobulin genes
are significantly similar. This indicates that the intrinsic substrate specificity of AID itself is a primary
determinant of mutational hotspots at G-C base pairs during SHM.
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Background
The immune system uses several strategies to modify
genetic material to generate various types of high affinity
antibodies [1]. These strategies enable production of mul-
tiple antibody variants to a wide range of different anti-
gens [2]. Initially, antigen receptors are generated by a
site-specific recombination process called V(D)J recombi-
nation occurring in the bone marrow [3]. However, this is
not sufficient to assure an adequate immune response.
Mature B-lymphocytes migrate to the secondary lym-
phoid organs where they encounter antigens. Upon acti-
vation by antigens, mature B-lymphocytes begin to
proliferate and form germinal centers, where immu-
noglobulin genes undergo additional modifications: class
switch recombination (CSR), immunoglobulin gene con-
version (IGC) and somatic hypermutation (SHM) [4].
SHM, IGC and CSR, all require active transcription [5] and
generate diversity of antibodies, that is followed by selec-
tion leading to the production of high affinity antibodies
[6]. The frequency of mutations during this process is up
to six orders of magnitude higher than in other genes [6].
Most of the mutations are base pair substitutions, occur-
ring with a similar frequency at G-C and A-T base pairs.
Statistically preferred hotspots for mutations at G-C pairs
are RGYW/WRCY motifs (mutating G-C are underlined, R
stands for purine base, Y stands for pyrimidine base and
W stands for A or T) [7], or recently refined DGYW/WRCH
motifs (D stands for G, T or A) [8]. Hotspots of mutations
at A-T pairs are in WA /TW motifs (mutating A-T are
underlined) [9].

A major breakthrough in understanding the mechanisms
of CSR, IGC and SHM was the discovery that they all
depend on activation-induced cytidine deaminase, AID
[10-16]. Patients with defective AID have giant germinal
centers and elevated levels of only one type of low-affinity
antibodies, IgM. They suffer from recurrent bacterial infec-
tions in the respiratory tract [17] due to the lack of effi-
cient antibody responses that depend on several crucial
steps of B cell terminal differentiation including CSR and
SHM. SHM is targeted to specific DNA regions in special-
ized tissues. Defects in this targeting may result in
genome-wide mutagenesis and cancer. B-cell lymphomas
possess translocations that bring proto-oncogenes into
immunoglobulin loci (see [18]). Constitutive expression
of AID in mice leads to an increase of tumor incidence
[19].

When discovered, AID was thought to act in mutagenesis
and recombination in immunity by RNA editing
[10,11,20]. It was proposed that AID edits pre-mRNA
encoding a nicking endonuclease that initiates SHM, IGC
and CSR [5]. This model is called "RNA-editing" [20]. The
AID is homologous to the known RNA-editing enzyme
APOBEC1, which deaminates cytosine at position 6666 in

ApoB100 mRNA and seemingly has no role in immunity.
AID possesses the ability to deaminate cytidine, and shut-
tles between the nucleus and cytoplasm similar to
APOBEC1 [4,5,21,22]. A different hypothesis, called
"DNA deamination", suggests AID deaminates cytosine
directly and that uracil generated in this reaction triggers
downstream reactions leading to genetic instability [23-
26] (see [27-33] for reviews).

Experimental evidence is accumulating in favor of the
DNA deamination hypothesis of AID function [29,31-
34]. AID is able to induce SHM and CSR in hybridomas
and in fibroblasts, suggesting that it is the only B-cell spe-
cific component required for induction of both genetic
events [13,14,35]. AID can also induce mutations when
expressed in E. coli [24]. These mutations occur in the
same DNA sequence motifs as mutations during SHM
[8,36]. Therefore, eukaryotic cell-specific components are
not necessary for mutagenesis. This mutator effect is
enhanced in uracil-DNA glycosylase-deficient ung1
strains, which are unable to repair uracil in DNA [37], sug-
gesting that the deamination of cytosine to uracil in DNA
is the cause of these mutations [24]. It was found that the
expression of two homologous deaminases, APOBEC1
and APOBEC3G, is highly mutagenic in bacteria [38].
Almost all mutations arising upon expression of these
deaminases were G-A to A-T transitions, consistent with
the DNA deamination model. AID deaminates single-
stranded and supercoiled double-stranded DNA [39-44]
(see also review [31]). AID exhibits clear DNA sequence
context specificity, which resembles the specificity of G-C
to the A-T component of SHM mutagenesis (GYW/WRC
motifs, see[8,40,44-46]). The specificity of induced muta-
tions in bacteria is consistent with predominant deamina-
tion of the non-transcribed DNA strand [36,45], which is
thought to be single-stranded during transcription
(reviewed in [31]). During SHM, however, both DNA
strands are targeted for mutagenesis [7], [47]. This dis-
crepancy between the parameters of SHM in vertebrates
and deaminase-induced mutagenesis in prokaryotes still
needs to be resolved.

