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Peroxiredoxins (Prxs) are antioxidant enzymes that protect cells from oxidative stress by reducing intracellular accumulation of reactive 
oxygen species (ROS). In mammalian cells, the six Prx isoforms are ubiquitously expressed in diverse intracellular locations. They are involved 
in the regulation of various physiological processes including cell growth, differentiation, apoptosis, immune response and metabolism  
as well as intracellular ROS homeostasis. Although there are increasing evidences that Prxs are involved in carcinogenesis of many cancers, 
their role in cancer is controversial. The ROS levels in cancer cells are increased compared to normal cells, thus promoting cancer 
development. Nevertheless, for various cancer types, an overexpression of Prxs has been found to be associated with poor patient prognosis, 
and an increasing number of studies have reported that tumorigenesis is either facilitated or inhibited by regulation of cancer-associated 
signaling pathways. This review summarizes Prx isoforms and their basic functions, the relationship between the expression level and 
the physiological role of Prxs in cancer cells, and their roles in regulating cancer-associated signaling pathways.
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INTRODUCTION

Cancer is a heterogeneous disease caused by multiple and 

complex risk factors, and it poses a substantial threat to the 

quality of human life [1]. An increase in reactive oxygen species 

(ROS) from endogenous or exogenous sources induces 

intracellular oxidative stress, causing various diseases. It has also 

been increasingly reported to promote tumorigenesis, including 

the proliferation, invasion, and metastasis of cancer cells [2,3]. 

Healthy cells have diverse anti-oxidative defense mechanisms to 

maintain ROS homeostasis, and enzymatic and non-enzymatic 

antioxidants provide the most effective system for cellular 

protection against ROS-driven oxidative stress by removing 

intracellular ROS [4,5].

Peroxiredoxins (Prxs) represent one of the diverse enzymatic 

antioxidant systems that are distributed across various organelles, 

and different subtypes of Prxs are stratified according to the 

number and the position of Cys residues [6,7]. Prxs are known to 

either facilitate or inhibit tumorigenesis, depending on the 

cancer type, by regulating the ROS level [8]. Furthermore, an 

increasing number of studies have reported that, in addition to 

the peroxidase function that removes hydrogen peroxide (H2O2), 

Prxs regulate cancer signaling pathways in a redox-dependent or 

-independent manner through interaction with other signaling 

proteins [9-12]. This review focuses on the physiological roles of 

Prx isoforms in cancer and the mechanism behind their ability to 

regulate signaling pathways by interacting with target proteins. 

Lastly, this review discusses the potential of Prxs as novel 

therapeutic targets.
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Figure 1. Catalytic cycle of peroxir-
edoxin (Prx) isoforms. (A) Typical 2-Cys 
Prxs (Prx1-4) first mediate the oxida-
tion of CP residues to sulfenic acid by 
H2O2, followed by the formation of 
an intermolecular disulfide bond 
with the CR of another Prx subunit. 
Lastly, the oxidized Prx undergoes re-
duction by the thioredoxin (Trx)/Trx 
reductase (TrxR)/NADPH system. (B) 
Atypical 2-Cys Prx (Prx5) is similar to 
typical 2-Cys Prxs, except that they 
mediate the formation of an intra-
molecular disulfide bond with the CR

of the same Prx subunit. (C) 1-Cys 
Prx (Prx6) has only one conserved 
Cys residue so that they are recycled 
in sulfenic acid without forming a di-
sulfide bond, which is reduced by 
glutathione (GSH) instead of Trx.

PEROXIREDOXIN ISOFORMS IN 
MAMMALIAN CELLS

Prx is a family of antioxidant enzymes that removes H2O2 using 

the thioredoxin (Trx)/Trx reductase/NADPH system as a reducing 

equivalent [13]. The six isoforms of mammalian Prxs (Prx1-6) 

possess one or two conserved Cys residues (peroxidatic Cys; CP, 

resolving Cys; CR). Prx isoforms are categorized into three 

different forms depending on the number and position of the 

conserved Cys residue and on the type of the disulfide bond 

created during the catalytic cycle. These include typical 2-Cys Prx, 

atypical 2-Cys Prx, and 1-Cys Prx that are represented by Prx1-4, 

Prx5, and Prx6, respectively (Fig. 1) [14].

Typical 2-Cys Prxs form a sulfenic acid (CP-SOH) intermediate 

upon the oxidation of CP-SH by H2O2, which creates an 

intermolecular disulfide bond with the CR of another Prx subunit 

in the vicinity. Prx is subsequently reactivated as the disulfide 

bond is reduced from reducing equivalents [15]. Prx1-4 belong to 

the typical 2-Cys Prxs class. Prx1 and Prx2 reside mainly in the 

cytosol in abundance, but they are also found in the nucleus [16]. 