To characterize the initial steps of AID-induced muta-
tions, we examined the specificity of the mutator effect of
human AID expressed in yeast. We constructed a yeast vec-
tor with an artificially synthesized human AID gene insert
using codons common to highly expressed yeast genes.
We found that expression of the artificial hAIDSc gene was
moderately mutagenic in the wild-type strain and highly
mutagenic in the ung1 strain, similar to expression of
unmodified human AID [48]. This is consistent with the
uracil DNA deamination model of mutagenesis. We iden-
tified a spectrum of mutations in the CAN1 gene occurring
in wild-type and ung1 strains expressing hAIDSc. We com-
pared the sequence context of AID-induced mutations in
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yeast at G-C bases with somatic mutations in immu-
noglobulin genes. These comparisons revealed signifi-
cantly similar properties and further support the
hypothesis that AID is a primary cause of mutations at G-
C pairs in immunoglobulin genes during SHM.

Results
hAIDSc expression and its mutator effect
Codon usage is different in yeast and humans. To improve
our system of expression of human AID over work pub-
lished earlier [48], we constructed a new yeast expression
vector with the human AID gene recoded to use the same
codons utilized by highly expressed yeast genes and with
a galactose-inducible promoter. Appropriate transform-
ants were grown in galactose-containing medium and the
AID protein was readily detected in yeast extracts by West-
ern blot (Fig. 1, lane 3).

The expression of the hAIDSc did not result in any pro-
found growth inhibition; the cell titer usually reached 5 ×
107, which is typical for galactose-containing minimal
medium (data not shown). Mutation rates were analyzed
by fluctuation analysis (Table 1). Our strain permits the
detection of various classes of genetic events (see Materi-
als and Methods, and also [48,49]). Using this strain we
can obtain the express information about the specificity of
the mutagenic effect.

The expression of the hAIDSc did not induce frameshift
mutations to His+ (last column of Table 1). In Ung1+

strains, hAIDSc expression leads to a 7.6 fold increase in
Canr forward mutations and a 3 – 6 fold increase in non-
sense mutation reversion (Ade+, Trp+). The ung1 mutation
per se led to a 5 – 10 fold increase of mutation rates as
shown in rows one and four. When the hAIDSc was
expressed in the ung1 strain, the mutator effect was multi-
plicative for Canr forward mutations (82 fold increase
over the wild-type strain) and synergistic for nonsense
mutation reversion (a 404 – 1290 fold increase over wild-
type). TAG and TAA nonsense mutations cannot revert by
true back-mutations via G-C to A-T transitions. We have
previously shown by genetic analysis and sequencing of
revertants that reversion is caused by dominant suppres-
sors and most likely represent mutations in the anticodon
of tRNA genes, which could be G-C to A-Ts [48]. The high
response of ade5-1 and trp1-289 markers to hAIDSc may
reflect the role of transcription in AID-induced hypermu-
tation in yeast, since tRNA genes are transcribed differ-
ently from metabolic genes. The ura3-29 allele reversion
was stimulated only weakly. It is known, that the allele
reverts via various changes at G-C pair in "TCT" DNA
sequence context [50], which is different from hotspots of
AID deaminations. The results suggest that uracil DNA
deamination is the primary source of mutation induced
by the hAIDSc in yeast and are consistent with our previ-
ous studies [48]. Optimized codon usage did not lead to
increased mutagenesis under conditions of constant
induction of galactose promoter since the mutagenic
potential of expression of the hAIDSc was comparable
with expression of native human AID [48].

Western blot analysis of hAIDSc expression in yeastFigure 1
Western blot analysis of hAIDSc expression in yeast. 
Yeast strain CG379-3-29RL transformed by expression vec-
tor pESC-LEU2 or pESC-LEU-hAIDSc were grown to loga-
rithmic phase in a complete minimal medium without leucine. 
Then cells were washed and transferred into similar medium 
but containing galactose instead of glucose. Yeast protein 
extracts were prepared from approximately 200 mg of cells 
by the glass beads cell disruption method as described in 
[85]. Proteins were separated using 4–12% gradient PAA 
NuPage gel (Invitrogen). Transfer to PVDF membrane and 
reaction with primary antibodies (mouse anti c-myc) and 
then secondary antibodies (goat antimouse) was accom-
plished as suggested by the vendor (Western Breeze kit, Inv-
itrogen). Lane 1 – Molecular weight markers (Benchmark, 
His-Tagged) were detected with antiHisx6 antibodies. Lane 2 
– extract of yeast strain containing vector pESC-LEU. Lane 3 
– extract of yeast strain containing pESC-LEU-hAIDSc.
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Mutagenic specificity of hAIDSc
We studied the specificity of mutations in the CAN1 gene
induced by the expression of the hAIDSc. Independent
Canr mutants were obtained under conditions of hAIDSc
expression in the wild-type and the ung1 strain. Results of
sequencing of mutants are summarized in the Tables 2, 3
and [see Additional file 1]. Most mutations (64 out of 70
in the wild-type and 62 out of 66 in the ung1 strain) were
at G-C base pairs. Transversions comprised 12% of the
mutations at the G-C pairs in wild-type and 1.6% in the
ung1 strain (Table 4). The decreased proportion of trans-
versions in the ung1 strain is consistent with the data
obtained earlier in chicken and mice [26,51]. We com-
pared these spectra with the spectra of spontaneous muta-
tions in CAN1 in the wild-type strains obtained by Rattrey
and coauthors [52], Table 5. The major property of these
mutation spectra was a high frequency of frameshift
mutations (>20%) [52]. Another feature of the spontane-
ous mutations is a high frequency of mutations in A-T
bases (>50%) and a higher frequency of transversions
compared to transitions (>50%) (see also the breakdown
of the types of spontaneous mutations obtained previ-

Table 1: Mutagenic effect of the hAIDSc expression in yeast.

Strain Plasmid Mutation rates*

Canr × 10-7 Ade+ × 10-8 Trp+ × 10-8 Ura+ × 10-8 His+ × 10-8

wild-type vector 2.5 24 4.1 4.0 2.4
1.2–6.5 21–34 1.3–14 2.2–6.6 1.9–2.9

hAIDSc 19 72 24 4.0 2.3
14–25 60–124 21–38 2.8–7.8 1.1–4.2

ung1::hygB vector 13 210 134 23 3.0
10–31 190–290 110–170 20–35 1.9–4.5

hAIDSc 205 9700 5300 52 4.0
170–220 7500–12600 4400–6600 43–77 2–-7.1

*Median mutation rates determined in 9–18 cultures. 95% confidence limits are shown below.

Table 2: DNA sequences changes in can1 mutants induced by expression of hAIDSc.

Total Observed sequence change

Strain Sequences with mutations Single base substitution Tandem double 
substitution

Frameshift

wild-type 67 68 1 2
ung1 59 64 1 0

Table 3: Types of base of substitutions found in can1 mutants 
induced by expression of hAIDSc.

Substitution wild-type ung1

G→A 19 37
C→T 37 24
G→T 2 0
C→A 4 1
G→C 0 0
C→G 2 0
A→G 2 2
T→C 1 1
A→C 0 0
T→G 1 1
A→T 0 0
T→A 2 0
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ously by other groups [53-55]). These features of CAN1
spontaneous mutations are similar to the properties of
mutations observed in the yeast SUP4-o gene [56]. Thus,
the spectra of mutations induced by the expression of the
hAIDSc are different from spontaneous mutations in yeast
genes. This result indicates that spontaneous mutations
constitute a minor fraction (if any) of the mutations
induced by the expression of the hAIDSc.