Prx3 has a mitochondrial leader sequence (MLS) at the N-terminal, 

directing its localization to the mitochondria [17]. Mitochondria 

is the major source of ROS, and Prx3 plays a key role in regulating 

mitochondrial redox homoeostasis [18,19]. Prx4 is found in the 

endoplasmic reticulum and the extracellular space [20,21]. 

Atypical 2-Cys Prx uses the same catalytic mechanism as typical 

2-Cys Prxs to remove H2O2, with the only difference being the 

creation of an intramolecular disulfide bond between CP and CR 

within a single Prx subunit [22]. Prx5 belongs to the class of 

atypical 2-Cys Prx. it has a MLS and is largely located in the 

mitochondria as well as prx3, although it is also found in 

peroxisomes and the cytosol [17]. Lastly, Prx6 belongs to the 

1-Cys Prx class. It is characterized by the lack of CR, which is 

present in other members of the Prx family, and it is expressed in 

the cytosol [23].

THE PHYSIOLOGICAL ROLE OF 
PEROXIREDOXINS IN CANCER SIGNALING

The major enzymatic function of Prxs is to regulate cellular 

redox signaling as peroxidases, but they also function as 

molecular chaperones upon H2O2 concentration-dependent 

structural changes [24]. Furthermore, in many cancer types, 

including lung, breast, prostate, and gastric cancers, Prx 

expression has been known to be high and associated with poor 

patient prognosis [25-28]. In cancer signaling pathways, Prx has 

been increasingly reported to either facilitate or inhibit 

tumorigenesis through its interaction with other signaling 

proteins in a redox-dependent or redox-independent manner 

(Table 1) [16,26,28-38]. Among the Prx isoforms, Prx1 and Prx2 are 

localized abundantly in the nucleus and the cytosol, which has 

allowed numerous studies to focus on their expression and their 

interaction with signaling target proteins in cancer [39,40]. 

Nonetheless, the relatively low expression of Prx3-6 in cancer and 

their restricted localization have resulted in a comparatively 

small number of studies related to cancer.
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Table 1. Expression of Prx isoforms in cancer 

Class Isoform Expression Cancer type Ref. No.

Typical 2-Cys Prx1 Up Lung [29,30]
Up/down Thyroid [31]
Up Pancreas [32]
Up Bladder [33]
Up Breast [26]
Up Prostate [34]

Prx2 Up Lung [29]
Up Ovary [35]

Prx3 Up Breast [26,36]
Up Cervix [37]
Up Prostate [38]

Prx4 Up Lung [29]
Up Breast [26]
Up Prostate [38]

Atypical 2-Cys Prx5 Up Breast [26]
Up Stomach [28]

1-Cys Prx6 Up Lung [29]
Up Bladder [33]
Up Ovary [35]

Prx, peroxiredoxin.

1. Prx1

Smoking, one of the multiple causes of malignant lung cancer, 

results in 80% to 90% of lung cancer deaths [41]. Numerous 

therapies, including radiation therapy (radiotherapy), have been 

developed and used to treat lung cancer and many other types of 

malignancies [42]. Radiation therapy increases the level of ROS to 

facilitate apoptosis in cancer cells [43,44]. Prx1 is highly 

expressed in several human cancers, including lung cancer. Prx1 

enhances lung cancer cell survival by suppressing radiation- 

induced apoptosis [29,30]. Glutathione-S  Transferase Pi (GSTP) is 

a protein that binding to the c-Jun N-terminal kinase (JNK) to 

prevent its activation, thereby inhibiting apoptosis. Radiation 

dissociates the interaction between the two proteins, and the 

released JNK is activated to promote apoptosis. However, Prx1 

overexpression increases the binding of the GSTP-JNK complex 

independently of its peroxidase activity. Consequently, Prx1 

inhibits the release of JNK from GSTP, thereby suppressing the 

radiation-induced JNK activation in lung cancer and preventing 

apoptosis [45].