G-C mutations may arise by putative deamination on the
transcribed or non-transcribed DNA strand. Mutations in
the ung1 strain, representing deamination proclivity with-
out of uracil repair, occur at a higher rate on the
transcribed strand (Table 4). This is different from the
effect of AID expression observed in the most E. coli selec-
tive systems [31]. In the wild-type strain, there is some
prevalence of mutations due to putative non-transcribed

strand deaminations (Table 4) suggesting the possibility
that in our system the repair of uracil in the transcribed
DNA strand is more efficient than in non-transcribed
strand. Clearly, hAIDSc is targeted to both DNA strands in
yeast, similar to somatic mutations in G-C bases during
SHM [6,7,9,57-59]. It is important to mention that, under
normal circumstances, there are no differences in DNA
strand preferences between mutation spectra from the
wild-type and ung1 strains [60].

Next, we examined whether the DNA context of muta-
tions induced by AID in yeast is similar to SHM mutations
in mammals or in E. coli expressing hAID (Table 5).
DGYW and GYW motifs [7,8,40] were under-represented
in mutations occurring spontaneous in wild-type or ung1
strains (Table 5, row 1–2) and were 2 – 5 fold over-repre-
sented in mutations induced by AID in yeast (Table 5,

Table 4: Differences in occurrence of transitions/transversion and mutations in two DNA strands of the CAN1 gene in wild-type and 
ung1 strains.

Spectra compared wild-type ung1 Pfisher
Variables

Transitions at G-C bases 56 61
Transversions at G-C bases 8 1 0.032
Transcribed strand (G→A) 19 37
Non-transcribed strand (C→T) 37 24 0.005

Pfisher is the probability that a 2 × 2 contingency table is homogeneous as calculated using Fisher exact test.

Table 5: Mutations in different mutable motifs in different spectra.

Spectrum Sequence motif (mutable positions are underlined) Reference

DGYW / WRCH NGYW / WRCN

Spontaneous can1 mutations in the 
wild-type yeast

0.5 / 0.5 0.7/0.5 [52]

Spontaneous SUP4-o mutations in 
ung1 yeast strain

0.9/1.1 0.9/1.1 [60]

hAIDSc in the CAN1 in wild-type 
yeast

1.2 / 5.2 1.5 / 4.8 This work

hAIDSc in the CAN1 in ung1 yeast 2.0 / 1.8 3.2 / 1.6 This work
SHM in VκOx1 in mouse 3.5 / 2.5 3.4 / 2.5 [47]

SHM in JH4 region in wild-type 
mouse

4.4 / 3.2 4.4 / 3.2 [26]

SHM in JH4 region in Ung1-/- mouse 4.5 / 3.6 4.5 / 3.6 [26]
SHM in JH4 region in Ung1-/- Msh2-/

- mouse
3.3 / 5.0 3.2 / 5.0 [67]

AID in GFP in human fibroblasts 7.6 / 4.8 7.1 / 4.1 [13]
AID in sacB in E.coli 2.3 / 3.7 1.6 / 4.6 [36]
AID in lacZ in vitro -- / 2.1 -- / 2.2 [40]

The values listed represent the fold increase in occurrence of mutations at mutable motifs above the average occurrence of mutations at other G-
C sites. Number of mutations in mutable motifs was calculated for the underlined bases. Bold italicized values represent a statistically significant 
correlation (P ≤ 0.05) between a mutable motif and the distribution of mutations, as revealed by using a Monte Carlo procedure [7].
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rows 3–4). Lists of mutation hotspots are shown in Table
6. Distributions of AID-induced mutation hotspots in the
wild-type and ung1 strains are significantly different
(Table 6, P = 0.003). The specificity of mutations in yeast
correlates better with the hotspot motifs for SHM in mice
than does the specificity of AID induced mutations in E.
coli. Indeed, out of four comparisons, the indices of pref-
erence for mutation hotspot motifs in yeast were higher
than in E. coli (compare rows 3–4 with rows 5–8; rows
10–11 with rows 5–8, Table 5). Some properties of muta-
tions in yeast resemble the in vitro AID induced mutation
spectrum [40]. For example, one CGYW/WRCG sequence
which is not mutable in SHM [8] had a high mutability in
the ung1 mutation spectrum (Table 6). It has been sug-
gested that a mammalian DNA repair enzyme, perhaps
the uracil-DNA glycosylase, efficiently repairs the lesion of
CpG dinucleotides and thus eliminates mutations from
CGYW/WRCG motifs in vivo [8]. We have found 5 GGYW
and 3 TGYW hotspots (Table 6). Interestingly, no
hotspots were found in AGYW motifs (Table 6), which are
the most frequent hotspot motifs in mammalian immu-
noglobulin genes [47]. The lack of mutation hotspots at
AGYW could not be attributed to its lesser prevalence
because the number of AGYW, GGYW, and TGYW motifs
in CAN1 was similar (results not shown). However, a gen-
eral pattern of mutations in yeast is similar to the targeting
of somatic mutation in DGYW/WRCH mutable motifs,
which are highly specific for SHM in mammals. In con-
trol, no significant targeting of mutations to DGYW/
WRCH mutable motifs was found for spontaneous muta-
tions in wild type or ung1 yeast (PW≤Wrandom > 0.05, Table
5, rows 1–2).

We did not find a substantial number of A-T mutations,
which typically comprise one-half of all SHM [47,58,61].
This result corresponds with earlier published results on
the expression of AID in E. coli [24,36], in yeast [48], in
murine fibroblasts [13], and in human hybridomas [35].
Apparently, additional components are required to model
the full spectrum of SHM under conditions of AID expres-
sion in heterologous systems or in non-B cell tissues.

Discussion
Mutator efficiency and specificity of expression of 
hAIDSc
Yeast is a well-studied model eukaryotic organism used
for various genetic studies. Yeast was used in this study to
characterize the mutator effects of ectopic expression of
human AID. The CAN1 reporter gene has been chosen
because of numerous mutational studies [52,54] and a
well-characterized transcription pattern [62-64]. The
results are different from studies of AID effects in prokary-
otic models and in vitro experiments. We observed muta-
tions arising due to deamination occurring in both DNA
strands. In E.coli, transcription enhances deamination of
the non-transcribed DNA strand, which is exposed as sin-
gle-stranded DNA during the elongation reaction, but not
mutation of the transcribed DNA strand, which is likely to
be protected by E. coli RNA polymerase [42,43,65]. The
observed DNA strand targeting of mutations in ung1 yeast
closely resembles targeting of somatic mutations in verte-
brate immunoglobulin genes (Table 5). Interestingly,
there was a significant strand bias of mutations in wild-
type yeast toward the non-transcribed strand (Tables 4
and 5). A more efficient repair of the transcribed DNA
strand is one possible explanation of this asymmetry.
Preferential nucleotide excision repair of the transcribed

Table 6: Base substitution hotspots and mutable motifs.

Number of substitutions

Position Sequence Wild-type ung1 NGYW/WRCN variant (N 
= A/T/C/G)

238 GTA CAGA 4 2 TGYW
268 AAG CAAA 7 2 TGYW
299 GTG G TAC 1 4 GGYW
424 GGT G AAA 0 3 -
612 ATG G AAT 0 3 -
896 AAG G TAC 3 1 GGYW
980 TCC G TAT 2 6 CGYW
1166 CTG CCGC 4 0 GGYW
1392 ATG GTTA 3 2 GGYW
1426 ATG CAAG 1 4 TGYW
1486 ATG CCCG 3 0 GGYW

The CLUSTERM program [97] was used for hotspot analysis. The hotspot threshold value is three mutations for both spectra. Hotspot motifs are 
shown in Bold and enlarged font. The hotspot base is underlined.
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strand is a well-known phenomenon [66]. The possibility
of transcription-coupled repair of uracil bases in DNA has
not yet been thoroughly studied.

Interestingly, a strand bias toward the non-transcribed
DNA strand was found in Ung-/- Msh2-/- mouse (Table 5,
row 8) [67]. The difference between the number of muta-
tions in DGYW/WRCH sites versus all other G:C sites in
wild-type and Ung-/-Msh2-/- strains was statistically signifi-
cant (Fisher exact test, P = 0.04). This may indicate that
AID has a preference to the non-transcribed DNA strand
as suggested earlier (see review [32]). An excessive DNA
deamination of the non-transcribed DNA strand may be
compensated by more efficient repair of this strand during
the SHM phase 2 [67] causing approximately equal fre-
quencies of mutations in both DNA strands (Table 5).
More efficient repair of the non-transcribed strand is con-
sistent with the idea of preferential targeting of the DNA
polymerase η to the non-transcribed strand during SHM
[9,25]. In general, the strand specificity of SHM in Ung-/-