Prostate cancer (PCa) is the most common malignancy in males 

[46]. Dihydrotestosterone (DHT), which is converted form 

androgen testosterone by 5-reductase, binds to the androgen 

receptor (AR) in the cytosol, and the androgen/AR complex enters 

the nucleus to bind to androgen response element (ARE) on the 

target gene promoter. The resulting increase in expression of the 

downstream target genes such as prostate specific antigen (PSA) 

promotes the progression of PCa [47]. Hormone therapies, the 

androgen deprivation therapy (ADT), are commonly used 

treatment, in which inhibitors of androgen production or AR are 

used. However, once PCa develops resistance to ADT, the 

condition becomes castration-resistant PCa, rendering hormone 

therapy ineffective [48]. The expression of Prx1 is highly in 

prostate cancer cells [34]. The DHT binding affinity of AR is 

increased by Prx1 which is independent of its peroxidase activity, 

and this promotes androgen-stimulated prostate cancer growth. 

Furthermore, in hypoxia, Prx1 binds to AR independently of its 

peroxidase activity, and this increases the binding affinity of AR 

to the ARE of the PSA promoter to increase ligand-stimulated AR 

activation [49].

The PI3K/AKT signaling pathway is crucial for cancer survival 

because it facilitates tumorigenesis through increased cell growth 

and proliferation [50,51]. In this pathway, when a growth factor 

binds to the receptor to activate the receptor-bound PI3K, the 

activated PI3K phosphorylates the precursor PIP2 to convert it 

to PIP3 as a mediator. PIP3 activates AKT phosphorylation by PDK1 

to regulate various downstream cancer-associated signaling 

pathways [52]. Furthermore PTEN is a tumor suppressor protein 

that uses its lipid phosphatase activity to dephosphorylate PIP3 

and convert it to PIP2, which subsequently prevents AKT 

activation and consequently the activation of the PI3K/AKT 

signaling pathway [53]. However, oxidation of PTEN caused by 

oxidative stress leads to its inactivation. Prx1 binds to PTEN to 

prevent its oxidation, thereby inhibiting tumorigenesis in breast 

cancer [12].

2. Prx2

DNA methylation, which induces gene silencing, can occur on 

the promoters of tumor suppressors, increasing the growth of 

cancer cells [54]. DNA methyltransferases (DNMTs), enzymes 

essential for DNA methylation, catalyze the transfer of a methyl 

group to the CpG structure in the DNA. DNMTs include DNMT1, 

DNMT3A and DNMT3B [55]. This methylation occurs in the Prx2 

gene promoter in gastric cancer, lymphoma, and melanoma. 

Unlike Prx1, Prx2 shows decreased mRNA and protein expression 

in approximately 32% (9 out of 28) of gastric cancer cell lines. 

DNMT1 suppresses Prx2 expression by promoting the methylation 

of Prx2. Contrarily, increased Prx2 expression in gastric cancer 

suppresses Src kinase activation through its peroxidase activity to 

inhibit the survival and migration of gastric cancer cells [56].

In patients with metastatic disease, the 5-year survival rate is 

less than 15%, indicating that tumor metastasis is a considerable 
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threat to the patient’s survival [57]. As a highly metastatic cancer, 

melanoma is the deadliest skin cancer. H2O2 increases the ERK 

and Src activation, and these in turn suppress the expression of 

E-cadherin and promote the phosphorylation of -catenin, 

respectively. This promotes the dissociation of E-cadherin/ 

-catenin complexes to cause epithelial-to-mesenchymal transition 

(EMT). As a result, cells metastasize to the lung or other organs. 

However, Prx2 removes H2O2 in melanoma cells, thereby 

increasing E-cadherin expression by suppressing ERK and Src 

activities. Additionally, the removal of H2O2 increases the 

membrane retention of -catenin by suppressing Src-mediated 

-catenin phosphorylation. The peroxidase-inactive (C51/172S) 

Prx2 mutant fails to remove H2O2, leading to melanoma metastasis. 

These results suggest that the peroxidase activity of Prx2 is 

essential to prevent metastasis. Thus, Prx2 removes H2O2 in 

melanoma cells to promote the E-cadherin/-catenin complexes, 

preventing metastasis [58].

3. Prx3

Prx3 is mainly localized to the mitochondria, and is highly 

expressed in various cancer types including PCa, breast cancer, 

and hepatocellular carcinoma [26,36,59,60]. In PCa, non-steroidal 

anti-androgen bicalutamide antagonizes the binding between 

androgen and AR, and is therefore used in anti-androgen 

treatment. However, PCa gradually develops resistance to this 

treatment. Anti-androgen resistant cells contain an increased 

number of mitochondria, with a consequent increase in 

mitochondrial Prx3 expression. The increased level of Prx3 

protects the mitochondria from H2O2-induced oxidative stress, 

thereby inhibiting apoptosis in PCa [61]. 