Msh2-/- mouse is similar to AID-induced mutations in
wild-type strains of yeast and E. coli (Table 5). Substantial
differences between the observed targeting of AID to the
mutable motifs in Ung-/- Msh2-/- and wild-type mouse
(Table 5) are not consistent with a hypothesis that muta-
genesis during the A:T-focused phase is nearly exclusively
targeted to A:T bases [67,68]. It is possible that mutagen-
esis during this phase is targeted to both A:T and G:C
bases with a preference to A:T bases and no preference to
DGYW/WRCH mutable motifs, this is consistent with the
observed mutational and context specificity of the DNA
polymerase η in vitro [9,25,69], DGYW/WRCH-independ-
ent mutagenesis of G:C bases will cause erosion of a high
initial DGYW/WRCH motif specificity observed in Ung-/-

Msh2-/- mouse (Table 5). There are also differences
between strand specificity of Ung-/-Msh2-/- mouse and
AID-induced mutations in human fibroblasts (Table 5),
this might be explained by some differences in AID target-
ing or transcription-associated repair of uracil between B-
lymphocytes and fibroblasts. All these results suggested
that a weak strand bias is an intrinsic property of SHM.

A significant difference between in vitro systems and our
experiments was observed. AID catalyses multiple deami-
nations in vitro [40]. We detected 11 clones with multiple
mutations (10 clones with two mutations and one clone
with three mutations) and checked the number of muta-
tions in the first and second halves of CAN1. If multiple
mutations emerge as a result of independent events, half
of the clones are expected to have mutations in different
halves of CAN1. In six out of 11 clones mutations were
located in different parts of CAN1, thus independent
mutation events is the most likely explanation. In general,
the specificity and distribution of mutations in yeast did
not exhibit a pattern of multiple mutations that would

have been consistent with postulated processive action of
AID [40]. These results are consistent with a high fre-
quency of rearranged immunoglobulin V genes with one
somatic mutation (for example, [70]). Apparent non-
processive action of AID in vivo may be explained by a
competition for binding to the CAN1 DNA sequence
between AID and other proteins participating in transcrip-
tion, replication and/or repair. For example, it is known
that replication factor A stimulates AID [71], while the
specificity of AID in vitro was studied on DNA without any
additional factors. Clearly, this requires additional
investigation.

Mechanisms of mutagenesis by AID
The mechanism of SHM initiated by AID may be as fol-
lows (see [23,24,27,28,67,72]). Deamination of cytosine
in DNA leads to the formation of a mismatched U-G base
pair. If left unrepaired, further rounds of replication of
uracil-containing DNA will generate only transition type
mutations, G-C to AT. Uracil removal by uracil-DNA glyc-
osylase leads to an apyrimidinic (AP) site. The AP site may
be bypassed by a specialized DNA polymerase and, being
a non-coding lesion, could lead to a transition or transver-
sion mutation. The AP site may also be incised by AP-
endonuclease and then repaired by the short patch base
excision repair (BER) with involvement of error prone
DNA polymerases with generation of transitions and
transversions (e.g., see [72]). This mechanism generates
mutations at G-C pairs. In order to explain the high fre-
quency of mutations during the short patch BER reaction,
it should be postulated that the relatively accurate DNA
polymerase β is substituted in B-cells by an error-prone
polymerase. The candidate is DNA polymerase ι , which is
expressed in Burkitt's lymphoma cell line BL-2 [73] and
whose inactivation suppresses SHM in this line [74].
However, 129-derived strains of mice, lacking active
polymerase η, are fully proficient in SHM [75]. The reason
for this discrepancy in not established yet.

Another type of mutation, which comprise about 50% of
all mutations during SHM, is a change at the A-T base
pairs [47,58,61]. The explanation of the mutation origins
in A-T base pair is based on several observations. It is
known that mutations at A-T base pairs depend on mis-
match repair components MSH2, MSH6, EXO1 and error-
prone DNA polymerase η [9,29,67,68,70,72]. They are
thought to be the result of error-prone bypass or repair of
abasic site by error-prone polymerases, in particular, DNA
polymerases η, ι  and ζ [9,25,70,73,74,76,77] (reviewed in
[28,72,78,79]). It is possible that they are generated in the
following way. Initiation of mismatch repair of a G-U base
pair leads to a gap. Gaps may also be generated by long
patch BER. Repair of gaps with the involvement of error-
prone DNA polymerases may lead to mutations distal to
initial G-U pair [25,68]. Again, it should be postulated
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that gap repair is unusual in B-cell being inaccurate, since
normally it is performed by highly accurate replicative
DNA polymerases. The final feature of the current model
of AID-initiated genetic modifications is that nicks and
gaps, arising during DNA repair, stimulate recombination
[16,48]. SHM in the Ung1-/- mice is greatly biased in
favour of transitions, since the pathway via apyrimidinic
sites is blocked [26].

Mutations at A-T base pairs are absent in Msh2-/-Ung1-/-

mice [67]. Is it important to notice that Ung1 is not a
major enzyme involved in the overall repair of G:U mis-
matches in mice, as suggested by small mutator pheno-
types in the Ung1-/- mice and the existence of the robust
Smug1 glycosylase [80]. In B-cells, however, the Ung1
alone appears to be crucial for all genetic diversification
processes [67,81]. Mutations at A-T base are not observed
when AID is expressed in prokaryotes or in yeast
[31,36,48], and this work. Therefore, current model sys-
tems only partially reconstruct SHM. Delicate balance of
mismatch repair and activity of error-prone polymerases,
specific for B cells, might be required for the full spectrum
of SHM mutations [68]. Changes in the chromatin struc-
ture are necessary for SHM [82] and this additional level
of regulation should be taken into account when consid-
ering different SHM models.

Conclusion
In the present study, we have shown that expression of
human AID is mutagenic in yeast and the mutagenic effect
is one-two orders of magnitude higher in the ung1 strain.
This observation suggests that the cause of the mutator
effects is AID-driven DNA deamination. DNA sequence
contexts of mutation hotspots coincide with DGYW/
WRCH mutable motifs of somatic hypermutation, which
is consistent with the DNA deamination model of SHM,
suggesting that the intrinsic substrate specificity of AID
itself is a primary determinant of mutational hotspots at
G-C base pairs during SHM.

Methods
Construction of the expression vector
A new hAID gene was constructed using codons character-
istic to highly expressed yeast genes. The DNA Builder pro-
gram http://cbi.swmed.edu/computation/DNABuilder/
dnabuilder.html and yeast codon usage data [83,84] was
used to construct a DNA sequence encoding human AID,
with the preferable yeast codons. The DNA corresponding
to this sequence and encoding for the c-myc Tag at the C-
terminus (hAIDSc) was custom-synthesized and cloned
into BamHI-SalI cut pESC-LEU (Stratagene) expression
vector by the McLab Company (San Francisco). In this
construct, the deaminase genes were placed downstream
of the strong, galactose-inducible GAL1 promoter. DNA
sequencing analysis confirmed the complete sequence of

the insert. Protein production was demonstrated by West-
ern blot as described earlier [85], with one modification –
the Western Breeze Kit (Invitrogen) was used for detection
of the protein in yeast extracts.

Yeast strains
For our experiments with the yeast vector expressing the
deaminase genes we used yeast strain CG379-3-29RL
(MAT α ura3∆leu2-3,112 trp1-289 bik1::ura3-29RL his7-2
ade5-1 lys2-Tn5-13) [48,86,87]. This strain allows con-
comitant measurement of mutation rates at several loci.
These include a) the forward mutation rate at the CAN1
locus, where mutations reflect a variety of substitution,
frameshift and more complex events; b) the rate of rever-
sion of nonsense mutations: the trp1-289 (TAG [88]) and
ade5-1 (TAA, [89]), where mutations reflect base substitu-
tions in the nonsense codon as well as in suppressor genes
encoding tRNAs; c) reversion of the ura3-29 missense
mutation TCT which occurs via C-G to T-A transitions, C-
G to C-A and C-G to G-C transversions [50]; d) reversion
of the his7-2 mutant allele which occurs mainly via + 1
frameshifts in a homopolymeric AT run [49,90].