4. Prx4

Sulfiredoxin (Srx) is a protein that reversibly reduces the 

Cys-SO2H form of hyperoxidized Prx. The peroxidase activity of 

the reactivated Prx through the Srx-mediated Prx reversible 

reaction, protects the cells from oxidative stress [62]. However, 

Srx is highly expressed in lung cancer, where it increases cancer 

cell proliferation and invasion [63]. Among the typical 2-Cys Prxs, 

Prx4 exhibits the strongest binding affinity upon interaction with 

Srx, and similar to Srx, Prx4 shows a high level of expression in 

lung cancer, where it promotes cancer cell proliferation [29]. Such 

facilitation of tumorigenesis via the Srx-Prx4 axis is regulated by 

two pathways. In the first pathway, c-Jun phosphorylation is 

increased by Srx, resulting in activation of the transcription factor 

AP-1 and increased expression of the downstream target MMP9, 

which lead to the regulation of Srx-Prx4. In the second pathway, 

this regulation relies on an Srx-dependent increase of ERK1/2 

phosphorylation. Srx activates the phosphorylation of c-Jun, a 

transcription factor activator protein (AP-1, a heterodimer of c-Fos 

and c-Jun), to increase MMP9 expression, which promotes the 

invasion and metastasis of lung cancer. Srx also facilitates lung 

cancer proliferation by increasing the phosphorylation of ERK1/2 

and CREB. Likewise, Prx4 activates the phosphorylation of 

ERK1/2, AKT, CREB, and c-Jun. Therefore, the Srx-Prx4 axis plays 

a role in promoting tumor growth and metastasis of lung cancer 

[64].

5. Prx5

EMT is a cellular process that promotes cell proliferation, 

invasion, and metastasis in various cancer types [65]. ROS 

facilitates gastric and lung cancer cell migration and invasion 

[66,67]. Unlike Prx1-4, a high level of Prx5 expression in patients 

with gastric cancer is associated with a markedly reduced 5-year 

rate of survival. Prx5 increases vimentin expression and 

decreases E-cadherin expression in gastric cancer cells, thereby 

promoting not only EMT, but also tumorigenesis through 

increased invasion and proliferation [28].

6. Prx6

Prx6 differs from other Prx isoforms as it contains only one 

conserved Cys (C47), but it is highly expressed in lung cancer, 

similar to others [23]. As Prx6 exhibits calcium-independent 

phospholipase A2 (iPLA2) and glutathione peroxidase (GPx) 

activities, an increase in Prx6 leads to elevated activities of iPLA2 

and GPx. The iPLA2 and GPx activities are used by Prx6 to 

promote the expression of cell cycle regulatory proteins (CDK1, 

CDK2, and cyclin D1). Moreover, by activating MAP kinase 

pathway proteins (ERK1/2 and p38), Prx6 enhances the DNA 

binding activity of AP-1, which consequently promotes the 

growth and viability of lung cancer cells. A mutant form of Prx6 

(C47S) lacking the iPLA2 and GPx activities suppresses the p38 

and ERK1/2 activation and DNA binding activity of AP-1, 

consequently decreasing tumorigenesis. Prx6 thus facilitates 

tumorigenesis in lung cancer through its peroxidase activity [68].

CONCLUSION

Prxs exert their key function of regulation of redox 

homeostasis through their antioxidant enzymatic activity, which 

removes intracellular H2O2. The 6 Prx isoforms act as H2O2 

scavengers in different intracellular compartments. Additionally, 

at high H2O2 concentrations, Prxs become molecular chaperones 
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through gain of function. Thus, Prxs are multifunctional proteins 

which play different roles. Recently, a growing number of studies 

have found that Prxs regulate their expression and activity, acting 

as oncogenes that promote carcinogenesis in various cancer 

types. In addition, Prxs are known to promote the cancer cell 

stemness [69-71]. Nevertheless, as Prxs have also been shown to 

suppress tumorigenesis, more studies are required to verify the 

potential of Prxs as therapeutic targets in each cancer type.

Furthermore, Prxs influence the progression of diseases 

including cancer, depending on their protein-protein interactions. 

Among the Prx isoforms, Prx1 and 2 are the most abundant, and 

hence their interaction partners have been more extensively 

studied. In addition, to investigate the possibility that each Prx 

isoform mediates a different mechanism of cancer signaling 

regulation as they are located in different intracellular organelles, 

further studies should focus on the identification of interaction 

partners of each isoform and the elucidation of underlying 

mechanisms. In conclusion, the potential application of Prxs as 

therapeutic strategies for cancer treatment is promising.
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