Measurement of mutations rates
Mutation rates were analysed by fluctuation analysis
[49,90]. Independent transformants of the wild-type and
ung1 derivatives of our basic strain were grown in a com-
plete minimal medium lacking leucine to select for the
plasmid, and containing galactose instead of glucose, to
induce the hAIDSc expression.

Isolation and sequencing of can1 mutants
Yeast transformants patches originating from single colo-
nies (64 per one plate) were replica-plated onto galactose-
containing medium without leucine. After two days, they
were replica-plated onto canavanine-containing medium
to select for can1 mutants. After five days of incubation,
one Canr colony was picked from each streak and streaked
onto canavanine-containing medium. Chromosomal
DNA from cells originating from one colony of these can1
mutants was isolated using a Yeast DNA Extraction Kit
(Epicentre). Subsequent PCR amplification and sequenc-
ing was performed as described earlier [91].

In vivo and in vitro mutation spectra
Five in vivo and one in vitro mutation spectra, which have
been described before [13,26,36,40,47] were used in this
study. We consider that these large mutation spectra
reflect intrinsic bias in mutation process. The compilation
of somatic mutations in the VkOx transgene includes data
derived from transgenic light chains with multiple copies
of the transgene and from cells selected in gut Peyer's
Patches (PP). The multiple copies are targeted in the same
cell even when the light chain they encode is not part of
the antigen binding antibody molecule. This implies that
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the majority of the mutations accumulated are unselected.
In the case of PP derived cells, the selective pressure is
multiple, therefore again, the common denominator of
the biases observed would reflect the intrinsic biases
[92,93].

Statistical analyses
The Fisher exact test was used to compare frequencies of
transitions and transversions. This test was also used to
compare the number of mutations in DGYW/WRCH sites
versus all other G-C sites in wild-type and Ung-/-Msh2-/-

strains of mouse. A Monte Carlo modification of the Pear-
son χ2 test of spectra homogeneity [94] was used to com-
pare mutation distributions along hotspot positions of
the CAN1 sequence. Calculations were done using the
COLLAPSE program ftp://ftp.bionet.nsc.ru/pub/biology/
dbms/[95]. Mutations in the CAN1 gene were detected
using the phenotypic assay described above, however the
full list of detectable positions in this gene is not known.
We predicted these positions using the SIFT program with
default parameters [96]. Mutation hotspots were defined
using a threshold for the number of mutations at a site.
The threshold is established by analyzing the frequency
distribution derived from a mutation spectrum using the
CLUSTERM program http://www.itb.cnr.it/webmutation/
[97]. Briefly, this program decomposes a mutation spec-
trum into several homogeneous classes of sites, with each
class approximated by a binomial distribution. Variations
in mutation frequencies among sites of the same class are
random by definition (mutation probability is the same
for all sites within a class), but differences between classes
are statistically significant. Each site has a probability P(C)
to be assigned to class C. A class with the highest mutation
frequency is called hotspot class. Sites with of P(Chotspot) ≥
0.95 of being assigned to the hotspot class Chotspot are
defined as hotspot sites. This approach ensures that the
assignment is statistically significant and robust (see
Rogozin et al. [98] for detailed discussion of this approach
and problems associated with its application).

Nucleotide sequence features can be correlated with a
mutation spectrum and the correlation can be tested for
statistical significance. The significance of correlations
between the distribution of mutable motifs and muta-
tions along a target sequence was measured by a Monte
Carlo procedure (the CONSEN program) [7]. This
approach takes into account frequencies of substitutions
for each nucleotide, the possibility of multiple mutations
in a site, and context of the mutating sites. The Monte
Carlo simulation was run with weighted sites, with the
weight of a site defined as:

where Mj is the number of mutations in site j. Wj weights
were summed for all sites in the analyzed sequence result-
ing in the total weight W. A distribution of total weights
Wrandom was calculated for 10,000 target sequences with
randomly shuffled mutation spectra. Each of the resulting
random mutation spectra contained the same number of
mutations as the observed spectrum with the same distri-
bution of mutations over randomly chosen sites. The dis-
tribution of Wrandom was used to calculate probability
PW≤Wrandom. This probability is equal to the fraction of ran-
dom spectra in which Wrandom is the same or greater than
W. Small probability values (PW≤Wrandom ≤ 0.05) indicate a
significant correlation between a mutable motif and the
mutation frequency [7,99].
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